Evaluation of Precision and Sensitivity of Back Extrusion Test for Measuring Textural Qualities of Cooked Germinated Brown Rice in Production Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Rice Cooking Method
2.3. Back Extrusion Test
2.4. The Repeatability and Reproducibility of the Measurements of Texture Properties
2.5. Statistical Analysis
3. Results and Discussion
3.1. The Repeatability and Reproducibility of the Measurements of Texture Properties
3.2. Effects of Different Soaking and Incubation Durations on Cooked GBR Texture in the Production of Khao Dawk Mali 105 (KDML 105) GBR
3.3. The Sensitivity of BE Test on Texture Properties of Cooked GBR Rice
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yodpitak, S.; Mahatheeranont, S.; Boonyawan, D.; Sookwong, P.; Roytrakul, S.; Norkaew, O. Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice. Food Chem. 2019, 289, 328–339. [Google Scholar] [CrossRef]
- Nguyen, B.C.Q.; Shahinozzaman, M.; Tien, N.T.K.; Thach, T.N.; Tawata, S. Effect of sucrose on antioxidant activities and other health-related micronutrients in gamma-aminobutyric acid (GABA)-enriched sprouting Southern Vietnam brown rice. J. Cereal Sci. 2020, 93, 102985. [Google Scholar] [CrossRef]
- Ren, C.; Hong, B.; Zheng, X.; Wang, L.; Zhang, Y.; Guan, L.; Yao, X.; Huang, W.; Zhou, Y.; Lu, S. Improvement of germinated brown rice quality with autoclaving treatment. Food Sci. Nutr. 2020, 8, 1709–1717. [Google Scholar] [CrossRef]
- Munarko, H.; Sitanggang, A.B.; Kusnandar, F.; Budijanto, S. Germination of five Indonesian brown rice: Evaluation of antioxidant, bioactive compounds, fatty acids and pasting properties. Food Sci. Technol. 2021, 42, e19721. [Google Scholar] [CrossRef]
- Cho, D.H.; Lim, S.T. Germinated brown rice and its bio-functional compounds. Food Chem. 2016, 196, 259–271. [Google Scholar] [CrossRef]
- Cáceres, P.J.; Peñas, E.; Martinez-Villaluenga, C.; Amigo, L.; Frias, J. Enhancement of biologically active compounds in germinated brown rice and the effect of sun-drying. J. Cereal Sci. 2017, 73, 1–9. [Google Scholar] [CrossRef]
- Techo, J.; Soponronnarit, S.; Devahastin, S.; Wattanasiritham, L.S.; Thuwapanichayanan, R.; Prachayawarakorn, S. Effects of heating method and temperature in combination with hypoxic treatment on γ-aminobutyric acid, phenolics content and antioxidant activity of germinated rice. Int. J. Food Sci. Technol. 2018, 54, 1330–1341. [Google Scholar] [CrossRef]
- Neamsorn, N.; Inprasit, C.; Terdwongworakul, A. Water absorption of RD31 paddy during soaking in parboiling process. TSAE J. 2017, 23, 1–8. [Google Scholar]
- Wang, Z.; Wang, J.; Chen, X.; Li, E.; Li, S.; Li, C. Mutual relations between texture and aroma of cooked rice-a pilot study. Foods 2022, 11, 3738. [Google Scholar] [CrossRef]
- Chao, S.; Mitchell, J.; Prakash, S.; Bhandari, B.; Fukai, S. Effects of variety, early harvest, and germination on pasting properties and cooked grain texture of brown rice. J. Texture Stud. 2022, 53, 503–516. [Google Scholar] [CrossRef]
- Kaosa-ard, T.; Songsermpong, S. Influence of germination time on the GABA content and physical properties of germinated brown rice. As. J. Food Agro-Ind. 2012, 5, 270–283. [Google Scholar]
- Singh, K.; Simapisan, P.; Decharatanangkoon, S.; Utama-ang, N. Effect of soaking temperature and time on GABA and total phenolic content of germinated brown rice (Phitsanulok 2). Curr. J. Appl. Sci. Technol. 2017, 17, 224–232. [Google Scholar]
