The Effects of Okara Ratio and Particle Size on the Physical Properties and Consumer Acceptance of Tofu
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Tofu and Okara Production
2.3. Yield Determination
2.4. Color Analysis
2.5. Moisture Properties
2.6. Texture Analysis
2.7. Rheological Properties during Tofu Gelation
2.8. Sensory Evaluation
2.9. Statistical Analysis
3. Results
3.1. Composition, Yield, and Water-Holding Capacity
3.2. Color Analysis
Sample | Soymilk L* | Soymilk a* | Soymilk b* | Soymilk WI | Soymilk YI | Tofu L* | Tofu a* | Tofu b* | Tofu WI | Tofu YI |
---|---|---|---|---|---|---|---|---|---|---|
Control | 85.06 d (0.82) | −7.67 a (0.06) | 17.52 e (0.15) | 32.49 ab (0.52) | 29.44 c (0.16) | 85.60 b (0.31) | −5.94 a (0.04) | 19.56 d (0.09) | 26.93 a (0.36) | 32.64 d (0.50) |
Whole 25% | 90.09 c (0.35) | −8.51 bc (0.03) | 19.63 cd (0.06) | 31.77 abc (0.21) | 30.93 bc (0.06) | 85.63 b (0.24) | −6.30 b (0.02) | 20.63 d (0.08) | 23.75 bc (0.027) | 34.42 bc (0.13) |
Whole 50% | 93.89 bc (0.43) | −8.79 bc (0.06) | 20.95 ab (0.25) | 29.01 c (0.59) | 32.58 a (0.32) | 85.37 b (0.33) | −6.37 b (0.06) | 21.20 ab (0.10) | 21.76 c (0.15) | 35.48 b (0.08) |
Whole 100% | 95.42 a (0.91) | −8.13 ab (0.42) | 21.55 a (0.67) | 30.78 bc (1.84) | 32.25 ab (0.91) | 84.97 b (0.19) | −6.03 a (0.03) | 21.81 a (0.34) | 19.52 d (1.08) | 36.68 a (0.60) |
Fine 25% | 90.09 c (0.54) | −8.35 abc (0.06) | 18.81 d (0.08) | 33.65 ab (0.35) | 29.84 c (0.09) | 84.72 b (0.24) | −6.29 b (0.04) | 19.48 bc (0.07) | 26.29 a (0.16) | 32.85 d (0.08) |
Fine 50% | 91.86 ab (0.24) | −9.00 c (0.03) | 19.93 bcd (0.09) | 34.09 ab (0.10) | 30.33 c (0.07) | 87.47 a (0.38) | −6.76 d (0.04) | 20.81 bc (0.10) | 25.03 ab (0.27) | 34.00 c (0.12) |
Fine 100% | 95.42 a (0.85) | −8.82 bc (0.10) | 20.12 bc (0.22) | 35.08 a (0.29) | 30.11 c (0.11) | 85.20 b (0.37) | −6.53 c (0.02) | 20.36 c (0.12) | 24.13 b (0.12) | 34.13 c (0.08) |
3.3. Texture Profile Analysis
3.4. Rheological Properties during Tofu Gelation
3.5. Sensory Evaluation
4. Discussion
4.1. Composition
4.2. Yield and Water-Holding Capacity
4.3. Color Analysis
4.4. Texture Profile Analysis
4.5. Rheological Properties during Tofu Gelation
4.6. Sensory Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karlgren, B. The Book of Odes: Chinese Text; Bullentin (Östasiatiska Museet); Museum of Far Eastern Antiquities: Stockholm, Sweden, 1974. [Google Scholar]
- Aschemann-Witzel, J.; Gantriis, R.F.; Fraga, P.; Perez-Cueto, F.J.A. Plant-based food and protein trend from a business perspective: Markets, consumers, and the challenges and opportunities in the future. Crit. Rev. Food Sci. Nutr. 2021, 61, 3119–3128. [Google Scholar] [CrossRef]
- Reynaud, Y.; Buffière, C.; Cohade, B.; Vauris, M.; Liebermann, K.; Hafnaoui, N.; Lopez, M.; Souchon, I.; Dupont, D.; Rémond, D. True ileal amino acid digestibility and digestible indispensable amino acid scores (DIAASs) of plant-based protein foods. Food Chem. 2021, 338, 128020. [Google Scholar] [CrossRef]
