Optimization of Gamma-Aminobutyric Acid Production by Lactiplantibacillus plantarum FRT7 from Chinese Paocai
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Strains and Microorganism Activation
2.3. Screening of GABA-Producing LAB
2.4. Measurement of GABA Content
- X—The content of GABA in the test;
- Ax—Peak area of GABA in test solution;
- As—Peak area of the GABA standard;
- Ci—The concentration of the GABA standard, expressed in (mg/L);
- Vi—Dilution ratio of test product solution.
2.5. OFAT Strategy for GABA Optimization
2.6. Experimental Design
2.7. Response Surface Methodology (RSM)
2.8. Statistical Analysis
3. Results
3.1. Evaluation of GABA-Producing Lp. plantarum
3.2. Single-Parameter Analysis
3.2.1. Effect of Culture Temperature on the Production of GABA by Lp. plantarum FRT7
3.2.2. Effect of Incubation Time on the Production of GABA by Lp. plantarum FRT7
3.2.3. Effect of Inoculum Volume on the Production of GABA by Lp. plantarum FRT7
3.2.4. Effect of Initial pH on the Production of GABA by Lp. plantarum FRT7
3.2.5. Effect of Initial MSG Addition on the Production of GABA by Lp. plantarum FRT7
3.2.6. Effect of PLP Addition Concentration on the Production of GABA by Lp. plantarum FRT7
3.3. Analysis of RSM
3.3.1. Further Optimization of the Key Factors by RSM
3.3.2. Response Surface Methodology
3.3.3. Verification of the Fitted Model and Optimum Point
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ngo, D.H.; Vo, T.S. An updated review on pharmaceutical properties of gamma-aminobutyric acid. Molecules 2019, 24, 2678. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.Y.; Matsuda, T.; Roberts, E. Purification and characterization of glutamate decarboxylase from mouse brain. J. Biol. Chem. 1973, 248, 3029–3034. [Google Scholar] [CrossRef]
- Krulwich, T.A.; Sachs, G.; Padan, E. Molecular aspects of bacterial pH sensing and homeostasis. Nat. Rev. Microbiol. 2011, 5, 330–343. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Dou, N.; Zhang, H.; Wu, C. The versatile GABA in plants. Plant Signal Behav. 2021, 16, 1862565. [Google Scholar] [CrossRef] [PubMed]
- Nájera-Martínez, M.; López-Tapia, B.P.; Aguilera-Alvarado, G.P.; Madera-Sandoval, R.L.; Sánchez-Nieto, S.; Giron-Pérez, M.I.; Vega-López, A. Sub-basal increases of GABA enhance the synthesis of TNF-α, TGF-β, and IL-1β in the immune system organs of the Nile tilapia. J. Neuroimmunol. 2020, 348, 577382. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, P.; Pan, D.; Zeng, X.; Guo, Y.; Zhao, G. Effect of adzuki bean sprout fermented milk enriched in γ-aminobutyric acid on mild depression in a mouse model. J. Dairy Sci. 2021, 104, 78–91. [Google Scholar] [CrossRef]
- Abdou, A.M.; Higashiguchi, S.; Horie, K.; Kim, M.; Hatta, H.; Yokogoshi, H. Relaxation and immunity enhancement effects of gamma-aminobutyric acid (GABA) administration in humans. BioFactors 2006, 26, 201–208. [Google Scholar] [CrossRef]
- Kalueff, A.; Nutt, D.J. Role of GABA in memory and anxiety. Depress. Anxiety 1996, 4, 100–110. [Google Scholar] [CrossRef]
