Chemometric Classification of Apple Cultivars Based on Physicochemical Properties: Raw Material Selection for Processing Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Plant Materials
2.3. Fruit Phenotypes
2.4. Fruit Color
2.5. pH, TSS, and TA Determination
2.6. Hardness and Chewiness Determination
2.7. Sugar and Organic Acid Profile Determination
2.8. Aroma Profile Determination
2.8.1. E-Nose Analysis
2.8.2. HS-SPME-GC-MS Analysis
2.9. Sensory Evaluation
2.10. Data Analysis
3. Results and Discussion
3.1. Apple Appearance
3.1.1. Size
3.1.2. Shape and Deflection
3.1.3. Color
3.2. Internal Quality
3.2.1. Sweetness and Acidity
3.2.2. Hardness and Chewiness
3.2.3. Apple Aroma
3.3. Sensory Evaluation
3.4. Chemometrics Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeng, S.; Cai, X.; Guo, W.; Zhang, Z.; Yang, S. Differences in Optical Properties and Internal Qualities of ‘Fuji’ Apple Produced in Different Areas of the Loess Plateau Region. Eur. J. Agron. 2022, 140, 126608. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Data. Available online: http://www.fao.org/faostat (accessed on 29 September 2022).
- Alberti, A.; Machado dos Santos, T.P.; Ferreira Zielinski, A.A.; Eleutério dos Santos, C.M.; Braga, C.M.; Demiate, I.M.; Nogueira, A. Impact on Chemical Profile in Apple Juice and Cider Made from Unripe, Ripe and Senescent Dessert Varieties. LWT-Food Sci. Technol. 2016, 65, 436–443. [Google Scholar] [CrossRef]
- Baselice, A.; Colantuoni, F.; Lass, D.A.; Nardone, G.; Stasi, A. Trends in EU Consumers’ Attitude towards Fresh-Cut Fruit and Vegetables. Food Qual. Prefer. 2017, 59, 87–96. [Google Scholar] [CrossRef]
- Subhashree, S.N.; Sunoj, S.; Xue, J.; Bora, G.C. Quantification of Browning in Apples Using Colour and Textural Features by Image Analysis. Food Qual. Saf. 2017, 1, 221–226. [Google Scholar] [CrossRef]
- Yi, J.; Kebede, B.; Kristiani, K.; Grauwet, T.; Van Loey, A.; Hendrickx, M. Minimizing Quality Changes of Cloudy Apple Juice: The Use of Kiwifruit Puree and High Pressure Homogenization. Food Chem. 2018, 249, 202–212. [Google Scholar] [CrossRef]
- Altisent, R.; Plaza, L.; Alegre, I.; Viñas, I.; Abadias, M. Comparative Study of Improved vs. Traditional Apple Cultivars and Their Aptitude to Be Minimally Processed as ‘Ready to Eat’ Apple Wedges. LWT-Food Sci. Technol. 2014, 58, 541–549. [Google Scholar] [CrossRef]
- Röβle, C.; Gormley, T.R.; Brunton, N.; Butler, F. Quality and Antioxidant Properties of Fresh-Cut Apple Wedges from 10 Cultivars during Modified Atmosphere Packaging Storage. Food Sci. Technol. Int. 2011, 17, 267–276. [Google Scholar] [CrossRef]
- Musacchi, S.; Serra, S. Apple Fruit Quality: Overview on Pre-Harvest Factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Harker, F.R.; Kupferman, E.M.; Marin, A.B.; Gunson, F.A.; Triggs, C.M. Eating Quality Standards for Apples Based on Consumer Preferences. Postharvest Biol. Technol. 2008, 50, 70–78. [Google Scholar] [CrossRef]
