The Optimization of Hybrid (Microwave–Conventional) Drying of Sweet Potato Using Response Surface Methodology (RSM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Drying Experiments
2.3. Rehydration Characteristics
2.3.1. Rehydration Ratio
2.3.2. Water-Holding Capacity
2.4. Bioactive Compounds
2.4.1. Antioxidant Activity (AA)
2.4.2. Total Phenolic Content (TPC)
2.4.3. Beta-Carotene Content
2.5. Experimental Design, Optimization, and Statistical Analysis
3. Results and Discussion
3.1. Drying Time (Dt)
3.2. Rehydration Ratio (RR) and Water-Holding Capacity (WHC)
3.3. Antioxidant Activity (AA-PC) and Total Phenolic Content Changes (TPC-PC)
3.4. Beta-Carotene Content Change (BC-PC)
3.5. Numerical Optimization of the Hybrid Drying Process
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cao, M.; Lan, P.; Li, F.; Abad, J.; Zhou, C.; Li, R. Genome Characterization of Sweet Potato Symptomless Virus 1: A Mastrevirus with an Unusual Nonanucleotide Sequence. Arch. Virol. 2017, 162, 2881–2884. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.K.; Sams, S.; Rana, Z.H.; Akhtaruzzaman, M.; Islam, S.N. Minerals, Vitamin C, and Effect of Thermal Processing on Carotenoids Composition in Nine Varieties Orange-Fleshed Sweet Potato (Ipomoea batatas L.). J. Food Compos. Anal. 2020, 92, 103582. [Google Scholar] [CrossRef]
- Makori, S.I.; Mu, T.-H.; Sun, H.-N. Total Polyphenol Content, Antioxidant Activity, and Individual Phenolic Composition of Different Edible Parts of 4 Sweet Potato Cultivars. Nat. Prod. Commun. 2020, 15, 1934578X2093693. [Google Scholar] [CrossRef]
- Truong, V.D.; Avula, R.Y.; Pecota, K.V.; Yencho, G.C. Sweetpotato Production, Processing, and Nutritional Quality. In Handbook of Vegetables and Vegetable Processing; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 811–838. ISBN 978-1-119-09893-5. [Google Scholar]
- Alam, M.K. A Comprehensive Review of Sweet Potato (Ipomoea batatas [L.] Lam): Revisiting the Associated Health Benefits. Trends Food Sci. Technol. 2021, 115, 512–529. [Google Scholar] [CrossRef]
- Ayeleso, T.B.; Ramachela, K.; Mukwevho, E. A Review of Therapeutic Potentials of Sweet Potato: Pharmacological Activities and Influence of the Cultivar. Trop. J. Pharm. Res. 2016, 15, 2751–2761. [Google Scholar] [CrossRef] [Green Version]
- Gao, Z.; Han, M.; Hu, Y.; Li, Z.; Liu, C.; Wang, X.; Tian, Q.; Jiao, W.; Hu, J.; Liu, L.; et al. Effects of Continuous Cropping of Sweet Potato on the Fungal Community Structure in Rhizospheric Soil. Front. Microbiol. 2019, 10, 2269. [Google Scholar] [CrossRef]
- Kim, M.Y.; Lee, B.W.; Lee, H.-U.; Lee, Y.Y.; Kim, M.H.; Lee, J.Y.; Lee, B.K.; Woo, K.S.; Kim, H.-J. Phenolic Compounds and Antioxidant Activity in Sweet Potato after Heat Treatment. J. Sci. Food Agric. 2019, 99, 6833–6840. [Google Scholar] [CrossRef]
- Wang, S.; Nie, S.; Zhu, F. Chemical Constituents and Health Effects of Sweet Potato. Food Res. Int. 2016, 89, 90–116. [Google Scholar] [CrossRef]
