A Molecular Toolbox to Identify and Quantify Grape Varieties: On the Trace of “Glera”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. DNA Extraction
- 1st method: sodium chloride (Merck Life Science, Milano, Italy) precipitation-based, according to Savazzini et al. [29].
- 2nd method: isopropanol (Merck Life Science, Milano, Italy) precipitation-based, according to Savazzini et al. [29].
- 3rd method: sodium acetate (Merck Life Science, Milano, Italy) precipitation-based, according to Savazzini et al. [29].
- 4th method: according to Zambianchi et al. [30].
2.3. High-Throughput SNP Genotyping
- -
- 24 μL of SNP Type Assay ASP1/ASP2 (100 μM each);
- -
- 64 μL of SNP Type Assay LSP (100 μM each);
- -
- 700 μL of DNA suspension buffer.
- -
- 48 μL of 2X Assay Loading Reagent (Fluidigm PN 100-7611);
- -
- 29 μL of PCR-certified water.
- -
- 472.5 μL of Biotium 2X Fast Probe Master Mix (Biotium, PN 31005);
- -
- 47.25 μL of 20X SNP Type Sample Loading Reagent (Fluidigm, PN 100-3425);
- -
- 15.75 μL of 60X SNP Type Reagent (Fluidigm, PN 100-3402);
- -
- 5.67 μL of ROX 50X (Life Technologies, PN 12223-012) at 25 μM;
- -
- 10.08 μL of PCR-certified water.
2.4. SNP Selection for Fluidigm Biomark™ HD Genotyping
2.5. SNP Selection for Digital PCR Analysis
- Only homozygous markers without any missing values in all the genotypes were considered;
- In the reduced SNP panel obtained after step (a), allelic variants almost unique to “Glera” were individuated;
- The markers individuated in step (b) were checked to be in the same allelic status in all the “Glera” accessions;
- The selected candidate SNPs were mapped on the grapevine genome sequence using BLAST (Basic Local Alignment Search Tool).
2.6. Chip Digital PCR Assay
3. Results
3.1. SNP Genotyping
- A total of 22 markers have a PIC > 0.5 and a mean H value of 0.61.
- A total of 11 markers have a PIC between 0.5 and 0.4 and a mean H value of 0.54.
- A total of 5 markers have a PIC between 0.4 and 0.3 and a mean H value of 0.43.
3.2. Digital PCR
- Screening of an SNP database developed after genotyping 615 grape varieties with an 18K Infinium SNP array;
- Identification of “Glera”-informative SNPs;
- Validation of the selected SNPs on a panel of “Glera” accessions;
- Development of chip digital PCR assays designed for the selected SNPs;
- Evaluation of assay performance along the Prosecco production chain.
- A transition C/T in position 24462302 of grape chromosome 14, with “Glera” carrying the C allele;
- A transversion G/T in position 7777803 of grape chromosome 17, with “Glera” carrying the T allele.
3.2.1. Digital PCR Assay Specificity
- Among “Glera” accessions;
- Among “Glera” and non-“Glera” varieties.