- Espino-Díaz, M.; Sepúlveda, D.R.; González-Aguilar, G.; Olivas, G.I. Biochemistry of Apple Aroma: A Review. Food Technol. Biotechnol. 2016, 54, 375. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, S.R.; Antúnez, L.; Ares, G.; Swaney-Stueve, M.; Jin, D.; Harker, F.R. Quality Perceptions Regarding External Appearance of Apples: Insights from Experts and Consumers in Four Countries. Postharvest Biol. Technol. 2018, 146, 99–107. [Google Scholar] [CrossRef]
- Song, Q.; Rune, C.J.B.; Thybo, A.K.; Clausen, M.P.; Orlien, V.; Giacalone, D. Sensory Quality and Consumer Perception of High Pressure Processed Orange Juice and Apple Juice. LWT 2023, 173, 114303. [Google Scholar] [CrossRef]
- Aprea, E.; Corollaro, M.L.; Betta, E.; Endrizzi, I.; Demattè, M.L.; Biasioli, F.; Gasperi, F. Sensory and Instrumental Profiling of 18 Apple Cultivars to Investigate the Relation between Perceived Quality and Odour and Flavour. Food Res. Int. 2012, 49, 677–686. [Google Scholar] [CrossRef]
- Yang, S.; Hao, N.; Meng, Z.; Li, Y.; Zhao, Z. Identification, Comparison and Classification of Volatile Compounds in Peels of 40 Apple Cultivars by HS–SPME with GC–MS. Foods 2021, 10, 1051. [Google Scholar] [CrossRef]
- Li, M.; Zhang, W.; Zhang, M.; Yin, Y.; Liu, Z.; Hu, X.; Yi, J. Effect of Centrifugal Pre-Treatment on Flavor Change of Cloudy Orange Juice: Interaction between Pectin and Aroma Release. Food Chem. 2022, 374, 131705. [Google Scholar] [CrossRef]
- Yi, J.; Kebede, B.T.; Grauwet, T.; Van Loey, A.; Hu, X.; Hendrickx, M. A Multivariate Approach into Physicochemical, Biochemical and Aromatic Quality Changes of Purée Based on Hayward Kiwifruit during the Final Phase of Ripening. Postharvest Biol. Technol. 2016, 117, 206–216. [Google Scholar] [CrossRef]
- Kumar Pothula, A.; Zhang, Z.; Lu, R. Evaluation of a New Apple In-Field Sorting System for Fruit Singulation, Rotation and Imaging. Comput. Electron. Agric. 2023, 208, 107789. [Google Scholar] [CrossRef]
- Aubert, C.; Chalot, G.; Lurol, S.; Ronjon, A.; Cottet, V. Relationship between Fruit Density and Quality Parameters, Levels of Sugars, Organic Acids, Bioactive Compounds and Volatiles of Two Nectarine Cultivars, at Harvest and after Ripening. Food Chem. 2019, 297, 124954. [Google Scholar] [CrossRef]
- Zhao, X.; Peng, Y.; Li, Y.; Wang, Y.; Li, Y.; Chen, Y. Intelligent Micro Flight Sensing System for Detecting the Internal and External Quality of Apples on the Tree. Comput. Electron. Agric. 2023, 204, 107571. [Google Scholar] [CrossRef]
- Bonany, J.; Buehler, A.; Carbó, J.; Codarin, S.; Donati, F.; Echeverria, G.; Egger, S.; Guerra, W.; Hilaire, C.; Höller, I.; et al. Consumer Eating Quality Acceptance of New Apple Varieties in Different European Countries. Food Qual. Prefer. 2013, 30, 250–259. [Google Scholar] [CrossRef]