- Monteiro, R.L.; de Moraes, J.O.; Domingos, J.D.; Carciofi, B.A.M.; Laurindo, J.B. Evolution of the Physicochemical Properties of Oil-Free Sweet Potato Chips during Microwave Vacuum Drying. Innov. Food Sci. Emerg. Technol. 2020, 63, 102317. [Google Scholar] [CrossRef]
- Oloniyo, R.O.; Omoba, O.S.; Awolu, O.O.; Olagunju, A.I. Orange-fleshed Sweet Potatoes Composite Bread: A Good Carrier of Beta (β)-carotene and Antioxidant Properties. J. Food Biochem. 2021, 45, e13423. [Google Scholar] [CrossRef]
- Onabanjo, O.O.; Dickson, I. Nutritional, Functional and Sensory Properties of Biscuit Produced from Wheat-Sweet Potato Composite. J. Food Technol. Res. 2014, 1, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Azzahra, S.; Julianti, E.; Karo-Karo, T. The Effect of Pre-Treatment in Orange-Fleshed Sweet Potato (OFSP) Flour Manufacturing Process on Cake’s Quality. IOP Conf. Ser. Earth Environ. Sci. 2019, 260, 012092. [Google Scholar] [CrossRef] [Green Version]
- Marengo, M.; Amoah, I.; Carpen, A.; Benedetti, S.; Zanoletti, M.; Buratti, S.; Lutterodt, H.E.; Johnson, P.-N.T.; Manful, J.; Marti, A.; et al. Enriching Gluten-Free Rice Pasta with Soybean and Sweet Potato Flours. J. Food Sci. Technol. 2018, 55, 2641–2648. [Google Scholar] [CrossRef]
- Salama, M.; Mu, T.; Sun, H. Influence of Sweet Potato Flour on the Microstructure and Nutritional Quality of Gluten-Free Fresh Noodles. Int. J. Food Sci. Technol. 2021, 56, 3938–3947. [Google Scholar] [CrossRef]
- Gu, C.; Ma, H.; Tuly, J.A.; Guo, L.; Zhang, X.; Liu, D.; Ouyang, N.; Luo, X.; Shan, Y. Effects of Catalytic Infrared Drying in Combination with Hot Air Drying and Freeze Drying on the Drying Characteristics and Product Quality of Chives. LWT 2022, 161, 113363. [Google Scholar] [CrossRef]
- Hasan, M.U.; Malik, A.U.; Ali, S.; Imtiaz, A.; Munir, A.; Amjad, W.; Anwar, R. Modern Drying Techniques in Fruits and Vegetables to Overcome Postharvest Losses: A Review. J. Food Process. Preserv. 2019, 43, e14280. [Google Scholar] [CrossRef]
- Kaveh, M.; Abbaspour-Gilandeh, Y. Impacts of Hybrid (Convective-Infrared-Rotary Drum) Drying on the Quality Attributes of Green Pea. J. Food Process Eng. 2020, 43, e13424. [Google Scholar] [CrossRef]
- Sharma, G.P.; Prasad, S. Optimization of Process Parameters for Microwave Drying of Garlic Cloves. J. Food Eng. 2006, 75, 441–446. [Google Scholar] [CrossRef]
- Taghinezhad, E.; Kaveh, M.; Jahanbakhshi, A.; Golpour, I. Use of Artificial Intelligence for the Estimation of Effective Moisture Diffusivity, Specific Energy Consumption, Color and Shrinkage in Quince Drying. J. Food Process Eng. 2020, 43, e13358. [Google Scholar] [CrossRef]
- Zhang, J.; Li, M.; Ding, Z.; Cheng, J.; Yang, S.; Liu, X. Microwave Airflow Drying of Pecans at Variable Microwave Power. J. Food Process Eng. 2019, 42, e12946. [Google Scholar] [CrossRef] [Green Version]
- Chou, S.K.; Chua, K.J. New Hybrid Drying Technologies for Heat Sensitive Foodstuffs. Trends Food Sci. Technol. 2001, 12, 359–369. [Google Scholar] [CrossRef]