- Boukid, F. Plant-based meat analogues: From niche to mainstream. Eur. Food Res. Technol. 2021, 247, 297–308. [Google Scholar] [CrossRef]
- Vagadia, B.H.; Vanga, S.K.; Raghavan, V. Inactivation methods of soybean trypsin inhibitor—A review. Trends Food Sci. Technol. 2017, 64, 115–125. [Google Scholar] [CrossRef]
- Asghar, A.; Afzaal, M.; Saeed, F.; Ahmed, A.; Ateeq, H.; Shah, Y.A.; Islam, F.; Hussain, M.; Akram, N.; Shah, M.A. Valorization and food applications of okara (soybean residue): A concurrent review. Food Sci. Nutr. 2023, 11, 3631–3640. [Google Scholar] [CrossRef]
- Li, S.; Zhu, D.; Li, K.; Yang, Y.; Lei, Z.; Zhang, Z. Soybean curd residue: Composition, utilization, and related limiting factors. ISRN Ind. Eng. 2013, 2013, 423590. [Google Scholar] [CrossRef]
- Choi, I.S.; Kim, Y.G.; Jung, J.K.; Bae, H.-J. Soybean waste (okara) as a valorization biomass for the bioethanol production. Energy 2015, 93, 1742–1747. [Google Scholar] [CrossRef]
- Sen, B.; Aravind, J.; Kanmani, P.; Lay, C.-H. State of the art and future concept of food waste fermentation to bioenergy. Renew. Sustain. Energy Rev. 2016, 53, 547–557. [Google Scholar] [CrossRef]
- Gupta, S.; Lee, J.J.L.; Chen, W.N. Analysis of Improved Nutritional Composition of Potential Functional Food (Okara) after Probiotic Solid-State Fermentation. J. Agric. Food Chem. 2018, 66, 5373–5381. [Google Scholar] [CrossRef]
- van der Riet, W.B.; Wight, A.W.; Cilliers, J.J.L.; Datel, J.M. Food chemical investigation of tofu and its byproduct okara. Food Chem. 1989, 34, 193–202. [Google Scholar] [CrossRef]
- Zheng, L.; Regenstein, J.M.; Teng, F.; Li, Y. Tofu products: A review of their raw materials, processing conditions, and packaging. Comp. Rev. Food Sci. Food Saf. 2020, 19, 3683–3714. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H., Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef]
- Joo, K.H.; Cavender, G.A. Investigation of tofu products coagulated with trimagnesium citrate as a novel alternative to nigari and gypsum: Comparison of physical properties and consumer preference. LWT 2020, 118, 108819. [Google Scholar] [CrossRef]
- Ullah, I.; Yin, T.; Xiong, S.; Zhang, J.; Din, Z.-u.; Zhang, M. Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling. LWT-Food Sci. Technol. 2017, 82, 15–22. [Google Scholar] [CrossRef]
- Cai, T.; Chang, K. Dry tofu characteristics affected by soymilk solid content and coagulation time. J. Food Qual. 1997, 20, 391–402. [Google Scholar] [CrossRef]
- Cai, T.; Chang, K. Characteristics of production-scale tofu as affected by soymilk coagulation method: Propeller blade size, mixing time and coagulant concentration. Food Res. Int. 1998, 31, 289–295. [Google Scholar] [CrossRef]
- Hunter, R.S. New Reflectometer and Its Use for Whiteness Measurement. J. Opt. Soc. Am. 1960, 50, 44–48. [Google Scholar] [CrossRef]