3.2.2. Digital PCR Assay Precision, Trueness, and Applicability
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hrelia, S.; Di Renzo, L.; Bavaresco, L.; Bernardi, E.; Malaguti, M.; Giacosa, A. Moderate Wine Consumption and Health: A Narrative Review. Nutrients 2022, 15, 175. [Google Scholar] [CrossRef] [PubMed]
- Lucerón-Lucas-Torres, M.; Saz-Lara, A.; Díez-Fernández, A.; Martínez-García, I.; Martínez-Vizcaíno, V.; Cavero-Redondo, I.; Álvarez-Bueno, C. Association between Wine Consumption with Cardiovascular Disease and Cardiovascular Mortality: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 2785. [Google Scholar] [CrossRef] [PubMed]
- Arvanitoyannis, I.S. Wine Authenticity and Traceability. In Managing Wine Quality; Elsevier: Amsterdam, The Netherlands, 2022; pp. 279–338. ISBN 978-0-08-102067-8. [Google Scholar]
- Dimitrakopoulou, M.-E.; Vantarakis, A. Does Traceability Lead to Food Authentication? A Systematic Review from A European Perspective. Food Rev. Int. 2023, 39, 537–559. [Google Scholar] [CrossRef]
- Camin, F.; Boner, M.; Bontempo, L.; Fauhl-Hassek, C.; Kelly, S.D.; Riedl, J.; Rossmann, A. Stable Isotope Techniques for Verifying the Declared Geographical Origin of Food in Legal Cases. Trends Food Sci. Technol. 2017, 61, 176–187. [Google Scholar] [CrossRef]
- Petrini, R.; Sansone, L.; Slejko, F.F.; Buccianti, A.; Marcuzzo, P.; Tomasi, D. The 87Sr/86Sr Strontium Isotopic Systematics Applied to Glera Vineyards: A Tracer for the Geographical Origin of the Prosecco. Food Chem. 2015, 170, 138–144. [Google Scholar] [CrossRef]
- Pepi, S.; Vaccaro, C. Geochemical Fingerprints of “Prosecco” Wine Based on Major and Trace Elements. Environ. Geochem. Health 2018, 40, 833–847. [Google Scholar] [CrossRef]
- Villano, C.; Aiese Cigliano, R.; Esposito, S.; D’Amelia, V.; Iovene, M.; Carputo, D.; Aversano, R. DNA-Based Technologies for Grapevine Biodiversity Exploitation: State of the Art and Future Perspectives. Agronomy 2022, 12, 491. [Google Scholar] [CrossRef]
- Office International de la Vigne et du Vin 2a Edizione del Codice di Caratteri Descrittivi OIV per le Varietà di Vite e Specie di Vitis. 2008. Available online: https://oiv.int/it/node/2833 (accessed on 13 July 2023).
- Cipriani, G.; Spadotto, A.; Jurman, I.; Di Gaspero, G.; Crespan, M.; Meneghetti, S.; Frare, E.; Vignani, R.; Cresti, M.; Morgante, M.; et al. The SSR-Based Molecular Profile of 1005 Grapevine (Vitis vinifera L.) Accessions Uncovers New Synonymy and Parentages, and Reveals a Large Admixture amongst Varieties of Different Geographic Origin. Theor. Appl. Genet. 2010, 121, 1569–1585. [Google Scholar] [CrossRef]
- Vitis International Variety Catalogue (VIVC). Available online: https://www.vivc.de/ (accessed on 11 July 2023).
- European Vitis Database. Available online: http://www.eu-vitis.de/index.php (accessed on 11 July 2023).
- Italian Vitis Database. Available online: https://vitisdb.it/application/aboutpage/3 (accessed on 11 July 2023).
- Swiss Vitis Microsatellite Database. Available online: http://www1.unine.ch/svmd/ (accessed on 11 July 2023).
- Portuguese Vitis Database. Available online: https://pt.grapedb.org/literatures/list (accessed on 11 July 2023).
- Magris, G.; Jurman, I.; Fornasiero, A.; Paparelli, E.; Schwope, R.; Marroni, F.; Di Gaspero, G.; Morgante, M. The Genomes of 204 Vitis vinifera Accessions Reveal the Origin of European Wine Grapes. Nat. Commun. 2021, 12, 7240. [Google Scholar] [CrossRef]
- Mercati, F.; De Lorenzis, G.; Mauceri, A.; Zerbo, M.; Brancadoro, L.; D’Onofrio, C.; Morcia, C.; Barbagallo, M.G.; Bignami, C.; Gardiman, M.; et al. Integrated Bayesian Approaches Shed Light on the Dissemination Routes of the Eurasian Grapevine Germplasm. Front. Plant Sci. 2021, 12, 692661. [Google Scholar] [CrossRef]