- Kumar, D.; Prasad, S.; Murthy, G.S. Optimization of Microwave-Assisted Hot Air Drying Conditions of Okra Using Response Surface Methodology. J. Food Sci. Technol. 2014, 51, 221–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Tan, L.; Xu, Y.; Yuan, Y.; Dong, J. Optimization of Combined Drying for Lettuce Using Response Surface Methodology. J. Food Process. Preserv. 2016, 40, 1027–1037. [Google Scholar] [CrossRef]
- Shi, Q.; Zheng, Y.; Zhao, Y. Optimization of Combined Heat Pump and Microwave Drying of Yacon (Smallanthus sonchifolius) Using Response Surface Methodology. J. Food Process. Preserv. 2014, 38, 2090–2098. [Google Scholar] [CrossRef]
- Gowen, A.; Abu-Ghannam, N.; Frias, J.; Oliveira, J. Optimisation of Dehydration and Rehydration Properties of Cooked Chickpeas (Cicer arietinum L.) Undergoing Microwave–Hot Air Combination Drying. Trends Food Sci. Technol. 2006, 17, 177–183. [Google Scholar] [CrossRef]
- Dehghannya, J.; Farshad, P.; Khakbaz Heshmati, M. Three-Stage Hybrid Osmotic–Intermittent Microwave–Convective Drying of Apple at Low Temperature and Short Time. Dry. Technol. 2018, 36, 1982–2005. [Google Scholar] [CrossRef]
- Horuz, E.; Bozkurt, H.; Karataş, H.; Maskan, M. Simultaneous Application of Microwave Energy and Hot Air to Whole Drying Process of Apple Slices: Drying Kinetics, Modeling, Temperature Profile and Energy Aspect. Heat Mass Transf. 2018, 54, 425–436. [Google Scholar] [CrossRef]
- Horuz, E.; Bozkurt, H.; Karataş, H.; Maskan, M. Drying Kinetics of Apricot Halves in a Microwave-Hot Air Hybrid Oven. Heat Mass Transf. 2017, 53, 2117–2127. [Google Scholar] [CrossRef]
- de Souza, A.U.; Corrêa, J.L.G.; Tanikawa, D.H.; Abrahão, F.R.; Junqueira, J.R.d.J.; Jiménez, E.C. Hybrid Microwave-Hot Air Drying of the Osmotically Treated Carrots. LWT 2022, 156, 113046. [Google Scholar] [CrossRef]
- Omari, A.; Behroozi-Khazaei, N.; Sharifian, F. Drying Kinetic and Artificial Neural Network Modeling of Mushroom Drying Process in Microwave-Hot Air Dryer. J. Food Process Eng. 2018, 41, e12849. [Google Scholar] [CrossRef]
- Miraei Ashtiani, S.-H.; Sturm, B.; Nasirahmadi, A. Effects of Hot-Air and Hybrid Hot Air-Microwave Drying on Drying Kinetics and Textural Quality of Nectarine Slices. Heat Mass Transf. 2018, 54, 915–927. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Dehghani, M.R.; Ramaswamy, H.S. Hybrid Microwave-Hot Air Tunnel Drying of Onion Slices: Drying Kinetics, Energy Efficiency, Product Rehydration, Color, and Flavor Characteristics. Dry. Technol. 2022, 40, 966–986. [Google Scholar] [CrossRef]
- Izli, G.; Taskin, O.; Izli, N. Convective, Microwave and Combined Microwave-Convective Drying of Pepino. Erwerbs-Obstbau 2021, 63, 175–184. [Google Scholar] [CrossRef]
- Influence of Three Different Drying Techniques on Persimmon Chips’ Characteristics: A Comparison Study among Hot-Air, Combined Hot-Air-Microwave, and Vacuum-Freeze Drying Techniques–ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S0960308519300410?casa_token=00sJR7NRsLwAAAAA:xFbk6g0OX7WKjiwQgl8SzPIrnRsE3EpacWEHnwJ7zLkrML729EtQNS5h3okCpmXLMb9XsM_5FaLn (accessed on 10 April 2023).
