Optimization of the Heat-Drying Conditions of Drone Pupae by Response Surface Methodology (RSM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Color Parameters
2.2.1. Color Indices
2.2.2. Browning Degree (BD)
2.3. Acid Value (AV)
2.4. Peroxide Value (PV)
2.5. Microbial Analysis
2.5.1. Total Aerobic Bacteria (TB)
2.5.2. Total Coliform (TC)
2.6. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Model Fitting
3.2. Color Parameters
3.3. Total Aerobic Bacteria
3.4. Acid Value
3.5. Optimal Drying Conditions
3.6. Physicochemical and Microbiological Properties of Freeze Dried and Heat-Dried Drone Pupae
3.6.1. Acid Value and Peroxide Value of Freeze-Fried and Heat-Dried Drone Pupae
3.6.2. Color Indices of Freeze-Fried and Heat-Dried Drone Pupae
3.6.3. Microbial Analysis of Freeze-Fried and Heat-Dried Drone Pupae
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Arnold, V.H. Potential of Insects as Food and Feed in Assuring Food Security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar]
- Arnold, V.H. Edible insects are the future. Proc. Nutr. Soc. 2013, 75, 294–305. [Google Scholar]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G. Edible Insects: Future Prospects for Food and Feed Security; FAO: Rome, Italy, 2013; p. 171. [Google Scholar]
- Janssen, R.H.; Vincken, J.-P.; Arts, N.J.; Fogliano, V.; Lakemond, C.M. Effect of endogenous phenoloxidase on protein solubility and digestibility after processing of Tenebrio molitor, Alphitobius diaperinus and Hermetia illucens. Food Res. Int. 2018, 121, 684–690. [Google Scholar] [CrossRef] [PubMed]
- David-Birman, T.; Raften, G.; Lesmes, U. Effects of thermal treatments on the colloidal properties, antioxidant capacity and in-vitro proteolytic degradation of cricket flour. Food Hydrocoll. 2018, 79, 48–54. [Google Scholar] [CrossRef]
- Janssen, R.H.; Canelli, G.; Sanders, M.G.; Bakx, E.J.; Lakemond, C.M.M.; Fogliano, V.; Vincken, J.-P. Iron-polyphenol complexes cause blackening upon grinding Hermetia illucens (black soldier fly) larvae. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Mozhui, L.; Kakati, L.; Kiewhuo, P.; Changkija, S. Traditional Knowledge of the Utilization of Edible Insects in Nagaland, North-East India. Foods 2020, 9, 852. [Google Scholar] [CrossRef]
- Cacchiarelli, C.; Fratini, F.; Puccini, M.; Vitolo, S.; Paci, G. Effects of different blanching treatments on colour and microbio-logical profile of Tenebrio molitor and Zophobas morio larvae. LWT-Food Sci. Technol. 2022, 157, 13112. [Google Scholar] [CrossRef]
- Andrea, M.L. Processing insects for use in the food and feed industry. Insect Sci. 2021, 48, 32–36. [Google Scholar]
- Mancini, S.; Fratini, F.; Tuccinardi, T.; Turchi, B.; Nuvoloni, R.; Paci, G. Effects of different blanching treatments on microbiological profile and quality of the mealworm (Tenebrio molitor). J. Insects Food Feed 2019, 5, 225–234. [Google Scholar] [CrossRef]