- Raimondi, S.; Tumino, G.; Ruffa, P.; Boccacci, P.; Gambino, G.; Schneider, A. DNA-Based Genealogy Reconstruction of Nebbiolo, Barbera and Other Ancient Grapevine Cultivars from Northwestern Italy. Sci. Rep. 2020, 10, 15782. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, T.; Boursiquot, J.-M.; Laucou, V.; Di Vecchi-Staraz, M.; Péros, J.-P.; This, P. Large- Scale Parentage Analysis in an Extended Set of Grapevine Cultivars (Vitis vinifera L.). Theor. Appl. Genet. 2013, 126, 401–414. [Google Scholar] [CrossRef]
- Laucou, V.; Launay, A.; Bacilieri, R.; Lacombe, T.; Adam-Blondon, A.-F.; Bérard, A.; Chauveau, A.; De Andrés, M.T.; Hausmann, L.; Ibáñez, J.; et al. Extended Diversity Analysis of Cultivated Grapevine Vitis vinifera with 10K Genome-Wide SNPs. PLoS ONE 2018, 13, e0192540. [Google Scholar] [CrossRef]
- Devonshire, A.S.; Sanders, R.; Wilkes, T.M.; Taylor, M.S.; Foy, C.A.; Huggett, J.F. Application of next Generation QPCR and Sequencing Platforms to MRNA Biomarker Analysis. Methods 2013, 59, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Dufour, M.C.; Magnin, N.; Dumas, B.; Vergnes, S.; Corio-Costet, M.F. High-throughput gene-expression quantification of grapevine defense responses in the field using microfluidic dynamic arrays. BMC Genom. 2016, 17, 957. [Google Scholar] [CrossRef]
- Zyprian, E.; Ochßner, I.; Schwander, F.; Šimon, S.; Hausmann, L.; Bonow-Rex, M.; Moreno-Sanz, P.; Grando, M.S.; Wiedemann-Merdinoglu, S.; Merdinoglu, D.; et al. Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Mol. Genet. Genom. 2016, 291, 1573–1594. [Google Scholar] [CrossRef]
- Žulj Mihaljević, M.; Maletić, E.; Preiner, D.; Zdunić, G.; Bubola, M.; Zyprian, E.; Pejić, I. Genetic Diversity, Population Structure, and Parentage Analysis of Croatian Grapevine Germplasm. Genes 2020, 11, 737. [Google Scholar] [CrossRef]
- Richter, R.; Rossmann, S.; Gabriel, D.; Töpfer, R.; Theres, K.; Zyprian, E. Differential Expression of Transcription Factor- and Further Growth-Related Genes Correlates with Contrasting Cluster Architecture in Vitis vinifera ‘Pinot Noir’ and Vitis Spp. Genotypes. Theor. Appl. Genet. 2020, 133, 3249–3272. [Google Scholar] [CrossRef]
- Demeke, T.; Dobnik, D. Critical Assessment of Digital PCR for the Detection and Quantification of Genetically Modified Organisms. Anal. Bioanal. Chem. 2018, 410, 4039–4050. [Google Scholar] [CrossRef]
- Morcia, C.; Ghizzoni, R.; Delogu, C.; Andreani, L.; Carnevali, P.; Terzi, V. Digital PCR: What Relevance to Plant Studies? Biology 2020, 9, 433. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, C.; Tumino, G.; Gardiman, M.; Crespan, M.; Bignami, C.; De Palma, L.; Barbagallo, M.G.; Muganu, M.; Morcia, C.; Novello, V.; et al. Parentage Atlas of Italian Grapevine Varieties as Inferred From SNP Genotyping. Front. Plant Sci. 2021, 11, 605934. [Google Scholar] [CrossRef] [PubMed]
- Savazzini, F.; Martinelli, L. DNA Analysis in Wines: Development of Methods for Enhanced Extraction and Real-Time Polymerase Chain Reaction Quantification. Anal. Chim. Acta 2006, 563, 274–282. [Google Scholar] [CrossRef]
- Zambianchi, S.; Soffritti, G.; Stagnati, L.; Patrone, V.; Morelli, L.; Vercesi, A.; Busconi, M. Applicability of DNA Traceability along the Entire Wine Production Chain in the Real Case of a Large Italian Cooperative Winery. Food Control 2021, 124, 107929. [Google Scholar] [CrossRef]
- Wang, F.; Fan, X.; Zhang, Y.; Sun, L.; Liu, C.; Jiang, J. Establishment and Application of an SNP Molecular Identification System for Grape Cultivars. J. Integr. Agric. 2022, 21, 1044–1057. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Paul, D.R. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 178kb. Available online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 11 July 2023).