- Dehghannya, J.; Kadkhodaei, S.; Heshmati, M.K.; Ghanbarzadeh, B. Ultrasound-Assisted Intensification of a Hybrid Intermittent Microwave–Hot Air Drying Process of Potato: Quality Aspects and Energy Consumption. Ultrasonics 2019, 96, 104–122. [Google Scholar] [CrossRef]
- Horuz, E.; Bozkurt, H.; Karataş, H.; Maskan, M. Effects of Hybrid (Microwave-Convectional) and Convectional Drying on Drying Kinetics, Total Phenolics, Antioxidant Capacity, Vitamin C, Color and Rehydration Capacity of Sour Cherries. Food Chem. 2017, 230, 295–305. [Google Scholar] [CrossRef]
- Karaaslan, S.N.; Tunçer, İ.K. Development of a Drying Model for Combined Microwave–Fan-Assisted Convection Drying of Spinach. Biosyst. Eng. 2008, 100, 44–52. [Google Scholar] [CrossRef]
- Horuz, E.; Jaafar, H.J.; Maskan, M. Ultrasonication as Pretreatment for Drying of Tomato Slices in a Hot Air–Microwave Hybrid Oven. Dry. Technol. 2017, 35, 849–859. [Google Scholar] [CrossRef]
- Yolmeh, M.; Jafari, S.M. Applications of Response Surface Methodology in the Food Industry Processes. Food Bioprocess Technol. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Amiripour, M.; Habibi-Najafi, M.B.; Mohebbi, M.; Emadi, B. Optimization of Osmo-Vacuum Drying of Pear (Pyrus communis L.) Using Response Surface Methodology. J. Food Meas. Charact. 2015, 9, 269–280. [Google Scholar] [CrossRef]
- Šumić, Z.; Tepić, A.; Vidović, S.; Vladić, J.; Pavlić, B. Drying of Shiitake Mushrooms in a Vacuum Dryer and Optimization of the Process by Response Surface Methodology (RSM). J. Food Meas. Charact. 2016, 10, 425–433. [Google Scholar] [CrossRef]
- Omolola, A.O.; Jideani, A.I.O.; Kapila, P.F.; Jideani, V.A. Optimization of Microwave Drying Conditions of Two Banana Varieties Using Response Surface Methodology. Food Sci. Technol. 2015, 35, 438–444. [Google Scholar] [CrossRef] [Green Version]
- Bello, I.; Adeniyi, A.; Mukaila, T.; Hammed, A. Optimization of Soybean Protein Extraction with Ammonium Hydroxide (NH4OH) Using Response Surface Methodology. Foods 2023, 12, 1515. [Google Scholar] [CrossRef] [PubMed]
- Zalazar-Garcia, D.; Román, M.C.; Fernandez, A.; Asensio, D.; Zhang, X.; Fabani, M.P.; Rodriguez, R.; Mazza, G. Exergy, Energy, and Sustainability Assessments Applied to RSM Optimization of Integrated Convective Air-Drying with Pretreatments to Improve the Nutritional Quality of Pumpkin Seeds. Sustain. Energy Technol. Assess. 2022, 49, 101763. [Google Scholar] [CrossRef]
- Taghinezhad, E.; Kaveh, M.; Szumny, A. Optimization and Prediction of the Drying and Quality of Turnip Slices by Convective-Infrared Dryer under Various Pretreatments by RSM and ANFIS Methods. Foods 2021, 10, 284. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, X.; Yang, Y.; Wei, H.; Xue, L.; Zhao, M.; Cai, J. Optimization of Combined Microwave and Hot Air Drying Technology for Purple Cabbage by Response Surface Methodology (RSM). Food Sci. Nutr. 2021, 9, 4568–4577. [Google Scholar] [CrossRef]
- Islam Shishir, M.R.; Taip, F.S.; Aziz, N.A.; Talib, R.A.; Hossain Sarker, M.S. Optimization of Spray Drying Parameters for Pink Guava Powder Using RSM. Food Sci. Biotechnol. 2016, 25, 461–468. [Google Scholar] [CrossRef]