- Hayakawa, K.; Kimura, M.; Kasaha, K.; Matsumoto, K.; Sansawa, H.; Yamori, Y. Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br. J. Nur. 2004, 92, 411–417. [Google Scholar]
- Ikegami, R.; Shimizu, I.; Sato, T.; Yoshida, Y.; Hayashi, Y.; Suda, M.; Katsuumi, G.; Li, J.; Wakasugi, T.; Minokoshi, Y.; et al. Gamma-aminobutyric acid signaling in brown adipose tissue promotes systemic metabolic derangement in obesity. Cell Rep. 2018, 24, 2827–2837.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagiwara, H.; Seki, T.; Ariga, T. The effect of pre-germinated brown rice intake on blood glucose and PAI-1 levels in streptozotocin-induced diabetic rats. Biosci. Biotechnol. Biochem. 2004, 68, 444–447. [Google Scholar] [CrossRef]
- Adeghate, E.; Ponery, A.S. GABA in the endocrine pancreas: Cellular localization and function in normal and diabetic rats. Tissue Cell 2002, 34, 1–6. [Google Scholar] [CrossRef]
- Chang, V.H.; Chiu, T.H.; Fu, S.C. In vitro anti-inflammatory properties of fermented pepino (Solanum muricatum) milk by γ-aminobutyric acid-producing Lactobacillus brevis and an in vivo animal model for evaluating its effects on hypertension. J. Sci. Food Agric. 2016, 96, 192–198. [Google Scholar] [CrossRef]
- Ramesh, S.A.; Tyerman, S.D.; Gilliham, M.; Xu, B. γ-Aminobutyric acid (GABA) signalling in plants. Cell Mol. Life Sci. 2017, 74, 1577–1603. [Google Scholar] [CrossRef]
- Hao, R.; Schmit, J.C. Cloning of the gene for glutamate decarboxylase and its expression during conidiation in Neurospora crassa. Biochem. J. 1993, 293, 735–738. [Google Scholar] [CrossRef] [Green Version]
- Kono, I.; Himeno, K. Changes in gamma-aminobutyric acid content during beni-koji making. Biosci. Biotechnol. Biochem. 2000, 64, 617–619. [Google Scholar] [CrossRef]
- Maras, B.; Sweeney, G.; Barra, D.; Bossa, F.; John, R.A. The amino acid sequence of glutamate decarboxylase from Escherichia coli. Evolutionary relationship between mammalian and bacterial enzymes. Eur. J. Biochem. 1992, 204, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Miao, K.; Niyaphorn, S.; Qu, X. Production of gamma-aminobutyric acid from lactic acid bacteria: A systematic review. Int. J. Mol. Sci. 2020, 21, 995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarasa, S.B.; Mahendran, R.; Muthusamy, G.; Thankappan, B.; Selta, D.R.F.; Angayarkanni, J. A brief review on the non-protein amino acid, gamma-amino butyric acid (GABA): Its production and role in microbes. Curr. Microbiol. 2020, 77, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Liu, Z.; Xie, F.; Bilal, M.; Liu, L.; Yang, R.; Wang, Z. Microbial production of gamma-aminobutyric acid: Applications, state-of-the-art achievements, and future perspectives. Crit. Rev. Biotechnol. 2021, 41, 491–512. [Google Scholar] [CrossRef]
- Lee, K.W.; Shim, J.M.; Yao, Z.; Kim, J.A.; Kim, J.H. Properties of kimchi fermented with GABA-producing lactic acid bacteria as a starter. J. Microbiol. Biotechnol. 2018, 28, 534–541. [Google Scholar] [CrossRef]