- Kim, K.-B.; Lee, S.; Kim, M.-S.; Cho, B.-K. Determination of Apple Firmness by Nondestructive Ultrasonic Measurement. Postharvest Biol. Technol. 2009, 52, 44–48. [Google Scholar] [CrossRef]
- Liu, C.; Xiao, P.; Jiang, F.; Wang, S.; Liu, Z.; Song, G.; Li, W.; Lv, T.; Li, J.; Wang, D.; et al. Exogenous Gibberellin Treatment Improves Fruit Quality in Self-Pollinated Apple. Plant Physiol. Biochem. 2022, 174, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Chai, X.; Yang, C.; Xia, X.; Sun, T. Vision-Based Apple Quality Grading with Multi-View Spatial Network. Comput. Electron. Agric. 2022, 195, 106793. [Google Scholar] [CrossRef]
- Li, X.; Zhu, W. Apple Grading Method Based on Features Fusion of Size, Shape and Color. Procedia Eng. 2011, 15, 2885–2891. [Google Scholar] [CrossRef]
- Jiang, Y.; Yu, L.; Hu, Y.; Zhu, Z.; Zhuang, C.; Zhao, Y.; Zhong, Y. Electrostatic Spraying of Chitosan Coating with Different Deacetylation Degree for Strawberry Preservation. Int. J. Biol. Macromol. 2019, 139, 1232–1238. [Google Scholar] [CrossRef] [PubMed]
- Aprea, E.; Charles, M.; Endrizzi, I.; Laura Corollaro, M.; Betta, E.; Biasioli, F.; Gasperi, F. Sweet Taste in Apple: The Role of Sorbitol, Individual Sugars, Organic Acids and Volatile Compounds. Sci. Rep. 2017, 7, 44950. [Google Scholar] [CrossRef]
- Guo, J.; Yue, T.; Yuan, Y.; Sun, N.; Liu, P. Characterization of Volatile and Sensory Profiles of Apple Juices to Trace Fruit Origins and Investigation of the Relationship between the Aroma Properties and Volatile Constituents. LWT 2020, 124, 109203. [Google Scholar] [CrossRef]
- Bai, Y.; Dougherty, L.; Cheng, L.; Zhong, G.-Y.; Xu, K. Uncovering Co-Expression Gene Network Modules Regulating Fruit Acidity in Diverse Apples. BMC Genom. 2015, 16, 612. [Google Scholar] [CrossRef]
- Ortiz, A.; Echeverría, G.; Graell, J.; Lara, I. The Emission of Flavour-Contributing Volatile Esters by ‘Golden Reinders’ Apples Is Improved after Mid-Term Storage by Postharvest Calcium Treatment. Postharvest Biol. Technol. 2010, 57, 114–123. [Google Scholar] [CrossRef]
- Wu, J.; Gao, H.; Zhao, L.; Liao, X.; Chen, F.; Wang, Z.; Hu, X. Chemical Compositional Characterization of Some Apple Cultivars. Food Chem. 2007, 103, 88–93. [Google Scholar] [CrossRef]
- Mureșan, A.E.; Sestras, A.F.; Militaru, M.; Păucean, A.; Tanislav, A.E.; Pușcaș, A.; Mateescu, M.; Mureșan, V.; Marc (Vlaic), R.A.; Sestras, R.E. Chemometric Comparison and Classification of 22 Apple Genotypes Based on Texture Analysis and Physico-Chemical Quality Attributes. Horticulturae 2022, 8, 64. [Google Scholar] [CrossRef]
- Ng, J.K.; Schröder, R.; Sutherland, P.W.; Hallett, I.C.; Hall, M.I.; Prakash, R.; Smith, B.G.; Melton, L.D.; Johnston, J.W. Cell Wall Structures Leading to Cultivar Differences in Softening Rates Develop Early during Apple (Malus × Domestica) Fruit Growth. BMC Plant Biol. 2013, 13, 183. [Google Scholar] [CrossRef]
- Ebadi, S.K.; Simon, G.; Ahmed, H.M. Quality Testing of New Hungarian Apple Cultivars in Normal Atmosphere Storage. J. Food Process. Preserv. 2022, 46, e16354. [Google Scholar] [CrossRef]