- Hider, R.C. Honeybee venom: A rich source of pharmacologically active peptides. Endeavour 1988, 12, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.; Sohoo, K.N.; Biswas, T.K.; Basu, S.K.; Chatterjee, J.; Hui, A.K.; Chakraborty, N.C.; Debnath, P.K. Bees make medicine for mankind. Ind. J. Trad. Knowl. 2003, 2, 22–26. [Google Scholar]
- Al-Waili, N.S. Mixture of Honey, Beeswax and Olive Oil Inhibits Growth of Staphylococcus aureus and Candida albicans. Arch. Med. Res. 2005, 36, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Andrews, A.M.; Hay, N.P.; Bourgoise, S. The anti-microbial activity of maggot secretions: Results of a preliminary study. J. Tissue Viability 1999, 9, 127–132. [Google Scholar] [CrossRef]
- Ghosh, S.; Sohn, H.-Y.; Pyo, S.-J.; Jensen, A.B.; Meyer-Rochow, V.B.; Jung, C. Nutritional Composition of Apis mellifera Drones from Korea and Denmark as a Potential Sustainable Alternative Food Source: Comparison Between Developmental Stages. Foods 2020, 9, 389. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.G.; Woo, S.O.; Bang, K.W.; Jang, H.R.; Han, S.M. Chemical composition of drone pupa of Apis mellifera and its nu-tritional evaluation. J. Apic. 2018, 33, 103086076. [Google Scholar]
- Kim, H.Y.; Woo, S.O.; Kim, S.G.; Bang, K.W.; Choi, H.M.; Moon, H.J.; Han, S.M. Analysis of Oxidative Stability in Drone Pupae (Apis mellifera L.). J. Apic. 2019, 34, 63–66. [Google Scholar] [CrossRef]
- Kim, H.Y.; Woo, S.O.; Kim, S.G.; Choi, H.M.; Moon, H.J.; Han, S.M. Antioxidant and Antihyperglycemic Effects of Honeybee Drone Pupae (Apis mellifera L.) Extracts. J. Apic. 2020, 35, 33–39. [Google Scholar] [CrossRef]
- Kim, J.-E.; Kim, D.-I.; Koo, H.-Y.; Kim, H.-J.; Kim, S.-Y.; Lee, Y.-B.; Moon, J.-H.; Choi, Y.-S. Evaluation of Honey Bee (Apis mellifera L.) Drone Pupa Extracts on the Improvement of Hair Loss. J. Apic. 2020, 35, 179–188. [Google Scholar] [CrossRef]
- Kim, H.Y.; Woo, S.O.; Kim, S.G.; Bang, K.W.; Choi, H.M.; Moon, H.J.; Han, S.M. Anti-inflammatory Activities of Drone Pupae (Apis mellifera L.) in Macrophages. J. Apic. 2019, 34, 255–259. [Google Scholar] [CrossRef]
- Kim, J.-E.; Kim, D.-I.; Kim, H.-J.; Kim, S.-Y.; Lee, Y.-B.; Moon, J.-H.; Park, H.-G.; Choi, Y.-S. Characteristics of Hydrolysis of Protein in Drone Pupa (Apis mellifera L.). J. Apic. 2020, 35, 169–177. [Google Scholar] [CrossRef]
- Téllez-Morales, J.A.; Hernández-Santos, B.; Navarro-Cortez, R.O.; Rodríguez-Miranda, J. Impact of the addition of cricket flour (Sphenarium purpurascens) on the physicochemical properties, optimization and extrusion conditions of extruded nixtamalized corn flour. Appl. Food Res. 2022, 2, 100149. [Google Scholar] [CrossRef]