- Dovom, M.R.E.; Habibi Najafi, M.B.; Rahnama Vosough, P.; Norouzi, N.; Ebadi Nezhad, S.J.; Mayo, B. Screening of lactic acid bacteria strains isolated from Iranian traditional dairy products for GABA production and optimization by response surface methodology. Sci. Rep. 2023, 13, 440. [Google Scholar] [CrossRef]
- Yu, H.H.; Choi, J.H.; Kang, K.M.; Hwang, H.J. Potential of a lactic acid bacterial starter culture with gamma-aminobutyric acid (GABA) activity for production of fermented sausage. Food Sci. Biotechnol. 2017, 26, 1333–1341. [Google Scholar] [CrossRef]
- Kim, J.; Yoon, Y.W.; Kim, M.S.; Lee, M.H.; Kim, G.A.; Bae, K.; Yoon, S.S. Gamma-aminobutyric acid fermentation in MRS-based medium by the fructophilic Lactiplantibacillus plantarum Y7. Food Sci. Biotechnol. 2022, 31, 333–341. [Google Scholar] [CrossRef]
- Komatsuzaki, N.; Nakamura, T.; Kimura, T.; Shima, J. Characterization of glutamate decarboxylase from a high gamma-aminobutyric acid (GABA)-producer, Lactobacillus paracasei. Biosci. Biotechnol. Biochem. 2008, 72, 278–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Wu, J.; Hu, D.; Li, J.; Zhu, W.; Yuan, L.; Chen, X.; Yao, J. Gamma-aminobutyric acid-producing Levilactobacillus brevis strains as probiotics in litchi juice fermentation. Foods 2023, 12, 30. [Google Scholar] [CrossRef] [PubMed]
- Linares, D.M.; O’Callaghan, T.F.; O’Connor, P.M.; Ross, R.P.; Stanton, C. Streptococcus thermophilus APC151 strain is suitable for the manufacture of naturally GABA-enriched bioactive yogurt. Front. Microbiol. 2016, 7, 1876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Q. Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production. Braz. J. Microbiol. 2013, 44, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Cao, Y. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 2010, 39, 1107–1116. [Google Scholar] [CrossRef]
- Seddik, H.A.; Bendali, F.; Gancel, F.; Fliss, I.; Spano, G.; Drider, D. Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob. Proteins 2017, 9, 111–122. [Google Scholar] [CrossRef]
- Raheem, A.; Wang, M.; Zhang, J.; Liang, L.; Liang, R.; Yin, Y.; Zhu, Y.; Yang, W.; Wang, L.; Lv, X.; et al. The probiotic potential of Lactobacillus plantarum strain RW1 isolated from canine faeces. J. Appl. Microbiol. 2022, 132, 2306–2322. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.Y.; Cao, F.W.; Wang, W.J.; Yu, J.; Chen, C.; Chen, B.; Liu, J.X.; Firrman, J.; Renye, J.; Ren, D.X. Probiotic characteristics of Lactobacillus plantarum E680 and its effect on hypercholesterolemic mice. BMC Microbiol. 2020, 20, 239. [Google Scholar] [CrossRef]
- Cai, H.; Wen, Z.; Li, X.; Meng, K.; Yang, P. Lactobacillus plantarum FRT10 alleviated high-fat diet-induced obesity in mice through regulating the PPARα signal pathway and gut microbiota. Appl. Microbiol. Biotechnol. 2020, 104, 5959–5972. [Google Scholar] [CrossRef]