- Bińkowski, J.; Miks, S. Gene-Calc [Computer Software]. 2018. Available online: www.gene-calc.pl (accessed on 11 July 2023).
- Pelsy, F. Molecular and Cellular Mechanisms of Diversity within Grapevine Varieties. Heredity 2010, 104, 331–340. [Google Scholar] [CrossRef]
- Carrier, G.; Le Cunff, L.; Dereeper, A.; Legrand, D.; Sabot, F.; Bouchez, O.; Audeguin, L.; Boursiquot, J.-M.; This, P. Transposable Elements Are a Major Cause of Somatic Polymorphism in Vitis vinifera L. PLoS ONE 2012, 7, e32973. [Google Scholar] [CrossRef]
- Vondras, A.M.; Minio, A.; Blanco-Ulate, B.; Figueroa-Balderas, R.; Penn, M.A.; Zhou, Y.; Seymour, D.; Ye, Z.; Liang, D.; Espinoza, L.K.; et al. The Genomic Diversification of Grapevine Clones. BMC Genom. 2019, 20, 972. [Google Scholar] [CrossRef]
- Varela, A.; Ibañez, V.N.; Alonso, R.; Zavallo, D.; Asurmendi, S.; Gomez Talquenca, S.; Marfil, C.F.; Berli, F.J. Vineyard Environments Influence Malbec Grapevine Phenotypic Traits and DNA Methylation Patterns in a Clone-Dependent Way. Plant Cell Rep. 2021, 40, 111–125. [Google Scholar] [CrossRef]
- Petretto, G.L.; Mercenaro, L.; Urgeghe, P.P.; Fadda, C.; Valentoni, A.; Del Caro, A. Grape and Wine Composition in Vitis vinifera L. Cv. Cannonau Explored by GC-MS and Sensory Analysis. Foods 2021, 10, 101. [Google Scholar] [CrossRef]
- Crespan, M.; Crespan, G.; Giannetto, S.; Meneghetti, S.; Costacurta, A. “Vitouska” Is the Progeny of “Prosecco Tondo” and “Malvasia Bianca Lunga.”. VITIS J. Grapevine Res. 2007, 46, 192–194. [Google Scholar] [CrossRef]
- Crespan, M.; Migliaro, D.; Larger, S.; Pindo, M.; Petrussi, C.; Stocco, M.; Rusjan, D.; Sivilotti, P.; Velasco, R.; Maul, E. Unraveling the Genetic Origin of ‘Glera’, ‘Ribolla Gialla’ and Other Autochthonous Grapevine Varieties from Friuli Venezia Giulia (Northeastern Italy). Sci. Rep. 2020, 10, 7206. [Google Scholar] [CrossRef] [PubMed]
- CXG 74-110. Guidelines on Performance Criteria and Validation of Methods for Detection, Identification and Quantification of Specific DNA Sequences and Specific Proteins in Foods. 2010. Available online: https://www.fao.org/fao-who-codexalimentarius/codex-texts/guidelines/en/ (accessed on 13 July 2023).