- Chang, M.-J.; Han, M.-R.; Kim, M.-H. Effects of Salt Addition in Sugar Based Osmotic Dehydration on Mass Transfer and Browning Reaction of Carrots. Prev. Nutr. Food Sci. 2003, 8, 230–234. [Google Scholar] [CrossRef]
- Lee, S.; Choi, Y.S.; Jo, K.; Kim, T.K.; Yong, H.I.; Jung, S. Quality characteristics and protein digestibility of protaetia brevi-tarsis larvae. J. Anim. Sci. Technol. 2020, 62, 741–752. [Google Scholar] [CrossRef] [PubMed]
- Yolmeh, M.; Jafari, S.M. Applications of Response Surface Methodology in the Food Industry Processes. Food Bioprocess Technol. 2017, 10, 413–433. [Google Scholar] [CrossRef]
- Deaton, M.L.; Khuri, A.I.; Cornell, J.A. Response Surfaces: Designs and Analysis. J. Am. Stat. Assoc. 1989, 84, 332. [Google Scholar] [CrossRef]
- Koocheki, A.; Taherian, A.R.; Razavi, S.M.A.; Bostan, A. Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds. Food Hydrocoll. 2009, 23, 2369–2379. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Larouche, J.; Deschamps, M.H.; Saucier, L.; Lebeuf, Y.; Doyen, A.; Vandenberg, G.W. Effects of killing methods in lipid ox-idation, colour and microbial load of Black Soldier Fly (Hermetia illucens) larvae. Animals 2019, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Kurdi, P.; Chaowiwat, P.; Weston, J.; Hansawasdi, C. Studies on microbial quality, protein yield, and antioxidant of some frozen edible insects. Int. J. Food Sci. 2021, 5580976, 1–7. [Google Scholar] [CrossRef]
- Janssen, R.H.; Lakemond, C.M.M.; Fogliano, V.; Renzone, G.; Scaloni, A.; Vincken, J.P. Involvement of phenoloxidase in browning during grinding of Tenebrio molitor larvae. PLoS ONE 2017, 12, e0189685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brishti, F.H.; Chay, S.Y.; Muhammad, K.; Ismail-Fitry, M.R.; Zarei, M.; Karthikeyan, S.; Saari, N. Effects of drying techniques on the physicochemical, functional, thermal, structural and rheological properties of mung bean (Vigna radiata) protein isolate powder. Food Res. Int. 2020, 138, 109783. [Google Scholar] [CrossRef]
- Cristina, R. Hot air and freeze-drying of high-value foods: A review. J. Food Eng. 2001, 49, 311–319. [Google Scholar]
- Saucier, L.; M’ballou, C.; Ratti, C.; Deschamps, M.-H.; Lebeuf, Y.; Vandenberg, G. Comparison of black soldier fly larvae pre-treatments and drying techniques on the microbial load and physico-chemical characteristics. J. Insects Food Feed. 2021, 8, 45–64. [Google Scholar] [CrossRef]
- Khatun, H.; Claes, J.; Smets, R.; De Winne, A.; Akhtaruzzaman, M.; Van Der Borght, M. Characterization of freeze-dried, oven-dried and blanched house crickets (Acheta domesticus) and Jamaican field crickets (Gryllus assimilis) by means of their physicochemical properties and volatile compounds. Eur. Food Res. Technol. 2021, 247, 1291–1305. [Google Scholar] [CrossRef]