- Wang, G.; Chen, X.; Wang, L.; Zhao, L.; Xia, Y.; Ai, L. Diverse conditions contribute to the cholesterol-lowering ability of different Lactobacillus plantarum strains. Food Funct. 2021, 12, 1079–1086. [Google Scholar] [CrossRef]
- Letizia, F.; Albanese, G.; Testa, B.; Vergalito, F.; Bagnoli, D.; Di Martino, C.; Carillo, P.; Verrillo, L.; Succi, M.; Sorrentino, E.; et al. In Vitro assessment of bio-functional properties from Lactiplantibacillus plantarum strains. Curr. Issues Mol. Biol. 2022, 44, 2321–2334. [Google Scholar] [CrossRef] [PubMed]
- Pannerchelvan, S.; Rios-Solis, L.; Faizal Wong, F.W.; Zaidan, U.H.; Wasoh, H.; Mohamed, M.S.; Tan, J.S.; Mohamad, R.; Halim, M. Strategies for improvement of gamma-aminobutyric acid (GABA) biosynthesis via lactic acid bacteria (LAB) fermentation. Food Funct. 2023, 14, 3929–3948. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, J.; Jiao, C.; Tong, J.; Zhang, L.; Chang, Y.; Sun, W.; Jin, Q.; Cai, Y. Optimization of quercetin extraction method in Dendrobium officinale by response surface methodology. Heliyon 2019, 5, e02374. [Google Scholar] [CrossRef] [Green Version]
- Lyu, C.; Zhao, W.; Peng, C.; Hu, S.; Fang, H.; Hua, Y.; Yao, S.; Huang, J.; Mei, L. Exploring the contributions of two glutamate decarboxylase isozymes in Lactobacillus brevis to acid resistance and γ-aminobutyric acid production. Microb. Cell Fact. 2018, 7, 180. [Google Scholar] [CrossRef] [PubMed]
- Matejcekova, Z.; Spodniakova, S.; Dujmic, E.; Liptakova, D.; Valik, L. Modelling growth of Lactobacillus plantarum as a function of temperature: Effects of media. J. Food Nutr. Res. 2019, 58, 125–134. [Google Scholar]
- Tajabadi, N.; Ebrahimpour, A.; Baradaran, A.; Rahim, R.A.; Mahyudin, N.A.; Manap, M.Y.; Bakar, F.A.; Saari, N. Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees. Molecules 2015, 20, 6654–6669. [Google Scholar] [CrossRef] [Green Version]
- Di Cagno, R.; Mazzacane, F.; Rizzello, C.G.; De Angelis, M.; Giuliani, G.; Meloni, M.; De Servi, B.; Gobbetti, M. Synthesis of gamma-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: Functional grape must beverage and dermatological applications. Appl. Microbiol. Biotechnol. 2010, 86, 731–741. [Google Scholar] [CrossRef]
- Yang, T.; Rao, Z.; Kimani, B.G.; Xu, M.; Zhang, X.; Yang, S.T. Two-step production of gamma-aminobutyric acid from cassava powder using corynebacterium glutamicum and Lactobacillus plantarum. J. Ind. Microbiol. Biotechnol. 2015, 42, 1157–1165. [Google Scholar] [CrossRef]
- Le Vo, T.D.; Kim, T.W.; Hong, S.H. Effects of glutamate decarboxylase and gamma-aminobutyric acid (GABA) transporter on the bioconversion of GABA in engineered Escherichia coli. Bioprocess Biosyst. Eng. 2012, 35, 645–650. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.Y.; Kim, S.K.; Ra, C.H. Evaluation of gamma-aminobutyric acid (GABA) production by Lactobacillus plantarum using two-step fermentation. Bioprocess Biosyst. Eng. 2021, 44, 2099–2108. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tang, H.; Lin, Z.; Xu, P. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol. Adv. 2015, 33, 1484–1492. [Google Scholar] [CrossRef] [PubMed]