- Symoneaux, R.; Galmarini, M.V.; Mehinagic, E. Comment Analysis of Consumer’s Likes and Dislikes as an Alternative Tool to Preference Mapping. A Case Study on Apples. Food Qual. Prefer. 2012, 24, 59–66. [Google Scholar] [CrossRef]
- Niu, Y.; Wang, R.; Xiao, Z.; Zhu, J.; Sun, X.; Wang, P. Characterization of Ester Odorants of Apple Juice by Gas Chromatography-Olfactometry, Quantitative Measurements, Odour Threshold, Aroma Intensity and Electronic Nose. Food Res. Int. 2019, 120, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Kebede, B.T.; Hai Dang, D.N.; Buvé, C.; Grauwet, T.; Van Loey, A.; Hu, X.; Hendrickx, M. Quality Change during High Pressure Processing and Thermal Processing of Cloudy Apple Juice. LWT 2017, 75, 85–92. [Google Scholar] [CrossRef]
- Zhu, D.; Ren, X.; Wei, L.; Cao, X.; Ge, Y.; Liu, H.; Li, J. Collaborative Analysis on Difference of Apple Fruits Flavour Using Electronic Nose and Electronic Tongue. Sci. Hortic. 2020, 260, 108879. [Google Scholar] [CrossRef]
- Liu, X.; Deng, J.; Bi, J.; Wu, X.; Zhang, B. Cultivar Classification of Cloudy Apple Juices from Substandard Fruits in China Based on Aroma Profile Analyzed by HS-SPME/GC-MS. LWT 2019, 102, 304–309. [Google Scholar] [CrossRef]
- Yan, D.; Shi, J.; Ren, X.; Tao, Y.; Ma, F.; Li, R.; Liu, X.; Liu, C. Insights into the Aroma Profiles and Characteristic Aroma of ‘Honeycrisp’ Apple (Malus × Domestica). Food Chem. 2020, 327, 127074. [Google Scholar] [CrossRef]
- Schiller, D.; Contreras, C.; Vogt, J.; Dunemann, F.; Defilippi, B.G.; Beaudry, R.; Schwab, W. A Dual Positional Specific Lipoxygenase Functions in the Generation of Flavor Compounds during Climacteric Ripening of Apple. Hortic. Res. 2015, 2, 15003. [Google Scholar] [CrossRef]
- Odeyemi, O.A.; Burke, C.M.; Bolch, C.J.S.; Stanley, R. Evaluation of Spoilage Potential and Volatile Metabolites Production by Shewanella Baltica Isolated from Modified Atmosphere Packaged Live Mussels. Food Res. Int. 2018, 103, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Iglesias, I.; Echeverría, G.; Soria, Y. Differences in Fruit Colour Development, Anthocyanin Content, Fruit Quality and Consumer Acceptability of Eight ‘Gala’ Apple Strains. Sci. Hortic. 2008, 119, 32–40. [Google Scholar] [CrossRef]
- Li, M.; Zhan, P.; Wang, P.; Tian, H.; Geng, J.; Wang, L. Characterization of Aroma-Active Compounds Changes of Xiecun Huangjius with Different Aging Years Based on Odor Activity Values and Multivariate Analysis. Food Chem. 2023, 405, 134809. [Google Scholar] [CrossRef] [PubMed]
Cultivar | Length (mm) | Width (mm) | Shape Index | Deflection Index | Color Attributes (Apple Peel) | Color Attributes (Apple Pulp) | ||||
---|---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | |||||
Aziteke | 68.20 ± 2.56 fg | 78.90 ± 3.22 cd | 0.87 ± 0.03 ef | 0.15 ± 0.08 bc | 39.61 ± 3.11 bc | 21.35 ± 1.63 gh | 19.70 ± 1.41 de | 76.65 ± 0.51 cd | 1.00 ± 0.11 cd | 26.58 ± 0.77 a |