- Šumić, Z.; Vakula, A.; Tepić, A.; Čakarević, J.; Vitas, J.; Pavlić, B. Modeling and Optimization of Red Currants Vacuum Drying Process by Response Surface Methodology (RSM). Food Chem. 2016, 203, 465–475. [Google Scholar] [CrossRef]
- Sobowale, S.S.; Agbawodike, J.I.; Kewuyemi, Y.O.; Adebo, O.A. Response Surface Methodology Approach for Predicting Microwave-Convective Drying Characteristics of Sweet Potato Slices. J. Food Process. Preserv. 2022, 46, e16683. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. Modelling the Mid-Infrared Drying of Sweet Potato: Kinetics, Mass and Heat Transfer Parameters, and Energy Consumption. Heat Mass Transf. 2018, 54, 2917–2933. [Google Scholar] [CrossRef]
- Giri, S.K.; Prasad, S. Drying Kinetics and Rehydration Characteristics of Microwave-Vacuum and Convective Hot-Air Dried Mushrooms. J. Food Eng. 2007, 78, 512–521. [Google Scholar] [CrossRef]
- Aksoy, A.; Karasu, S.; Akcicek, A.; Kayacan, S. Effects of Different Drying Methods on Drying Kinetics, Microstructure, Color, and the Rehydration Ratio of Minced Meat. Foods 2019, 8, 216. [Google Scholar] [CrossRef] [Green Version]
- Mudgil, D.; Barak, S. Composition, Properties and Health Benefits of Indigestible Carbohydrate Polymers as Dietary Fiber: A Review. Int. J. Biol. Macromol. 2013, 61, 1–6. [Google Scholar] [CrossRef]
- Wang, J.; Bai, T.-Y.; Wang, D.; Fang, X.-M.; Xue, L.-Y.; Zheng, Z.-A.; Gao, Z.-J.; Xiao, H.-W. Pulsed Vacuum Drying of Chinese Ginger (Zingiber officinale Roscoe) Slices: Effects on Drying Characteristics, Rehydration Ratio, Water Holding Capacity, and Microstructure. Dry. Technol. 2019, 37, 301–311. [Google Scholar] [CrossRef]
- Ozgoren, E.; Isik, F.; Yapar, A. Effect of Jerusalem Artichoke (Helianthus tuberosus L.) Supplementation on Chemical and Nutritional Properties of Crackers. J. Food Meas. Charact. 2019, 13, 2812–2821. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT–Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology; Oxidants and Antioxidants Part A; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Demiray, E.; Tulek, Y.; Yilmaz, Y. Degradation Kinetics of Lycopene, β-Carotene and Ascorbic Acid in Tomatoes during Hot Air Drying. LWT–Food Sci. Technol. 2013, 50, 172–176. [Google Scholar] [CrossRef]
- Tumer, E.; Tulek, Y. Effects of Dehydrofreezing Conditions on Carrot β-Carotene and Kinetics of β-Carotene Change in Dehydrofrozen Carrots during Storage. Food Sci. Technol. 2021, 42, e70220. [Google Scholar] [CrossRef]
- Demirel, M.; Kayan, B. Application of Response Surface Methodology and Central Composite Design for the Optimization of Textile Dye Degradation by Wet Air Oxidation. Int. J. Ind. Chem. 2012, 3, 24. [Google Scholar] [CrossRef] [Green Version]
- Nkama, I.; Badau, M.; Ukwungwu, M.; Maji, A.; Abo, M.; Fati, K.; Oko, A. Optimization of Rice Parboiling Process for Optimum Head Rice Yield: A Response Surface Methodology (RSM) Approach. Int. J. Agric. For. 2014, 2014, 154–165. [Google Scholar] [CrossRef]