- Zhu, C.; Yang, L.; Nie, P.; Zhong, L.; Wu, Y.; Sun, X.; Song, L. Effects of hydrogen-rich water on the nutritional properties, volatile profile and texture of germinated brown rice. Int. J. Food Sci. Technol. 2022, 57, 7666–7680. [Google Scholar] [CrossRef]
- Guan, H.; Wu, Y.; Liu, X. Effect of microwave precooking and freeze-drying on the quality of the germinated brown rice. J. Food Process. Preserv. 2023, 2023, 3610644. [Google Scholar] [CrossRef]
- Cheevitsopon, E.; Klakankhai, T.; Kladsuk, S.; Sonsanguan, N.; Phanomsophon, T.; Sirisomboon, P.; Pornchaloempong, P. Texture properties of cooked rice evaluated by sensory test interpreted by instrument tests. In Proceedings of the XX CIGR World Congress 2022, Sustainable Agricultural Production-Water, Land, Energy and Food, Kyoto International Conference Center, Kyoto, Japan, 5–9 December 2022. [Google Scholar]
- Reyes, V.G.; Jindal, V.K. A small sample back extrusion test for measuring texture of cooked rice. J. Food Qual. 1990, 13, 109–118. [Google Scholar] [CrossRef]
- Sirisoontaralak, P.; Noomhorm, A. Changes to physicochemical properties and aroma of irradiated rice. J. Stored Prod. Res. 2006, 42, 264–276. [Google Scholar] [CrossRef]
- Srisawas, W.; Jindal, V. Sensory evaluation of cooked rice in relation to water-to-rice ratio and physicochemical properties. J. Texture Stud. 2007, 38, 21–41. [Google Scholar] [CrossRef]
- Parnsakhorn, S.; Noomhorm, A. Changes in physicochemical properties of parboiled brown rice during heat treatment. Agric. Eng. Int. 2008, 10, 1–20. [Google Scholar]
- Shin, S.H.; Choi, W.S. Analysis of the texture characteristics of cooked rice using extrusion tests under various measurement conditions. J. Korean Soc. Food Sci. Nutr. 2022, 51, 627–631. [Google Scholar] [CrossRef]
- Parnsakhorn, S.; Langkapin, J. Effect of different rice varieties on changes in anthocyanin content and physical properties of Zongzi products. J. Eng. Rmutt. 2022, 20, 59–70. (In Thai) [Google Scholar]
- Zhou, Z.; Robards, K.; Helliwell, S.; Blanchard, C. Ageing of stored rice: Changes in chemical and physical attributes. J. Cereal Sci. 2002, 35, 65–78. [Google Scholar] [CrossRef]
- Keawpeng, I.; Venkatachalam, K. Effect of incubation on changes in rice physical qualities. Int. Food Res. J. 2015, 22, 2180–2187. [Google Scholar]
- USDA Department of Agriculture. Available online: https://www.ers.usda.gov/topics/crops/rice/rice-sector-at-a-glance/ (accessed on 30 June 2023).
- Kaewsorn, K.; Sirisomboon, P. Study on evaluation of gamma oryzanol of germinated brown rice by near infrared spectroscopy. J. Innov. Opt. Health Sci. 2014, 7, 1450002. [Google Scholar] [CrossRef]
- Sirisomboon, P.; Kaewsorn, K.; Thanimkarn, S.; Phetpan, K. Non-linear viscoelastic behavior of cooked white, brown, and germinated brown Thai jasmine rice by large deformation relaxation test. Int. J. Food Prop. 2017, 20, 1547–1557. [Google Scholar] [CrossRef]
- Jindal, V.K.; Limpisut, P. Back extrusion testing of cooked rice texture. In Proceedings of the 2002 ASAE Annual Meeting, Chicago, IL, USA, 28–31 July 2002. No. 026068. [Google Scholar]
- Cho, D.H.; Park, H.Y.; Lee, S.K.; Park, J.; Choi, H.S.; Woo, K.S.; Kim, H.J.; Sim, E.Y.; Won, Y.J.; Lee, D.H.; et al. Differences in physiochemical and textural properties of germinated brown rice in various rice varieties. Korean J. Crop Sci. 2017, 62, 172–183. [Google Scholar] [CrossRef]