Bakeai | 64.68 ± 2.49 gh | 66.93 ± 0.59 gh | 0.97 ± 0.04 bcd | 0.12 ± 0.04 bc | 25.16 ± 1.26 fg | 36.06 ± 0.74 a | 19.25 ± 1.83 de | 79.42 ± 0.17 a | −0.75 ± 0.14 gh | 25.81 ± 0.44 ab |
Fuburuisi | 71.64 ± 2.49 def | 78.02 ± 1.84 de | 0.92 ± 0.04 cde | 0.22 ± 0.10 abc | 32.97 ± 4.13 de | 30.82 ± 0.69 bc | 20.08 ± 1.90 cde | 77.79 ± 0.22 b | 2.00 ± 0.26 b | 21.34 ± 0.24 defg |
Red General | 71.04 ± 1.79 ef | 80.56 ± 2.44 cd | 0.89 ± 0.01 def | 0.14 ± 0.06 bc | 35.67 ± 1.44 bcd | 31.21 ± 0.64 bc | 20.13 ± 0.74 cde | 76.92 ± 0.17 bcd | 3.93 ± 0.31 a | 25.29 ± 0.43 ab |
Honglu | 76.66 ± 1.88 bcd | 80.39 ± 2.47 cd | 0.95 ± 0.03 bcd | 0.34 ± 0.07 a | 47.17 ± 3.43 a | 20.23 ± 4.61 h | 28.63 ± 2.27 a | 79.3 ± 0.35 a | −1.45 ± 0.09 h | 22.71 ± 0.79 cde |
Red Delicious | 81.58 ± 1.91 ab | 77.88 ± 1.07 de | 1.07 ± 0.03 a | 0.12 ± 0.04 bc | 19.55 ± 0.88 g | 19.59 ± 1.29 h | 5.79 ± 0.70 g | 79.77 ± 0.16 a | −1.15 ± 0.09 gh | 21.06 ± 0.30 efg |
Huashuo | 79.01 ± 3.89 abc | 77.88 ± 0.90 de | 1.01 ± 0.06 ab | 0.13 ± 0.06 bc | 23.06 ± 3.12 fg | 30.42 ± 1.31 bcd | 16.86 ± 1.90 ef | 75.47 ± 0.35 e | 1.55 ± 0.68 bc | 22.42 ± 0.45 de |
Royal Gala | 63.04 ± 1.95 gh | 66.10 ± 1.48 hi | 0.96 ± 0.05 bcd | 0.13 ± 0.03 bc | 35.66 ± 0.83 bcd | 32.97 ± 0.99 ab | 23.79 ± 1.42 bc | 79.66 ± 0.30 a | 0.13 ± 0.12 ef | 25.85 ± 0.39 ab |
Miqila | 73.56 ± 2.08 de | 74.47 ± 1.66 ef | 0.99 ± 0.05 abc | 0.09 ± 0.03 c | 47.04 ± 1.61 a | 25.28 ± 1.11 efg | 27.34 ± 1.57 ab | 80.02 ± 0.57 a | −0.97 ± 0.27 gh | 19.97 ± 1.43 g |
Honey Crisp | 71.18 ± 2.67 ef | 87.93 ± 1.74 a | 0.82 ± 0.04 f | 0.20 ± 0.08 abc | 36.13 ± 2.26 bcd | 37.36 ± 0.20 a | 22.14 ± 0.89 cd | 77.65 ± 0.19 b | 0.61 ± 0.19 de | 21.33 ± 0.87 defg |
Magic Flute | 75.96 ± 3.17 cde | 70.73 ± 2.44 fg | 1.07 ± 0.03 a | 0.17 ± 0.05 bc | 27.00 ± 2.85 ef | 26.94 ± 0.87 cdef | 13.59 ± 1.22 f | 77.26 ± 0.20 bcd | 0.79 ± 0.17 cde | 20.21 ± 0.44 fg |
Shandong Fuji | 70.76 ± 4.17 ef | 85.37 ± 1.62 ab | 0.83 ± 0.05 f | 0.27 ± 0.10 ab | 33.37 ± 4.38 cde | 25.85 ± 2.06 defg | 19.30 ± 1.38 de | 77.34 ± 0.13 bcd | 0.91 ± 0.24 cde | 23.01 ± 0.82 cd |
Sinike | 60.33 ± 2.36 h | 62.53 ± 0.18 i | 0.96 ± 0.04 bcd | 0.25 ± 0.08 abc | 36.05 ± 2.08 bcd | 30.45 ± 1.86 bcd | 19.90 ± 1.54 de | 76.47 ± 0.65 d | −0.81 ± 0.18 gh | 22.03 ± 1.40 def |
Yanfu 3 | 71.28 ± 2.48 ef | 81.09 ± 2.90 cd | 0.87 ± 0.03 ef | 0.10 ± 0.03 c | 34.89 ± 1.17 bcd | 28.91 ± 0.22 bcde | 17.10 ± 1.39 ef | 76.94 ± 0.38 bcd | 1.34 ± 0.38 bcd | 24.53 ± 0.75 bc |
Zhongqiuwang | 83.72 ± 1.67 a | 82.05 ± 1.21 bc | 1.02 ± 0.04 ab | 0.12 ± 0.03 bc | 40.33 ± 1.25 b | 23.94 ± 3.26 fgh | 21.25 ± 1.25 cd | 77.53 ± 0.61 bc | −0.59 ± 0.70 fg | 19.54 ± 0.36 g |
Compounds a | CAS | Odor Description b | RI c | RI* d |
---|---|---|---|---|
Alcohols | ||||
2-Methyl-1-butanol | 137-32-6 | ethereal fusel alcoholic fatty greasy winey whiskey leathery cocoa | 741 | 736 |