- Elkelawy, M.; Bastawissi, H.A.-E.; Esmaeil, K.K.; Radwan, A.M.; Panchal, H.; Sadasivuni, K.K.; Suresh, M.; Israr, M. Maximization of Biodiesel Production from Sunflower and Soybean Oils and Prediction of Diesel Engine Performance and Emission Characteristics through Response Surface Methodology. Fuel 2020, 266, 117072. [Google Scholar] [CrossRef]
- Golpour, I.; Kaveh, M.; Blanco-Marigorta, A.M.; Marcos, J.D.; Guiné, R.P.F.; Chayjan, R.A.; Khalife, E.; Karami, H. Multi-Response Design Optimisation of a Combined Fluidised Bed-Infrared Dryer for Terebinth (Pistacia atlantica L.) Fruit Drying Process Based on Energy and Exergy Assessments by Applying RSM-CCD Modelling. Sustainability 2022, 14, 15220. [Google Scholar] [CrossRef]
- Aghilinategh, N.; Rafiee, S.; Hosseinpour, S.; Omid, M.; Mohtasebi, S.S. Optimization of Intermittent Microwave–Convective Drying Using Response Surface Methodology. Food Sci. Nutr. 2015, 3, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Kumar, C.; Karim, M.A. Microwave-Convective Drying of Food Materials: A Critical Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 379–394. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, M.; Mirzabeigi Kesbi, O.; Mireei, S.A. Mass Transfer Characteristics during Convective, Microwave and Combined Microwave–Convective Drying of Lemon Slices. J. Sci. Food Agric. 2013, 93, 471–478. [Google Scholar] [CrossRef]
- Horuz, E.; Maskan, M. Hot Air and Microwave Drying of Pomegranate (Punica granatum L.) Arils. J. Food Sci. Technol. 2015, 52, 285–293. [Google Scholar] [CrossRef]
- Maskan, M. Drying, Shrinkage and Rehydration Characteristics of Kiwifruits during Hot Air and Microwave Drying. J. Food Eng. 2001, 48, 177–182. [Google Scholar] [CrossRef]
- Su, D.; Lv, W.; Wang, Y.; Wang, L.; Li, D. Influence of Microwave Hot-Air Flow Rolling Dry-Blanching on Microstructure, Water Migration and Quality of Pleurotus Eryngii during Hot-Air Drying. Food Control 2020, 114, 107228. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Di Scala, K.; Rodríguez, K.; Lemus-Mondaca, R.; Miranda, M.; López, J.; Perez-Won, M. Effect of Air-Drying Temperature on Physico-Chemical Properties, Antioxidant Capacity, Colour and Total Phenolic Content of Red Pepper (Capsicum annuum, L. var. Hungarian). Food Chem. 2009, 117, 647–653. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Hall, R.D.; Capanoglu, E. A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2016, 56, S110–S129. [Google Scholar] [CrossRef]
- Samoticha, J.; Wojdyło, A.; Lech, K. The Influence of Different the Drying Methods on Chemical Composition and Antioxidant Activity in Chokeberries. LWT–Food Sci. Technol. 2016, 66, 484–489. [Google Scholar] [CrossRef]
- İncedayi, B.; Tamer, C.E.; Sinir, G.Ö.; Suna, S.; Çopur, Ö.U. Impact of Different Drying Parameters on Color, β-Carotene, Antioxidant Activity and Minerals of Apricot (Prunus armeniaca L.). Food Sci. Technol. 2016, 36, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Mbondo, N.N.; Owino, W.O.; Ambuko, J.; Sila, D.N. Effect of Drying Methods on the Retention of Bioactive Compounds in African Eggplant. Food Sci. Nutr. 2018, 6, 814–823. [Google Scholar] [CrossRef] [Green Version]
Factor Code | Name | Unit | Coded/Actual Levels | ||
---|---|---|---|---|---|
−1 | 0 | 1 | |||