- Chao, S.; Mitchell, J.; Prakash, S.; Bhandari, B.; Fukai, S. Effect of germination level on properties of flour paste and cooked brown rice texture of diverse varieties. J. Cereal Sci. 2021, 102, 103345. [Google Scholar] [CrossRef]
- Jiamjariyatam, R.; Kongpensook, V.; Pradipasena, P. Effects of amylose content, cooling rate and aging time on properties and characteristics of rice starch gels and puffed products. J. Cereal Sci. 2015, 61, 16–25. [Google Scholar] [CrossRef]
- Munarko, H.; Sitanggang, A.B.; Kusnandar, F.; Budijanto, S. Effect of different soaking and germination methods on bioactive compounds of germinated brown rice. Int. J. Food Sci. Technol. 2021, 56, 4540–4548. [Google Scholar] [CrossRef]
- Wichamanee, Y.; Teerarat, I. Production of germinated red jasmine brown rice and its physicochemical properties. Int. Food Res. J. 2012, 19, 1649–1654. [Google Scholar]
- Mohan, B.H.; Malleshi, N.G.; Koseki, T. Physico-chemical characteristics and non-starch polysaccharide contents of Indica and Japonica brown rice and their malts. LWT Food Sci. Technol. 2010, 43, 784–791. [Google Scholar] [CrossRef]
- Pinkaew, H.; Thongngam, M.; Wang, Y.J.; Naivikul, O. Isolated rice starch fine structures and pasting properties changes during pre-germination of three Thai paddy (Oryza sativa L.) cultivars. J. Cereal Sci. 2016, 70, 116–122. [Google Scholar] [CrossRef]
- Li, C.; Oh, S.G.; Lee, D.H.; Baik, H.W.; Chung, H.J. Effect of germination on the structures and physicochemical properties of starches from brown rice, oat, sorghum, and millet. Int. J. Biol. Macromol. 2017, 105, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.E.A.S.; Coimbra, P.P.S.; Galdeano, M.C.; Carvalho, C.; Piler, W.; Takeiti, C.Y. How does germinated rice impact starch structure, products and nutrional evidences?—A review. Trends Food Sci. Technol. 2022, 122, 13–23. [Google Scholar] [CrossRef]
- Rusydi Megat, M.R.; Noraliza, C.W.; Azrina, A.; Zulkhairi, A. Nutritional changes in germinated legumes and rice varieties. Int. Food Res. J. 2011, 18, 688–696. [Google Scholar]
- Jabeen, R.; Hussain, S.Z.; Jan, N.; Fatima, T.; Naik, H.R.; Jabeen, A. Comparative study of brown rice and germinated brown rice for nutritional composition, in vitro starch digestibility, bioactive compounds, antioxidant activity and microstructural properties. Cereal Chem. 2023, 100, 434–444. [Google Scholar] [CrossRef]
- Liang, J.; Han, B.Z.; Nout, M.; Hamer, R.J. Effects of soaking, germination and fermentation on phytic acid, total and in vitro soluble zinc in brown rice. Food Chem. 2008, 110, 821–828. [Google Scholar] [CrossRef]
- Jiamyangyuen, S.; Ooraikul, B. The physico-chemical, eating and sensorial properties of germinated brown rice. J. Food Agric. Environ. 2008, 6, 119–124. [Google Scholar]
Repeatability SD | Reproducibility SD | ||||||
---|---|---|---|---|---|---|---|
Sample Numbers | Duplicate.a | Duplicate.b | Diff. a-b | Sample Numbers | Duplicate.a | Duplicate.b | Diff. a-b |
5, 17 | 21.16 | 21.90 | −0.74 | 11, 18 | 19.49 | 20.89 | −1.40 |
28, 33 | 19.83 | 18.54 | 1.29 | 28, 34 | 18.81 | 18.54 | 0.27 |
38, 57 | 12.75 | 12.11 | 0.64 | 44, 58 | 25.02 | 23.46 | 1.56 |
35, 69 | 20.57 | 22.17 | −1.60 | 47, 70 | 21.30 | 19.68 | 1.62 |
Mean | −0.11 | Mean | 0.51 | ||||
SD | 1.31 | SD | 1.42 |
Repeatability SD | Reproducibility SD | ||||||