- Thuy, D.T.B.; Nguyen, A.; Khoo, K.S.; Chew, K.W.; Cnockaert, M.; Vandamme, P.; Ho, Y.C.; Huy, N.D.; Cocoletzi, H.H.; Show, P.L. Optimization of culture conditions for gamma-aminobutyric acid production by newly identified Pediococcus pentosaceus MN12 isolated from ‘mam nem’, a fermented fish sauce. Bioengineered 2021, 12, 54–62. [Google Scholar] [CrossRef]
- Ko, C.Y.; Lin, H.-T.V.; Tsai, G.J. Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochem. 2013, 48, 559–568. [Google Scholar] [CrossRef]
- Wu, Q.; Tun, H.M.; Law, Y.S.; Khafipour, E.; Shah, N.P. Common distribution of gad operon in Lactobacillus brevis and its gadA contributes to efficient GABA synthesis toward cytosolic near-neutral pH. Front Microbiol. 2017, 8, 206. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.M.; Kim, H.; Joo, Y.; Lee, S.J.; Lee, Y.J.; Lee, S.J.; Lee, D.W. Characterization of glutamate decarboxylase from Lactobacillus plantarum and its C-terminal function for the pH dependence of activity. J. Agric. Food Chem. 2014, 62, 12186–12193. [Google Scholar] [CrossRef] [PubMed]
- Hussin, F.S.; Chay, S.Y.; Hussin, A.S.M.; Wan Ibadullah, W.Z.; Muhialdin, B.J.; Abd Ghani, M.S.; Saari, N. GABA enhancement by simple carbohydrates in yoghurt fermented using novel, self-cloned Lactobacillus plantarum Taj-Apis362 and metabolomics profiling. Sci. Rep. 2021, 11, 9417. [Google Scholar] [CrossRef]
- Yang, S.Y.; Lü, F.X.; Lu, Z.X.; Bie, X.M.; Jiao, Y.; Sun, L.J.; Yu, B. Production of gamma-aminobutyric acid by Streptococcus salivarius subsp. thermophilus Y2 under submerged fermentation. Amino Acids 2008, 34, 473–478. [Google Scholar] [CrossRef]
- Wu, C.H.; Hsueh, Y.H.; Kuo, J.M.; Liu, S.J. Characterization of a potential probiotic Lactobacillus brevis RK03 and efficient production of γ-aminobutyric acid in batch fermentation. Int. J. Mol. Sci. 2018, 19, 143. [Google Scholar] [CrossRef] [Green Version]
- Elbaloula, M.F.; Hassan, A.B. Effect of different salt concentrations on the gamma-aminobutyric-acid content and glutamate decarboxylase activity in germinated sorghum (Sorghum bicolor L. Moench) grain. Food Sci. Nutr. 2022, 10, 2050–2056. [Google Scholar] [CrossRef]
- Kim, J.; Lee, M.H.; Kim, M.S.; Kim, G.H.; Yoon, S.S. Probiotic properties and optimization of gamma-aminobutyric acid production by Lactiplantibacillus plantarum FBT215. J. Microbiol. Biotechnol. 2022, 32, 783–791. [Google Scholar] [CrossRef]
Factors | Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
(A) culture temperature (°C) | 37 | 40 | 42 |
(B) incubation time (h) | 36 | 48 | 60 |
(C) inoculum volume (%) | 3 | 4 | 5 |
(D) initial pH | 6.5 | 7 | 7.5 |
(E) MSG concentration (%) | 1 | 2 | 3 |
(F) PLP concentration (mmol/L) | 1 | 2 | 4 |
Run | Culture Temperature (℃) | Incubation Time (h) | Inoculum Volume (%) | pH | MSG Concentration (%) | PLP Concentration (mmol/L) | Actual GABA (mg/L) | Predicted GABA (mg/L) |