A | Drying temperature | °C | 50 | 60 | 70 |
B | Microwave power | W | 0 | 90 | 180 |
Run | Independent Variables | Responses | ||||||
---|---|---|---|---|---|---|---|---|
DT (°C) | MW (W) | Dt (min) | RR | WHC | AA-PC (%) | TPC-PC (%) | BC-PC (%) | |
4 | 50 | 0 | 177 | 3.14 | 35.01 | 5.58 | −54.61 | −84.61 |
13 | 50 | 90 | 71 | 3.30 | 34.50 | 25.74 | −26.27 | −80.47 |
7 | 50 | 180 | 51 | 3.35 | 32.90 | 50.59 | −21.65 | −85.74 |
9 | 60 | 0 | 122 | 3.09 | 40.06 | 27.15 | −50.45 | −80.78 |
1 | 60 | 90 | 58 | 3.24 | 38.74 | 26.48 | −34.47 | −79.89 |
2 | 60 | 90 | 61 | 3.30 | 35.52 | 26.69 | −32.86 | −79.84 |
3 | 60 | 90 | 57 | 3.19 | 39.58 | 31.49 | −33.81 | −78.49 |
5 | 60 | 90 | 60 | 3.24 | 36.91 | 33.67 | −34.91 | −76.75 |
6 | 60 | 90 | 58 | 3.24 | 37.90 | 30.92 | −31.11 | −78.51 |
12 | 60 | 180 | 42 | 3.15 | 32.18 | 43.33 | −25.82 | −83.83 |
8 | 70 | 0 | 100 | 3.18 | 41.84 | 17.72 | −39.03 | −82.80 |
11 | 70 | 90 | 56 | 3.17 | 41.65 | 15.35 | −29.14 | −80.25 |
10 | 70 | 180 | 37 | 2.95 | 28.44 | 32.31 | −27.28 | −85.59 |
Source | Sum of Squares (SSS) | Df | Mean Square | F Value | p Value | |
---|---|---|---|---|---|---|
Transform: Inverse | ||||||
Model | 0.0004 | 5 | 0.0001 | 216.89 | <0.0001 ** | Significant |
A-Drying temperature | 0.0000 | 1 | 0.0000 | 106.66 | <0.0001 ** | |
B-Microwave power | 0.0004 | 1 | 0.0004 | 958.81 | <0.0001 ** | |
AB | 2.355 × 10−6 | 1 | 2.355 × 10−6 | 6.24 | 0.0411 * | |
A2 | 1.553 × 10−6 | 1 | 1.553 × 10−6 | 4.11 | 0.0821 | |
B2 | 1.422 × 10−6 | 1 | 1.422 × 10−6 | 3.77 | 0.0934 | |
Residual | 2.642 × 10−6 | 7 | 3.774 × 10−7 | |||
Lack of Fit | 1.752 × 10−6 | 3 | 5.841 × 10−7 | 2.63 | 0.1870 | Not significant |
Pure Error | 8.898 × 10−7 | 4 | 2.225 × 10−7 | |||
Cor. Total | 0.0004 | 12 |
Response: Rehydration Ratio | ||||||
---|---|---|---|---|---|---|
Source | SSS | Df | Mean Square | F Value | p Value | |
Transform: None | ||||||
Model | 0.1166 | 5 | 0.0233 | 16.50 | 0.0009 ** | Significant |
A-Drying temperature | 0.0408 | 1 | 0.0408 | 28.90 | 0.0010 ** | |
B-Microwave power | 0.0003 | 1 | 0.0003 | 0.2002 | 0.6681 | |
AB | 0.0492 | 1 | 0.0492 | 3.79 | 0.0006 ** | |
A2 | 0.0008 | 1 | 0.0008 | 0.5643 | 0.4770 | |
B2 | 0.0251 | 1 | 0.0251 | 17.76 | 0.0040 ** | |
Residual | 0.0099 | 7 | 0.0014 | |||
Lack of Fit | 0.0023 | 3 | 0.0008 | 0.4152 | 0.7519 | Not significant |
Pure Error | 0.0075 | 4 | 0.0019 | |||
Cor. Total | 0.1265 | 12 | ||||
Response: Water-Holding Capacity | ||||||
Source | SSS | Df | Mean Square | F value | p value | |
Transform: None | ||||||
Model | 163.74 | 5 | 32.75 | 9.38 | 0.0052 ** | Significant |
A-Drying temperature | 15.12 | 1 | 15.12 | 4.33 | 0.0759 | |
B-Microwave power | 91.17 | 1 | 91.17 | 26.13 | 0.0014 ** | |
AB | 31.94 | 1 | 31.94 | 9.15 | 0.0192 * | |
A2 | 0.9237 | 1 | 0.9237 | 0.2647 | 0.6228 | |
B2 | 17.79 | 1 | 17.79 | 5.10 | 0.0585 | |
Residual | 24.43 | 7 | 3.49 | |||
Lack of Fit | 14.41 | 3 | 4.80 | 1.92 | 0.2684 | Not significant |
Pure Error | 10.02 | 4 | 2.51 | |||
Cor. Total | 188.16 | 12 |
Response: Antioxidant Activity Change | ||||||
---|---|---|---|---|---|---|
Source | SSS | Df | Mean Square | F Value | p Value | |