- European Commission, Joint Research Centre. Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing; Publications Office: Luxembourg, 2015. [Google Scholar]
- Francisco, R.M.; Regalado, A.; Ageorges, A.; Burla, B.J.; Bassin, B.; Eisenach, C.; Zarrouk, O.; Vialet, S.; Marlin, T.; Chaves, M.M.; et al. ABCC1, an ATP Binding Cassette Protein from Grape Berry, Transports Anthocyanidin 3-O-Glucosides. Plant Cell 2013, 25, 1840–1854. [Google Scholar] [CrossRef] [PubMed]
- Nogia, P.; Pati, P.K. Plant Secondary Metabolite Transporters: Diversity, Functionality, and Their Modulation. Front. Plant Sci. 2021, 12, 758202. [Google Scholar] [CrossRef] [PubMed]
- Semagn, K.; Babu, R.; Hearne, S.; Olsen, M. Single Nucleotide Polymorphism Genotyping Using Kompetitive Allele Specific PCR (KASP): Overview of the Technology and Its Application in Crop Improvement. Mol. Breed. 2014, 33, 1–14. [Google Scholar] [CrossRef]
- Calderón, L.; Mauri, N.; Muñoz, C.; Carbonell-Bejerano, P.; Bree, L.; Bergamin, D.; Sola, C.; Gomez-Talquenca, S.; Royo, C.; Ibáñez, J.; et al. Whole Genome Resequencing and Custom Genotyping Unveil Clonal Lineages in ‘Malbec’ Grapevines (Vitis vinifera L.). Sci. Rep. 2021, 11, 7775. [Google Scholar] [CrossRef]
- Nebish, A.; Tello, J.; Ferradás, Y.; Aroutiounian, R.; Martínez-Zapater, J.M.; Ibáñez, J. SSR and SNP Genetic Profiling of Armenian Grape Cultivars Gives Insights into Their Identity and Pedigree Relationships. OENO One 2021, 55, 101–114. [Google Scholar] [CrossRef]
- Morcia, C.; Tumino, G.; Raimondi, S.; Schneider, A.; Terzi, V. Muscat Flavor in Grapevine: A Digital PCR Assay to Track Allelic Variation in VvDXS Gene. Genes 2021, 12, 747. [Google Scholar] [CrossRef]
- Quinteiro, J.; Quinteiro, L.; Díaz-Fernández, A.; Rey-Méndez, M.; Ibáñez, J.; Díaz-Losada, E. In-the-Field Authentication of Grapevine (Vitis vinifera L.) Cv: Albariño Using Chlorotype Discrimination and a Single SNP Interrogation by LAMP. Aust. J. Grape Wine Res. 2023, 2023, 2117139. [Google Scholar] [CrossRef]
- Boccacci, P.; Chitarra, W.; Schneider, A.; Rolle, L.; Gambino, G. Single-Nucleotide Polymorphism (SNP) Genotyping Assays for the Varietal Authentication of ‘Nebbiolo’ Musts and Wines. Food Chem. 2020, 312, 126100. [Google Scholar] [CrossRef]
- Agrimonti, C.; Marmiroli, N. PCR Analysis of Experimental and Commercial Wines by Means of Nuclear and Chloroplast SSRs. Eur. Food Res. Technol. 2018, 244, 2127–2140. [Google Scholar] [CrossRef]
- Recupero, M.; Garino, C.; De Paolis, A.; Cereti, E.; Coïsson, J.-D.; Travaglia, F.; Arlorio, M. A Method to Check and Discover Adulteration of Nebbiolo-Based Monovarietal Musts: Detection of Barbera and Dolcetto Cv via SSR Analysis Coupled with Lab-On-Chip® Microcapillary Electrophoresis. Food Anal. Methods 2013, 6, 952–962. [Google Scholar] [CrossRef]
- Boccacci, P.; Akkak, A.; Torello Marinoni, D.; Gerbi, V.; Schneider, A. Genetic Traceability of Asti Spumante and Moscato d’Asti Musts and Wines Using Nuclear and Chloroplast Microsatellite Markers. Eur. Food Res. Technol. 2012, 235, 439–446. [Google Scholar] [CrossRef]
- Faria, M.A.; Nunes, E.; Oliveira, M.B.P.P. Relative Quantification of Vitis vinifera L. Varieties in Musts by Microsatellite DNA Analysis. Eur. Food Res. Technol. 2008, 227, 845–850. [Google Scholar] [CrossRef]