- Son, Y.-J.; Ahn, W.; Kim, S.-H.; Park, H.-N.; Choi, S.-Y.; Lee, D.-G.; Kim, A.-N.; Hwang, I.-K. Study on the Oxidative and Microbial Stabilities of Four Edible Insects during Cold Storage after Sacrificing with Blanching Methods. Korean J. Food Nutr. 2016, 29, 849–859. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Kim, E.M.; Chang, Y.J.; Ahn, M.Y.; Lee, Y.H.; Park, J.J.; Lim, J.H. Determination of the shelf life of cricket powder and effects of storage on its quality characteristics. Korean J. Food Preserv. 2016, 23, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Leni, G.; Caligiani, A.; Sforza, S. Killing method affects the browning and the quality of the protein fraction of Black Soldier Fly (Hermetia illucens) prepupae: A metabolomics and proteomic insight. Food Res. Int. 2018, 115, 116–125. [Google Scholar] [CrossRef]
- Caligiani, A.; Marseglia, A.; Sorci, A.; Bonzanini, F.; Lolli, V.; Maistrello, L.; Sforza, S. Influence of the killing method of the black soldier fly on its lipid composition. Food Res. Int. 2019, 116, 276–282. [Google Scholar] [CrossRef]
- Anuduang, A.; Loo, Y.Y.; Jomduang, S.; Lim, S.J.; Mustapha, W.A.W. Effect of Thermal Processing on Physico-Chemical and Antioxidant Properties in Mulberry Silkworm (Bombyx mori L.) Powder. Foods 2020, 9, 871. [Google Scholar] [CrossRef]
Independent Variable | Xi | Level | ||||
---|---|---|---|---|---|---|
−1.68 | −1 | 0 | 1 | 1.68 | ||
Blanching Time (s) | X1 | 53 | 80 | 120 | 160 | 182 |
Drying Temperature (°C) | X2 | 41.6 | 45 | 50 | 55 | 58.4 |
Drying Time (min) | X3 | 266 | 300 | 350 | 400 | 434 |
Run | Point Type | Coded Variables | Actual Variables | ||||
---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X1 | X2 | X3 | ||
1 | Factorial | −1 | −1 | −1 | 80 | 45 | 300 |
2 | Factorial | 1 | −1 | −1 | 160 | 55 | 300 |
3 | Factorial | −1 | 1 | −1 | 80 | 45 | 300 |
4 | Factorial | 1 | 1 | −1 | 160 | 55 | 300 |
5 | Factorial | −1 | −1 | 1 | 80 | 45 | 400 |
6 | Factorial | 1 | −1 | 1 | 160 | 55 | 400 |
7 | Factorial | −1 | 1 | 1 | 80 | 45 | 400 |
8 | Factorial | 1 | 1 | 1 | 160 | 55 | 400 |
9 | Axial | −1.68 | 0 | 0 | 58 | 50 | 350 |
10 | Axial | 1.68 | 0 | 0 | 182 | 50 | 350 |
11 | Axial | 0 | −1.68 | 0 | 120 | 41.6 | 350 |
12 | Axial | 0 | 1.68 | 0 | 120 | 58.4 | 350 |
13 | Axial | 0 | 0 | −1.68 | 120 | 50 | 266 |
14 | Axial | 0 | 0 | 1.68 | 120 | 50 | 434 |
15 | Central | 0 | 0 | 0 | 120 | 50 | 350 |
16 | Central | 0 | 0 | 0 | 120 | 50 | 350 |
17 | Central | 0 | 0 | 0 | 120 | 50 | 350 |
18 | Central | 0 | 0 | 0 | 120 | 50 | 350 |
19 | Central | 0 | 0 | 0 | 120 | 50 | 350 |
20 | Central | 0 | 0 | 0 | 120 | 50 | 350 |
Response Surface Model | R2 | p Value | |
---|---|---|---|
WI | =67.842 − 0.305 X2 − 0.399 X32 + 0.521 X1X3 | 0.8155 | 0.010 |
BI | =24.187 − 2.792 X2 − 3.338 X3 + 1.456 X12 − 1.132 X32 + 1.798 X1X2 | 0.9557 | <0.001 |