Transform: None | ||||||
Model | 1547.29 | 5 | 309.46 | 46.12 | <0.0001 ** | Significant |
A-Drying temperature | 45.54 | 1 | 45.54 | 6.79 | 0.0352 * | |
B-Microwave power | 326.05 | 1 | 326.05 | 48.59 | 0.0002 ** | |
AB | 960.07 | 1 | 960.07 | 143.08 | <0.0001 ** | |
A2 | 208.15 | 1 | 208.15 | 31.02 | 0.0008 ** | |
B2 | 64.40 | 1 | 64.40 | 9.60 | 0.0174 * | |
Residual | 46.97 | 7 | 6.71 | |||
Lack of Fit | 7.21 | 3 | 2.40 | 0.2416 | 0.8636 | Not significant |
Pure Error | 39.77 | 4 | 9.94 | |||
Cor. Total | 1594.26 | 12 | ||||
Response: Total Phenolic Content Change | ||||||
Source | SSS | df | Mean Square | F value | p value | |
Transform: None | ||||||
Model | 1040.77 | 5 | 208.15 | 37.77 | <0.0001 ** | Significant |
A-Drying temperature | 8.35 | 1 | 8.35 | 1.52 | 0.2580 | |
B-Microwave power | 801.34 | 1 | 801.34 | 145.40 | <0.0001 ** | |
AB | 112.47 | 1 | 112.47 | 20.41 | 0.0027 ** | |
A2 | 47.92 | 1 | 47.92 | 8.70 | 0.0214 * | |
B2 | 108.39 | 1 | 108.39 | 19.67 | 0.0030 ** | |
Residual | 38.58 | 7 | 5.51 | |||
Lack of Fit | 29.46 | 3 | 9.82 | 4.30 | 0.0962 | Not significant |
Pure Error | 9.12 | 4 | 2.28 | |||
Cor. Total | 1079.35 | 12 |
Source | SSS | Df | Mean Square | F Value | p Value | |
---|---|---|---|---|---|---|
Transform: Inverse | ||||||
Model | 92.72 | 5 | 18.54 | 17.21 | 0.0008 ** | Significant |
A-Drying temperature | 0.7921 | 1 | 0.7921 | 0.7353 | 0.4196 | |
B-Microwave power | 8.10 | 1 | 8.10 | 7.52 | 0.0289 * | |
AB | 0.6889 | 1 | 0.6889 | 0.6395 | 0.4502 | |
A2 | 11.15 | 1 | 11.15 | 10.36 | 0.0147 * | |
B2 | 43.19 | 1 | 43.19 | 40.10 | 0.0004 ** | |
Residual | 7.54 | 7 | 1.08 | |||
Lack of Fit | 0.9421 | 3 | 0.3140 | 0.1904 | 0.8979 | Not significant |
Pure Error | 6.60 | 4 | 1.65 | |||
Cor. Total | 100.26 | 12 |
Name | Goal | Lower Limit | Upper Limit | Importance Level | Predicted |
---|---|---|---|---|---|
A: DT | In range | 50 | 70 | 3 | 54.36 °C |
B: MW | In range | 0 | 180 | 3 | 101.97 W |
Dt | Minimize | 177 | 37 | 3 | 61.76 min |
RR | Maximize | 2.95 | 3.35 | 3 | 3.29 |
WHC | Maximize | 28.44 | 41.84 | 3 | 36.56 |
AA-PC | Maximize | 5.58 | 50.59 | 3 | 31.03% |
TPC-PC | Maximize | −54.61 | −21.65 | 3 | −30.50% |
BC-PC | Maximize | −85.74 | −76.75 | 3 | −79.64% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tüfekçi, S.; Özkal, S.G. The Optimization of Hybrid (Microwave–Conventional) Drying of Sweet Potato Using Response Surface Methodology (RSM). Foods 2023, 12, 3003. https://doi.org/10.3390/foods12163003
Tüfekçi S, Özkal SG. The Optimization of Hybrid (Microwave–Conventional) Drying of Sweet Potato Using Response Surface Methodology (RSM). Foods. 2023; 12(16):3003. https://doi.org/10.3390/foods12163003
Chicago/Turabian StyleTüfekçi, Senem, and Sami Gökhan Özkal. 2023. "The Optimization of Hybrid (Microwave–Conventional) Drying of Sweet Potato Using Response Surface Methodology (RSM)" Foods 12, no. 16: 3003. https://doi.org/10.3390/foods12163003
APA StyleTüfekçi, S., & Özkal, S. G. (2023). The Optimization of Hybrid (Microwave–Conventional) Drying of Sweet Potato Using Response Surface Methodology (RSM). Foods, 12(16), 3003. https://doi.org/10.3390/foods12163003