- Francis, F.J.; Clydesdale, F.M. Food Colorimetry: Theory and Applications; AVI Publishing Co., Inc.: Westport, CT, USA, 1975. [Google Scholar]
- Sharma, G. Digital Color Imaging Handbook; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Matemu, A.O.; Kayahara, H.; Murasawa, H.; Nakamura, S. Importance of size and charge of carbohydrate chains in the preparation of functional glycoproteins with excellent emulsifying properties from tofu whey. Food Chem. 2009, 114, 1328–1334. [Google Scholar] [CrossRef]
- Chaplin, M.F. Fibre and water binding. Proc. Nutr. Soc. 2003, 62, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Ullah, I.; Hu, Y.; You, J.; Yin, T.; Xiong, S.; Din, Z.-u.; Huang, Q.; Liu, R. Influence of okara dietary fiber with varying particle sizes on gelling properties, water state and microstructure of tofu gel. Food Hydrocoll. 2019, 89, 512–522. [Google Scholar] [CrossRef]
- Lan, Q.; Lin, Z.; Dong, H.; Wu, D.; Lin, D.; Qin, W.; Liu, J.; Yang, W.; Zhang, Q. Influence of okara with varying particle sizes on the gelling, rheological, and microstructural properties of glucono-δ-lactone-induced tofu. J. Food Sci. Technol. 2021, 58, 520–531. [Google Scholar] [CrossRef]
- Szmańko, T.; Lesiów, T.; Górecka, J. The water-holding capacity of meat: A reference analytical method. Food Chem. 2021, 357, 129727. [Google Scholar] [CrossRef]
- Mohamed, A.-M.O.; Paleologos, E.K. Fundamentals of Geoenvironmental Engineering: Understanding Soil, Water, and Pollutant Interaction and Transport; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Clydesdale, F.M. Color PERception and food quality1. J. Food Qual. 1991, 14, 61–74. [Google Scholar] [CrossRef]
- Friedman, H.H.; Whitney, J.E.; Szczesniak, A.S. The Texturometer—A New Instrument for Objective Texture Measurement. J. Food Sci. 1963, 28, 390–396. [Google Scholar] [CrossRef]
- Rosenthal, A.J. Texture profile analysis—How important are the parameters? J. Texture Stud. 2010, 41, 672–684. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, P.; Zou, M.; Yang, R.; Tian, M.; Gu, Z. Microbial transglutaminase-modified protein network and its importance in enhancing the quality of high-fiber tofu with okara. Food Chem. 2019, 289, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Fan, X.; Zhou, Z.; Xu, X.; Fan, G.; Wang, L.; Huang, X.; Pan, S.; Zhu, L. Acid-induced gelation behavior of soybean protein isolate with high intensity ultrasonic pre-treatments. Ultrason. Sonochem. 2013, 20, 187–195. [Google Scholar] [CrossRef]
- Miller, R.A. Increased Yield of Bread Containing Citrus Peel Fiber. Cereal Chem. 2011, 88, 174–178. [Google Scholar] [CrossRef]
- Yan, W.; Kun, Y.; Yang, X.; Li, G.; Xianfeng, D. Physicochemical properties of soya bean protein gel prepared by microbial transglutaminase in the presence of okara. Int. J. Food Sci. Technol. 2015, 50, 2402–2410. [Google Scholar] [CrossRef]