Pentanol | 71-41-0 | fuel oil sweet balsam | 767 | 764 |
(E)-2-Hexen-1-ol | 928-95-0 | fresh green leafy fruity unripe banana | 857 | 858 |
Hexanol | 111-27-3 | ethereal fuel oil fruity alcoholic sweet green | 874 | 874 |
Hydroxy | 111-70-6 | musty leafy violet herbal green sweet woody peony | 972 | 972 |
2-Ethyl-1-hexanol | 104-76-7 | citrus fresh floral oily sweet | 1030 | 1029 |
Octanol | 111-87-5 | waxy green orange aldehydic rose mushroom | 1072 | 1070 |
Nonanol | 143-08-8 | fresh clean fatty floral rose orange dusty wet oily | 1172 | 1172 |
Esters | ||||
Propyl acetate | 109-60-4 | solvent celery fruity fusel raspberry pear | 713 | 717 |
Butanoic acid | 623-42-7 | fruity apple sweet banana pineapple | 723 | 721 |
Methyl 2-methyl butyrate | 868-57-5 | ethereal estery fruity tutti frutti green apple lily of the valley powdery fatty | 775 | 770 |
Ethyl butyrate | 105-54-4 | fruity juicy fruit pineapple cognac | 776 | 776 |
Butyl acetate | 123-86-4 | ethereal solvent fruity banana | 815 | 813 |
Ethyl 2-methyl butanoate | 7452-79-1 | sharp sweet green apple fruity | 892 | 893 |
Propyl butyrate | 105-66-8 | fruity sweet apricot pineapple rancid sweaty | 898 | 900 |
Butyl propionate | 590-01-2 | earthy sweet weak rose | 910 | 910 |
Prenyl acetate | 1191-16-8 | sweet fresh banana fruity jasmin ripe heliotrope balsam | 921 | 923 |
Methyl hexanoate | 106-70-7 | ethereal fruity pineapple apricot strawberry tropical fruit banana bacon | 926 | 938 |
Butyl butyrate | 109-21-7 | fruity banana pineapple green cherry tropical fruit ripe fruit juicy fruit | 996 | 993 |
Isobutyl 2-methylbutyrate | 2445-67-2 | sweet fruity | 1002 | 1002 |
Leaf acetate | 3681-71-8 | fresh green sweet fruity banana apple grassy | 1004 | 1005 |
Hexyl acetate | 142-92-7 | fruity green apple banana sweet | 1013 | 1012 |
Butyl 2-methyl butyrate | 15706-73-7 | fruity tropical green ethereal herbal celery cocoa jammy peach grassy | 1044 | 1047 |
Isoamyl butyrate | 106-27-4 | fruity green apricot pear banana | 1061 | 1059 |
Amyl butyrate | 540-18-1 | sweet fruity banana pineapple cherry tropical | 1094 | 1091 |
Heptyl acetate | 112-06-1 | fresh green rum ripe fruit pear apricot woody | 1111 | 1110 |
Benzyl acetate | 140-11-4 | sweet floral fruity jasmin fresh | 1167 | 1172 |
Butyl hexanoate | 626-82-4 | fruity pineapple berry apple juicy green winey waxy cognac soapy | 1191 | 1189 |
Hexyl 2-methyl butyrate | 10032-15-2 | green waxy fruity apple spicy tropical | 1237 | 1237 |
Isoamyl hexanoate | 2198-61-0 | fruity banana apple pineapple green | 1253 | 1254 |
Amyl hexanoate | 540-07-8 | sweet green fruity estry pineapple apple pear fatty | 1288 | 1289 |
Hexyl hexanoate | 6378-65-0 | herbal fresh cut grass vegetable fruity | 1386 | 1387 |
Aldehydes | ||||
Hexanal | 66-25-1 | fresh green fatty aldehydic grass leafy fruity sweaty | 802 | 802 |
(E)-2-Hexenal | 6728-26-3 | green banana aldehydic fatty cheesy | 850 | 850 |