---|---|---|---|---|---|---|---|
Sample Numbers | Duplicate.a | Duplicate.b | Diff. a-b | Sample Number | Duplicate.a | Duplicate.b | Diff. a-b |
5, 17 | 211.90 | 218.19 | −6.28 | 11, 18 | 187.66 | 207.44 | −19.78 |
28, 33 | 189.84 | 181.21 | 8.63 | 28, 34 | 181.45 | 181.21 | 0.25 |
38, 57 | 131.20 | 109.69 | 21.51 | 44, 58 | 246.03 | 233.45 | 12.58 |
35, 69 | 208.77 | 217.08 | −8.31 | 47, 70 | 199.07 | 201.73 | −2.66 |
Mean | 3.89 | Mean | −2.40 | ||||
SD | 13.97 | SD | 13.34 |
Repeatability SD | Reproducibility SD | ||||||
---|---|---|---|---|---|---|---|
Sample Numbers | Duplicate.a | Duplicate.b | Diff. a-b | Sample Number | Duplicate.a | Duplicate.b | Diff. a-b |
5, 17 | −5.35 | −6.55 | 1.20 | 11, 18 | −5.74 | −4.65 | −1.09 |
28, 33 | −5.76 | −5.91 | 0.15 | 28, 34 | −6.64 | −5.91 | −0.73 |
38, 57 | −4.70 | −4.11 | −0.58 | 44, 58 | −6.56 | −5.79 | −0.77 |
35, 69 | −4.50 | −3.97 | −0.54 | 47, 70 | −4.61 | −4.44 | −0.17 |
Mean | 0.06 | Mean | −0.69 | ||||
SD | 0.83 | SD | 0.38 |
Repeatability SD | Reproducibility SD | ||||||
---|---|---|---|---|---|---|---|
Sample Numbers | Duplicate.a | Duplicate.b | Diff. a-b | Sample Numbers | Duplicate.a | Duplicate.b | Diff. a-b |
5, 17 | −75.53 | −69.92 | −5.61 | 11, 18 | −60.35 | −74.47 | 14.11 |
28, 33 | −63.87 | −65.19 | 1.32 | 28, 34 | −65.40 | −65.19 | −0.22 |
38, 57 | −51.85 | −50.69 | −1.16 | 44, 58 | −72.51 | −71.20 | −1.30 |
35, 69 | −61.33 | −59.73 | −1.60 | 47, 70 | −77.68 | −60.51 | −17.17 |
Mean | −1.76 | Mean | −1.15 | ||||
SD | 2.87 | SD | 12.79 |
Hardness (N) | Toughness (Nmm) | Stickiness (N) | Adhesiveness (Nmm) | |
---|---|---|---|---|
Max | 32.68 | 358.35 | −1.86 | −29.91 |
Min | 10.83 | 100.90 | −9.48 | −97.85 |
Mean | 20.39 | 198.95 | −5.15 | −66.45 |
SD | 3.96 | 40.97 | 1.61 | 12.44 |
CV (%) | 19.41 | 20.59 | 31.26 | 18.72 |
Hardness | Toughness | Stickiness | Adhesiveness | |
---|---|---|---|---|
Hardness | 1 | |||
Toughness | 0.966 | 1 | ||
Stickiness | 0.206 | 0.191 | 1 | |
Adhesiveness | −0.693 | −0.732 | 0.277 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaewsorn, K.; Maichoon, P.; Pornchaloempong, P.; Krusong, W.; Sirisomboon, P.; Tanaka, M.; Kojima, T. Evaluation of Precision and Sensitivity of Back Extrusion Test for Measuring Textural Qualities of Cooked Germinated Brown Rice in Production Process. Foods 2023, 12, 3090. https://doi.org/10.3390/foods12163090
Kaewsorn K, Maichoon P, Pornchaloempong P, Krusong W, Sirisomboon P, Tanaka M, Kojima T. Evaluation of Precision and Sensitivity of Back Extrusion Test for Measuring Textural Qualities of Cooked Germinated Brown Rice in Production Process. Foods. 2023; 12(16):3090. https://doi.org/10.3390/foods12163090
Chicago/Turabian StyleKaewsorn, Kannapot, Pisut Maichoon, Pimpen Pornchaloempong, Warawut Krusong, Panmanas Sirisomboon, Munehiro Tanaka, and Takayuki Kojima. 2023. "Evaluation of Precision and Sensitivity of Back Extrusion Test for Measuring Textural Qualities of Cooked Germinated Brown Rice in Production Process" Foods 12, no. 16: 3090. https://doi.org/10.3390/foods12163090
APA StyleKaewsorn, K., Maichoon, P., Pornchaloempong, P., Krusong, W., Sirisomboon, P., Tanaka, M., & Kojima, T. (2023). Evaluation of Precision and Sensitivity of Back Extrusion Test for Measuring Textural Qualities of Cooked Germinated Brown Rice in Production Process. Foods, 12(16), 3090. https://doi.org/10.3390/foods12163090