- Engelen, L.; van der Bilt, A. Oral physiology and texture perception of semisolids. J. Texture Stud. 2008, 39, 83–113. [Google Scholar] [CrossRef]
- Wang, S.; Chang, T.; Wang, C.; Shi, L.; Wang, W.; Yang, H.; Cui, M. Effect of Particle Sizes of Soy Okara on Textural, Color, Sensory and Rheological Properties of Pork Meat Gels. J. Food Qual. 2015, 38, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S.; Tan, D.D.Y.; Chen, J. Applications of tribology in studying food oral processing and texture perception. Food Res. Int. 2013, 54, 1627–1635. [Google Scholar] [CrossRef]
- McDonald, S.; Oates, C.J. Sustainability: Consumer Perceptions and Marketing Strategies. Bus. Strategy Environ. 2006, 15, 157–170. [Google Scholar] [CrossRef]
- Mainieri, T.; Barnett, E.G.; Valdero, T.R.; Unipan, J.B.; Oskamp, S. Green Buying: The Influence of Environmental Concern on Consumer Behavior. J. Social. Psychol. 1997, 137, 189–204. [Google Scholar] [CrossRef]
- Steinhauser, J.; Janssen, M.; Hamm, U. Who Buys Products with Nutrition and Health Claims? A Purchase Simulation with Eye Tracking on the Influence of Consumers’ Nutrition Knowledge and Health Motivation. Nutrients 2019, 11, 2199. [Google Scholar] [CrossRef] [Green Version]
- Ballco, P.; de-Magistris, T.; Caputo, V. Consumer preferences for nutritional claims: An exploration of attention and choice based on an eye-tracking choice experiment. Food Res. Int. 2019, 116, 37–48. [Google Scholar] [CrossRef]
Sample | Yield (%) | M0 (g H2O/100 g) | M30 min (g H2O/100 g) | Moisture Loss (g H2O/g Solids) |
---|---|---|---|---|
Control | 14.52 d (0.11) | 76.78 c (0.31) | 59.70 b (0.40) | 1.829 d (0.042) |
Whole 25% | 17.53 c (0.28) | 79.69 b (0.29) | 61.02 b (0.21) | 2.366 c (0.064) |
Whole 50% | 21.61 b (0.68) | 80.96 b (0.54) | 61.58 b (0.74) | 2.675 bc (0.102) |
Whole 100% | 28.27 a (0.28) | 82.49 a (0.26) | 64.15 a (0.40) | 2.928 b (0.058) |
Fine 25% | 18.16 c (0.30) | 82.70 a (0.35) | 64.95 a (0.67) | 2.937 b (0.089) |
Fine 50% | 21.87 b (0.23) | 82.54 a (0.30) | 64.05 a (0.34) | 2.957 b (0.073) |
Fine 100% | 29.52 a (0.20) | 83.89 a (0.22) | 64.92 a (0.32) | 3.364 a (0.077) |
ΔE* | |||||||
---|---|---|---|---|---|---|---|
Control | Whole 25% | Whole 50% | Whole 100% | Fine 25% | Fine 50% | Fine 100% | |
Control | 0 | 1.129 | 1.711 | 2.338 | 0.950 | 2.394 | 1.071 |
Whole 25% | 0 | 0.630 | 1.379 | 1.467 | 1.905 | 0.557 | |
Whole 50% | 0 | 0.805 | 1.840 | 2.171 | 0.872 | ||
Whole 100% | 0 | 2.358 | 2.790 | 1.551 | |||
Fine 25% | 0 | 3.091 | 1.031 | ||||
Fine 50% | 0 | 2.326 |
Sample | Hardness (g) | Resilience | Chewiness | Springiness | Cohesiveness |
---|---|---|---|---|---|
Control | 855 abc (18.7) | 0.175 ab (0.009) | 98.9 abc (19.0) | 0.382 a (0.062) | 0.289 abc (0.017) |
Whole 25% | 1047 ab (28.9) | 0.177 ab (0.007) | 118.4 ab (7.52) | 0.373 a (0.023) | 0.304 abc (0.005) |