Heptanal | 111-71-7 | fresh aldehydic fatty green herbal wine-lee ozone | 903 | 903 |
(E, E)-2,4-Hexadiena | 142-83-6 | sweet green spicy floral citrus | 912 | 914 |
Benzaldehyde | 100-52-7 | strong sharp sweet bitter almond cherry | 964 | 964 |
5-Methyl furfural | 620-02-0 | spice caramel maple | 964 | 969 |
Octanal | 124-13-0 | aldehydic waxy citrus orange peel green herbal fresh fatty | 1003 | 1004 |
Phenyl acetaldehyde | 122-78-1 | green sweet floral hyacinth clover honey cocoa | 1047 | 1046 |
(E)-2-Nonenal | 18829-56-6 | fatty green cucumber aldehydic citrus | 1062 | 1065 |
(E)-2-Octena | 2548-87-0 | fresh cucumber fatty green herbal banana waxy green leaf | 1061 | 1062 |
Decanal | 112-31-2 | sweet aldehydic waxy orange peel citrus floral | 1026 | 1024 |
(E)-2-Octena | 2548-87-0 | fresh cucumber fatty green herbal banana waxy green leaf | 1061 | 1062 |
Ketones | ||||
Methyl heptenone | 110-93-0 | citrus green musty lemongrass apple | 986 | 986 |
2-Nonanone | 821-55-6 | fresh sweet green weedy earthy herbal | 1091 | 1091 |
Geranyl acetone | 689-67-8 | fresh rose leaf floral green magnolia aldehydic fruity | 1451 | 1456 |
Others | ||||
Styrene | 100-42-5 | sweet balsam floral plastic | 890 | 895 |
(Z)-2-Heptenal | 57266-86-1 | grass | 960 | 963 |
p-isopropyl toluene | 99-87-6 | fresh citrus terpene woody spice | 1029 | 1028 |
Estragole | 140-67-0 | sweet sassafrass anise spice green herbal fennel | 1199 | 1199 |
Alpha-curcumene | 644-30-4 | herbal | 1486 | 1486 |
(E)-Beta-farnesene | 18794-84-8 | woody citrus herbal sweet | 1456 | 1456 |
(Z, E)-Alpha-farnesene | 26560-14-5 | NF | 1491 | 1489 |
Alpha-farnesene | 502-61-4 | citrus herbal lavender bergamot myrrh neroli green | 1507 | 1506 |
Beta-bisabolene | 495-61-4 | balsamic woody | 1512 | 1510 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Yin, Y.; Li, Y.; Jiang, Y.; Hu, X.; Yi, J. Chemometric Classification of Apple Cultivars Based on Physicochemical Properties: Raw Material Selection for Processing Applications. Foods 2023, 12, 3095. https://doi.org/10.3390/foods12163095
Zhang M, Yin Y, Li Y, Jiang Y, Hu X, Yi J. Chemometric Classification of Apple Cultivars Based on Physicochemical Properties: Raw Material Selection for Processing Applications. Foods. 2023; 12(16):3095. https://doi.org/10.3390/foods12163095
Chicago/Turabian StyleZhang, Maiqi, Yihao Yin, Yantong Li, Yongli Jiang, Xiaosong Hu, and Junjie Yi. 2023. "Chemometric Classification of Apple Cultivars Based on Physicochemical Properties: Raw Material Selection for Processing Applications" Foods 12, no. 16: 3095. https://doi.org/10.3390/foods12163095
APA StyleZhang, M., Yin, Y., Li, Y., Jiang, Y., Hu, X., & Yi, J. (2023). Chemometric Classification of Apple Cultivars Based on Physicochemical Properties: Raw Material Selection for Processing Applications. Foods, 12(16), 3095. https://doi.org/10.3390/foods12163095