---|---|---|---|---|---|---|---|---|
1 | 0 | −1 | −1 | 0 | −1 | 0 | 495.79 ± 14.03 | 553.98 |
2 | 0 | 0 | 1 | −1 | 0 | 1 | 604.77 ± 35.52 | 541.36 |
3 | 0 | 0 | −1 | −1 | 0 | −1 | 551.66 ± 24.03 | 532.39 |
4 | −1 | 1 | 0 | 1 | 0 | 0 | 555.92 ± 37.05 | 581.63 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 1179.39 ± 24.98 | 1162.04 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 1190.21 ± 39.01 | 1162.04 |
7 | 0 | 1 | 0 | 0 | −1 | −1 | 274.63 ± 17.05 | 328.61 |
8 | 1 | −1 | 0 | 1 | 0 | 0 | 193.7 ± 25.15 | 209.39 |
9 | −1 | 0 | 0 | 1 | −1 | 0 | 586.33 ± 41.55 | 555.86 |
10 | −1 | 0 | 1 | 0 | 0 | −1 | 406.06 ± 16.24 | 442.59 |
11 | 1 | 0 | 0 | −1 | −1 | 0 | 263.19 ± 16.35 | 265.71 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 1148.86 ± 32.07 | 1162.04 |
13 | 0 | −1 | −1 | 0 | 1 | 0 | 540.41 ± 45.10 | 536.74 |
14 | 0 | −1 | 0 | 0 | −1 | 1 | 455.2 ± 15.09 | 450.41 |
15 | 1 | 1 | 0 | −1 | 0 | 0 | 200.08 ± 19.79 | 236.79 |
16 | −1 | −1 | 0 | 1 | 0 | 0 | 390.07 ± 13.20 | 374.07 |
17 | −1 | 0 | 0 | 1 | 1 | 0 | 611.71 ± 41.66 | 588.47 |
18 | −1 | 0 | 0 | −1 | 1 | 0 | 559.62 ± 27.21 | 566.96 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 1186.71 ± 32.45 | 1162.04 |
20 | −1 | 0 | 0 | −1 | −1 | 0 | 509.63 ± 40.5 | 503.59 |
21 | 1 | 0 | 0 | 1 | −1 | 0 | 332.41 ± 9.15 | 345.78 |
22 | 0 | 1 | 0 | 0 | −1 | 1 | 568.81 ± 26.12 | 618.39 |
23 | 0 | 1 | 0 | 0 | 1 | −1 | 619.11 ± 25.88 | 554.47 |
24 | 0 | 0 | 1 | −1 | 0 | −1 | 412.36 ± 20.89 | 482.92 |
25 | 0 | −1 | 0 | 0 | 1 | −1 | 427.09 ± 16.12 | 446.94 |
26 | −1 | 0 | −1 | 0 | 0 | 1 | 412.6 ± 19.98 | 437.65 |
27 | 1 | −1 | 0 | −1 | 0 | 0 | 173.84 ± 3.96 | 168.84 |
28 | 0 | 0 | −1 | 1 | 0 | −1 | 545.36 ± 27.21 | 548.49 |
29 | 1 | 0 | 0 | −1 | 1 | 0 | 318.78 ± 25.07 | 328.54 |
30 | −1 | 0 | 1 | 0 | 0 | 1 | 472.55 ± 7.89 | 509.02 |
31 | 0 | −1 | 0 | 0 | −1 | −1 | 430.75 ± 11.20 | 354.04 |
32 | 0 | 1 | 1 | 0 | 1 | 0 | 690.45 ± 45.23 | 701.70 |
33 | 1 | 1 | 0 | 1 | 0 | 0 | 313.76 ± 21.00 | 325.62 |
34 | 1 | 0 | 1 | 0 | 0 | 1 | 202.99 ± 15.51 | 249.66 |
35 | 0 | 1 | −1 | 0 | 1 | 0 | 715.84 ± 30.22 | 732.72 |
36 | 0 | −1 | 0 | 0 | 1 | 1 | 304.53 ± 29.28 | 319.99 |
37 | 1 | 0 | 1 | 0 | 0 | −1 | 179.55 ± 3.35 | 94.22 |
38 | 0 | −1 | 1 | 0 | −1 | 0 | 456.94 ± 12.47 | 509.49 |
39 | 1 | 0 | −1 | 0 | 0 | 1 | 434.32 ± 20.58 | 337.51 |
40 | 1 | 0 | −1 | 0 | 0 | −1 | 217.31 ± 15.19 | 241.11 |
41 | 0 | 0 | 0 | 0 | 0 | 0 | 1100.2 ± 31.24 | 1162.04 |
42 | 1 | 0 | 0 | 1 | 1 | 0 | 351.1 ± 5.89 | 377.85 |
43 | −1 | −1 | 0 | −1 | 0 | 0 | 393.89 ± 21.30 | 361.32 |
44 | 0 | 0 | 0 | 0 | 0 | 0 | 1166.85 ± 25.60 | 1162.04 |
45 | 0 | 0 | 1 | 1 | 0 | 1 | 667.84 ± 15.09 | 626.83 |
46 | 0 | 1 | 1 | 0 | −1 | 0 | 654.79 ± 21.34 | 589.02 |
47 | 0 | 1 | 0 | 0 | 1 | 1 | 613.66 ± 35.04 | 620.93 |
48 | 0 | 0 | 1 | 1 | 0 | −1 | 438.92 ± 27.39 | 463.40 |
49 | 0 | −1 | 1 | 0 | 1 | 0 | 512.22 ± 35.71 | 489.21 |
50 | −1 | 1 | 0 | −1 | 0 | 0 | 557.01 ± 20.72 | 520.61 |