- Rodríguez-Plaza, P.; González, R.; Moreno-Arribas, M.V.; Polo, M.C.; Bravo, G.; Martínez-Zapater, J.M.; Martínez, M.C.; Cifuentes, A. Combining Microsatellite Markers and Capillary Gel Electrophoresis with Laser-Induced Fluorescence to Identify the Grape (Vitis vinifera) Variety of Musts. Eur. Food Res. Technol. 2006, 223, 625–631. [Google Scholar] [CrossRef]
- García-Beneytez, E.; Moreno-Arribas, M.V.; Borrego, J.; Polo, M.C.; Ibáñez, J. Application of a DNA Analysis Method for the Cultivar Identification of Grape Musts and Experimental and Commercial Wines of Vitis vinifera L. Using Microsatellite Markers. J. Agric. Food Chem. 2002, 50, 6090–6096. [Google Scholar] [CrossRef] [PubMed]
- Siret, R.; Gigaud, O.; Rosec, J.P.; This, P. Analysis of Grape Vitis vinifera L. DNA in Must Mixtures and Experimental Mixed Wines Using Microsatellite Markers. J. Agric. Food Chem. 2002, 50, 3822–3827. [Google Scholar] [CrossRef]
- Baleiras-Couto, M.M.; Eiras-Dias, J.E. Detection and Identification of Grape Varieties in Must and Wine Using Nuclear and Chloroplast Microsatellite Markers. Anal. Chim. Acta 2006, 563, 283–291. [Google Scholar] [CrossRef]
- Zambianchi, S.; Soffritti, G.; Stagnati, L.; Patrone, V.; Morelli, L.; Busconi, M. Effect of Storage Time on Wine DNA Assessed by SSR Analysis. Food Control 2022, 142, 109249. [Google Scholar] [CrossRef]
- Gambino, G.; Ferrero, L.; Scalzini, G.; De Paolis, C.; Paissoni, M.A.; Río Segade, S.; Giacosa, S.; Boccacci, P.; Rolle, L. Impact of oenological processing aids and additives on the genetic traceability of ‘Nebbiolo’ wine produced with withered grapes. Food Res. Int. 2022, 151, 110874. [Google Scholar] [CrossRef]
- Sajali, N.; Wong, S.C.; Hanapi, U.K.; Abu Bakar Jamaluddin, S.; Tasrip, N.A.; Mohd Desa, M.N. The Challenges of DNA Extraction in Different Assorted Food Matrices: A Review: Challenges in DNA Extraction. J. Food Sci. 2018, 83, 2409–2414. [Google Scholar] [CrossRef] [PubMed]
- Mafra, I.; Silva, S.A.; Moreira, E.J.M.O.; Da Silva, C.S.F.; Beatriz, M.; Oliveira, P.P. Comparative Study of DNA Extraction Methods for Soybean Derived Food Products. Food Control 2008, 19, 1183–1190. [Google Scholar] [CrossRef]
Samples | ng/µL DNA (Final Volume: 50 µL) | 260/280 nm |
---|---|---|
Leaves | 39–63 | 1.72–1.95 |
Berries | 7–18 | 1.98–2.21 |
Musts | 32–44 | 1.89–2.15 |
Wines | n.d. | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrara, I.; Terzi, V.; Ghizzoni, R.; Delbono, S.; Tumino, G.; Crespan, M.; Gardiman, M.; Francia, E.; Morcia, C. A Molecular Toolbox to Identify and Quantify Grape Varieties: On the Trace of “Glera”. Foods 2023, 12, 3091. https://doi.org/10.3390/foods12163091
Carrara I, Terzi V, Ghizzoni R, Delbono S, Tumino G, Crespan M, Gardiman M, Francia E, Morcia C. A Molecular Toolbox to Identify and Quantify Grape Varieties: On the Trace of “Glera”. Foods. 2023; 12(16):3091. https://doi.org/10.3390/foods12163091
Chicago/Turabian StyleCarrara, Ilaria, Valeria Terzi, Roberta Ghizzoni, Stefano Delbono, Giorgio Tumino, Manna Crespan, Massimo Gardiman, Enrico Francia, and Caterina Morcia. 2023. "A Molecular Toolbox to Identify and Quantify Grape Varieties: On the Trace of “Glera”" Foods 12, no. 16: 3091. https://doi.org/10.3390/foods12163091
APA StyleCarrara, I., Terzi, V., Ghizzoni, R., Delbono, S., Tumino, G., Crespan, M., Gardiman, M., Francia, E., & Morcia, C. (2023). A Molecular Toolbox to Identify and Quantify Grape Varieties: On the Trace of “Glera”. Foods, 12(16), 3091. https://doi.org/10.3390/foods12163091