Whole 50% | 1315 a (32.3) | 0.117 c (0.004) | 133.8 a (9.92) | 0.324 a (0.010) | 0.311 abc (0.011) |
Whole 100% | 875 ab (49.7) | 0.162 b (0.004) | 108.7 ab (14.3) | 0.350 a (0.016) | 0.341 a (0.012) |
Fine 25% | 523 c (23.1) | 0.202 a (0.015) | 42.17 c (4.11) | 0.284 a (0.014) | 0.280 bc (0.010) |
Fine 50% | 796 bc (14.1) | 0.101 c (0.002) | 65.36 bc (3.57) | 0.280 a (0.032) | 0.270 c (0.009) |
Fine 100% | 924 ab (121.7) | 0.106 c (0.006) | 107.9 ab (24.3) | 0.324 a (0.014) | 0.326 ab (0.018) |
T0 | T1 | T2 | T3 | |||||
---|---|---|---|---|---|---|---|---|
G′ | Tan δ | G′ | Tan δ | G′ | Tan δ | G′ | Tan δ | |
Control | 5.73 d (0.39) | 0.565 a (0.014) | 8.26 e (0.46) | 0.324 a (0.019) | 20.69 d (1.90) | 0.158 a (0.018) | 40.63 d (4.05) | 0.177 a (0.009) |
Whole 25% | 8.89 cd (0.59) | 0.503 b (0.009) | 14.50 cd (0.64) | 0.295 ab (0.012) | 32.80 bcd (1.44) | 0.136 ab (0.006) | 67.36 bc (2.12) | 0.170 ab (0.003) |
Whole 50% | 13.06 ab (1.28) | 0.446 cd (0.016) | 20.98 ab (2.19) | 0.242 bc (0.013) | 45.32 b (3.82) | 0.113 bc (0.007) | 91.92 ab (7.56) | 0.162 ab (0.003) |
Whole 100% | 14.29 a (1.24) | 0.418 d (0.013) | 19.82 abc (1.91) | 0.231 cd (0.012) | 39.70 bc (3.81) | 0.105 bc (0.006) | 73.31 bc (7.26) | 0.161 ab (0.003) |
Fine 25% | 7.39 cd (0.71) | 0.482 bc (0.012) | 11.83 de (1.02) | 0.260 bc (0.014) | 27.65 cd (1.65) | 0.121 abc (0.008) | 58.02 cd (3.09) | 0.166 ab (0.004) |
Fine 50% | 9.99 bc (0.64) | 0.412 d (0.010) | 16.51 bcd (1.11) | 0.213 cd (0.007) | 39.18 bc (2.73) | 0.094 c (0.004) | 77.53 bc (5.07) | 0.156 b (0.002) |
Fine 100% | 17.18 a (1.34) | 0.354 e (0.004) | 24.25 a (1.58) | 0.182 d (0.005) | 61.87 a (7.04) | 0.089 c (0.004) | 108.39 a (9.13) | 0.157 b (0.001) |
Okara % a | Protein (g/100 g) | Oil (g/100 g) | Carbohydrate (g/100 g) | Total Fiber (g/100 g) | Ash (g/100 g) |
---|---|---|---|---|---|
Control | 53.9 | 30.2 | 3.40 | 5.40 | 7.20 |
25% | 49.6 | 26.7 | 3.72 | 13.9 | 6.53 |
50% | 46.6 | 24.3 | 3.95 | 20.2 | 6.05 |
100% | 41.8 | 20.4 | 4.30 | 29.6 | 5.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, K.H.; Kerr, W.L.; Cavender, G.A. The Effects of Okara Ratio and Particle Size on the Physical Properties and Consumer Acceptance of Tofu. Foods 2023, 12, 3004. https://doi.org/10.3390/foods12163004
Joo KH, Kerr WL, Cavender GA. The Effects of Okara Ratio and Particle Size on the Physical Properties and Consumer Acceptance of Tofu. Foods. 2023; 12(16):3004. https://doi.org/10.3390/foods12163004
Chicago/Turabian StyleJoo, Kay Hyun, William L. Kerr, and George A. Cavender. 2023. "The Effects of Okara Ratio and Particle Size on the Physical Properties and Consumer Acceptance of Tofu" Foods 12, no. 16: 3004. https://doi.org/10.3390/foods12163004
APA StyleJoo, K. H., Kerr, W. L., & Cavender, G. A. (2023). The Effects of Okara Ratio and Particle Size on the Physical Properties and Consumer Acceptance of Tofu. Foods, 12(16), 3004. https://doi.org/10.3390/foods12163004