51 | 0 | 0 | −1 | 1 | 0 | 1 | 663.17 ± 35.81 | 652.88 |
52 | 0 | 0 | −1 | −1 | 0 | 1 | 495.99 ± 29.11 | 531.79 |
53 | −1 | 0 | −1 | 0 | 0 | −1 | 416.65 ± 13.45 | 430.26 |
54 | 0 | 1 | −1 | 0 | −1 | 0 | 663.43 ± 27.82 | 617.00 |
Source | SS | DF | MS | F Value | Prob > F | |
---|---|---|---|---|---|---|
Model | 3.66 × 106 | 27 | 1.36 × 105 | 44.66 | <0.0001 | significant |
A-A | 3.02 × 105 | 1 | 3.02 × 105 | 99.31 | <0.0001 | |
B-B | 1.14 × 105 | 1 | 1.14 × 105 | 37.48 | <0.0001 | |
C-C | 8553.77 | 1 | 8553.77 | 2.82 | 0.1053 | |
D-D | 15,477.24 | 1 | 15,477.24 | 5.09 | 0.0326 | |
E-E | 13,662.24 | 1 | 13,662.24 | 4.5 | 0.0437 | |
F-F | 39,770.41 | 1 | 39,770.41 | 13.09 | 0.0013 | |
AB | 4171.04 | 1 | 4171.04 | 1.37 | 0.2519 | |
AC | 12,676.3 | 1 | 12,676.3 | 4.17 | 0.0513 | |
AD | 772.84 | 1 | 772.84 | 0.25 | 0.6183 | |
AE | 0.15 | 1 | 0.15 | 4.89 × 10-5 | 0.9945 | |
AF | 3960.95 | 1 | 3960.95 | 1.3 | 0.2639 | |
BC | 136.21 | 1 | 136.21 | 0.045 | 0.834 | |
BD | 1165.24 | 1 | 1165.24 | 0.38 | 0.5411 | |
BE | 17,677.7 | 1 | 17,677.7 | 5.82 | 0.0232 | |
BF | 18,705.65 | 1 | 18,705.65 | 6.16 | 0.0199 | |
CD | 634.57 | 1 | 634.57 | 0.21 | 0.6515 | |
CE | 4.64 | 1 | 4.64 | 1.53 × 10-3 | 0.9691 | |
CF | 3485.72 | 1 | 3485.72 | 1.15 | 0.294 | |
DE | 472.94 | 1 | 472.94 | 0.16 | 0.6964 | |
DF | 5511.98 | 1 | 5511.98 | 1.81 | 0.1896 | |
EF | 24,935.91 | 1 | 24,935.91 | 8.21 | 0.0081 | |
A^2 | 1.50 × 106 | 1 | 1.50 × 106 | 493.91 | <0.0001 | |
B^2 | 6.72 × 105 | 1 | 6.72 × 105 | 221.19 | <0.0001 | |
C^2 | 2.44 × 105 | 1 | 2.44 × 105 | 80.2 | <0.0001 | |
D^2 | 3.23 × 105 | 1 | 3.23 × 105 | 106.3 | <0.0001 | |
E^2 | 2.68 × 105 | 1 | 2.68 × 105 | 88.07 | <0.0001 | |
F^2 | 8.26 × 105 | 1 | 8.26 × 105 | 271.95 | <0.0001 | |
Residual | 78,991.76 | 26 | 3038.14 | |||
Lack of Fit | 73,267.54 | 21 | 3488.93 | 3.05 | 0.1097 | not significant |
Pure Error | 5724.21 | 5 | 1144.84 | |||
Cor Total | 3.74 × 106 | 53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, H.; Li, X.; Li, D.; Liu, W.; Han, Y.; Xu, X.; Yang, P.; Meng, K. Optimization of Gamma-Aminobutyric Acid Production by Lactiplantibacillus plantarum FRT7 from Chinese Paocai. Foods 2023, 12, 3034. https://doi.org/10.3390/foods12163034
Cai H, Li X, Li D, Liu W, Han Y, Xu X, Yang P, Meng K. Optimization of Gamma-Aminobutyric Acid Production by Lactiplantibacillus plantarum FRT7 from Chinese Paocai. Foods. 2023; 12(16):3034. https://doi.org/10.3390/foods12163034
Chicago/Turabian StyleCai, Hongying, Xuan Li, Daojie Li, Weiwei Liu, Yunsheng Han, Xin Xu, Peilong Yang, and Kun Meng. 2023. "Optimization of Gamma-Aminobutyric Acid Production by Lactiplantibacillus plantarum FRT7 from Chinese Paocai" Foods 12, no. 16: 3034. https://doi.org/10.3390/foods12163034
APA StyleCai, H., Li, X., Li, D., Liu, W., Han, Y., Xu, X., Yang, P., & Meng, K. (2023). Optimization of Gamma-Aminobutyric Acid Production by Lactiplantibacillus plantarum FRT7 from Chinese Paocai. Foods, 12(16), 3034. https://doi.org/10.3390/foods12163034