YI | =28.316 − 2.447 X2 − 3.250 X3 + 1.623 X12 − 1.363 X32 + 1.898 X1X2 | 0.9254 | <0.001 |
△E | =27.62 + 8.94 X2 + 12.52 X3 − 4.22 X12 + 4.71 X22 + 7.02 X32 − 6.74 X1X2 | 0.9132 | <0.001 |
BD | =0.21796 − 0.00782 X1 − 0.03660 X2 + 0.04627 X3 − 0.01752 X12 − 0.01155 X22 + 0.00985 X32− 0.01046 X1X3 − 0.04085 X2X3 | 0.9778 | <0.001 |
TB | =3.345 + 0.741 X2 + 0.563 X3 + 0.3209 X12 | 0.9126 | <0.001 |
AV | =0.12702 − 0.01017 X1 + 0.00643 X2 + 0.01034 X3 − 0.00629 X12 | 0.8693 | <0.001 |
Source | WI | BI | YI | △E | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sum of Squares | F Value | p Value | Sum of Squares | F Value | p Value | Sum of Squares | F Value | p Value | Sum of Squares | F Value | p Value | |
Model | 10.8781 | 4.91 | 0.010 | 351.424 | 23.99 | <0.001 | 342.858 | 13.79 | <0.001 | 5280.84 | 11.69 | <0.001 |
Linear | 2.2419 | 3.04 | 0.080 | 264.158 | 54.09 | <0.001 | 228.516 | 27.57 | 0.001 | 3230.05 | 21.46 | <0.001 |
X1 | 0.9111 | 3.70 | 0.083 | 5.780 | 3.55 | 0.089 | 2.723 | 0.99 | 0.344 | 0.47 | 0.01 | 0.925 |
X2 | 1.2715 | 5.17 | 0.046 | 106.331 | 65.32 | <0.001 | 81.692 | 29.57 | <0.001 | 1090.89 | 21.74 | 0.001 |
X3 | 0.0593 | 0.24 | 0.634 | 152.047 | 93.40 | <0.001 | 144.101 | 52.17 | <0.001 | 2138.69 | 42.63 | <0.001 |
Crossed | 4.4175 | 5.98 | 0.013 | 31.442 | 6.44 | 0.011 | 36.601 | 4.42 | 0.032 | 1349.23 | 8.96 | 0.003 |
X1X2 | 1.1317 | 4.60 | 0.058 | 25.853 | 15.88 | 0.003 | 28.82 | 10.43 | 0.009 | 256.05 | 5.1 | 0.047 |
X1X3 | 2.1728 | 8.83 | 0.014 | 2.301 | 1.41 | 0.262 | 5.294 | 1.92 | 0.196 | 318.38 | 6.35 | 0.030 |
X2X3 | 1.1129 | 4.52 | 0.059 | 3.288 | 2.02 | 0.186 | 2.487 | 0.90 | 0.365 | 708.71 | 14.13 | 0.004 |
Quadratic | 4.2187 | 5.71 | 0.015 | 55.824 | 11.43 | 0.001 | 77.741 | 9.38 | 0.003 | 701.56 | 4.66 | 0.028 |
X12 | 0.7061 | 2.87 | 0.121 | 30.435 | 18.70 | 0.002 | 37.848 | 13.70 | 0.004 | 363.48 | 7.24 | 0.023 |
X22 | 0.8109 | 3.30 | 0.100 | 1.478 | 0.91 | 0.363 | 5.724 | 2.07 | 0.181 | 135.5 | 2.7 | 0.131 |
X32 | 2.2912 | 9.31 | 0.012 | 18.423 | 11.32 | 0.007 | 26.688 | 9.66 | 0.011 | 202.58 | 4.04 | 0.072 |
Lack-of-fit | 2.0833 | 5.02 | 0.055 | 13.485 | 4.83 | 0.055 | 23.745 | 6.12 | 0.034 | 455.14 | 9.77 | 0.013 |
Pure error | 0.3777 | 2.794 | 3.879 | 46.59 | ||||||||
Residual | 2.4609 | 16.279 | 27.624 | 501.73 | ||||||||
Total | 13.3391 | 367.703 | 370.482 | 5782.57 | ||||||||
Source | BD | TB | AV | |||||||||
Sum of Squares | F Value | p Value | Sum of Squares | F Value | p Value | Sum of Squares | F Value | p Value | ||||
Model | 0.07100 | 49.04 | <0.001 | 14.9090 | 11.60 | <0.001 | 0.00445 | 7.39 | 0.002 | |||
Linear | 0.04832 | 100.14 | <0.001 | 11.9674 | 27.92 | <0.001 | 0.00344 | 17.12 | <0.001 | |||
X1 | 0.00084 | 5.19 | 0.046 | 0.1504 | 1.050 | 0.329 | 0.00141 | 21.09 | <0.001 | |||
X2 | 0.01828 | 113.65 | <0.001 | 7.4924 | 52.45 | <0.001 | 0.00057 | 8.44 | 0.016 | |||
X3 | 0.02921 | 181.58 | <0.001 | 4.3246 | 30.27 | <0.001 | 0.00146 | 21.82 | <0.001 | |||
Crossed | 0.01459 | 30.24 | <0.001 | 0.3561 | 0.83 | 0.507 | 0.00034 | 1.69 | 0.232 | |||
X1X2 | 0.00037 | 2.30 | 0.160 | 0.0023 | 0.02 | 0.902 | 0.00014 | 2.14 | 0.174 | |||
X1X3 | 0.00088 | 5.44 | 0.042 | 0.1430 | 1.00 | 0.341 | 0.00005 | 0.71 | 0.418 | |||
X2X3 | 0.01335 | 82.97 | <0.001 | 0.2107 | 1.48 | 0.252 | 0.00015 | 2.21 | 0.168 | |||
Quadratic | 0.00808 | 16.75 | <0.001 | 2.5856 | 6.03 | 0.013 | 0.00067 | 3.36 | 0.063 | |||
X12 | 0.00441 | 27.42 | <0.001 | 1.4796 | 10.36 | 0.009 | 0.00057 | 8.49 | 0.015 | |||
X22 | 0.00192 | 11.92 | 0.006 | 0.5011 | 3.51 | 0.091 | 0.00014 | 2.02 | 0.185 | |||
X32 | 0.00140 | 8.67 | 0.015 | 0.4673 | 3.27 | 0.101 | 0.00000 | 0.02 | 0.892 | |||
Lack-of-fit | 0.001335 | 4.87 | 0.054 | 1.0166 | 2.47 | 0.172 | 0.000256 | 0.62 | 0.694 | |||
re error | 0.000274 | 0.4119 | 0.000413 | |||||||||
Residual | 0.001609 | 1.4286 | 0.000669 | |||||||||
Total | 0.072607 | 16.3376 | 0.005116 |
Process Parameter | Target | Predicted Data | Actual Data | % Difference |
---|---|---|---|---|
WI | Maximize | 69.502 a | 66.67 ± 0.56 a | 4.16 ± 0.84 |
BI | Minimize | 22.898 a | 21.33 ± 0.43 a | 7.09 ± 2.04 |
YI | Minimize | 25.909 a | 26.27 ± 0.48 a | 1.41 ± 1.79 |
△E | Minimize | 25.55 a | 31.27 ± 9.79 a | 28.43 ± 15.46 |
BD | Minimize | 0.135 a | 0.13 ± 0.01 a | 4.54 ± 3.59 |
TB (log CFU/g) | Minimize | 4.193 a | 3.12 ± 0.12 a | 29.38 ± 3.61 |
AV (mg/g) | Minimize | 4.114 a | 4.33 ± 0.18 a | 4.98 ± 4.19 |
Parameter | Freeze Dried | Heat Dried | p Value |
---|---|---|---|
L value | 69.03 ± 0.49 a | 63.23 ±0.60 b | 0.008 |
a value | 2.60 ± 0.22 a | 1.66 ±0.17 a | 0.093 |
b value | 20.27 ± 0.82 a | 12.73 ±0.29 b | 0.003 |
AV (mg/g) | 3.83 ± 0.06 a | 4.20 ± 0.26 a | 0.062 |
PV (meq/kg) | 5.74 ± 1.90 b | 10.36 ± 1.02 a | 0.033 |
TB (log CFU/g) | 1.99 ± 0.35 b | 2.99 ± 0.09 a | 0.032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, S.; Mae, A.S.; Nam, I. Optimization of the Heat-Drying Conditions of Drone Pupae by Response Surface Methodology (RSM). Foods 2023, 12, 3062. https://doi.org/10.3390/foods12163062
Baek S, Mae AS, Nam I. Optimization of the Heat-Drying Conditions of Drone Pupae by Response Surface Methodology (RSM). Foods. 2023; 12(16):3062. https://doi.org/10.3390/foods12163062
Chicago/Turabian StyleBaek, SeungHee, Agapito Sheryl Mae, and InSik Nam. 2023. "Optimization of the Heat-Drying Conditions of Drone Pupae by Response Surface Methodology (RSM)" Foods 12, no. 16: 3062. https://doi.org/10.3390/foods12163062
APA StyleBaek, S., Mae, A. S., & Nam, I. (2023). Optimization of the Heat-Drying Conditions of Drone Pupae by Response Surface Methodology (RSM). Foods, 12(16), 3062. https://doi.org/10.3390/foods12163062