Antibacterial Activity of Hexanol Vapor In Vitro and on the Surface of Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Exposure Test of Microorganisms on an Agar Medium
2.2. Exposure Test for Vegetables
2.3. Colorimetric Measurement of Cabbage Exposed to 1-Hexanol
2.4. Statistical Analysis
3. Results
3.1. Sensitivity of Food-Related Bacteria to Hexanol Isomer Vapor
3.2. Effect of 1-Hexanol Vapor on the Viable Counts in Vegetables
3.3. Changes in the Viable Counts of Cabbage under Storage with 1-Hexanol Vapor
3.4. Effect of 1-Hexanol on the Colorimetric Measurements of Cabbage
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Perumal, A.B.; Huang, L.; Nambiar, R.B.; He, Y.; Li, X.; Sellamuthu, P.S. Application of essential oils in packaging films for the preservation of fruits and vegetables: A review. Food Chem. 2022, 375, 131810. [Google Scholar] [CrossRef]
- Bolouri, P.; Salami, R.; Kouhi, S.; Kordi, M.; Asgari Lajayer, B.; Hadian, J.; Astatkie, T. Applications of essential oils and plant extracts in different industries. Molecules 2022, 27, 8999. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; Cozzolino, R.; Martignetti, A.; Malorni, L.; d’Acierno, A.; De Feo, V.; da Cruz, A.G.; Nazzaro, F. Biochemical composition and antioxidant activity of three extra virgin olive oils from the Irpinia Province, Southern Italy. Food Sci. Nutr. 2019, 7, 3233–3243. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.C.; Campos, G.; Pinto, E.; Oliveira, A.S.; Almeida, A.; de Pinho, P.G.; Alves, G.; Silva, L.R. Essential and non-essential elements, and volatile organic compounds for the discrimination of twenty-three sweet cherry cultivars from Fundão, Portugal. Food Chem. 2022, 367, 130503. [Google Scholar] [CrossRef] [PubMed]
- Lei, G.; Song, C.; Wen, X.; Gao, G.; Qi, Y. Chemical diversity and potential target network of woody peony flower essential oil from eleven representative cultivars (Paeonia × suffruticosa Andr.). Molecules 2022, 27, 2829. [Google Scholar] [CrossRef]
- Rasheed, H.M.; Khan, T.; Wahid, F.; Khan, R.; Shah, A.J. Chemical composition and vascular and intestinal smooth muscle relaxant effects of the essential oil from Psidium guajava Fruit. Pharm. Biol. 2016, 54, 2679–2684. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Z.; Li, H.; Hou, T.; Zhao, Y.; Li, H. Effects of ethanol, activated carbon, and activated kaolin on Perilla Seed oil: Volatile organic compounds, physicochemical characteristics, and fatty acid composition. J. Food Sci. 2021, 86, 4393–4404. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, L.; Tang, X.; Peng, L.; Li, X.; Zhao, G.; Zhong, L. Chemical composition, antimicrobial and antioxidant activities of the flower volatile oils of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum cymosum. Molecules 2018, 23, 182. [Google Scholar] [CrossRef]
- Wintola, O.A.; Olajuyigbe, A.A.; Afolayan, A.J.; Coopoosamy, R.M.; Olajuyigbe, O.O. Chemical composition, antioxidant activities and antibacterial activities of essential oil from Erythrina caffra Thunb. Growing in South Africa. Heliyon 2021, 7, e07244. [Google Scholar] [CrossRef] [PubMed]
- Ingram, L.O.; Vreeland, N.S. Differential effects of ethanol and hexanol on the Escherichia coli cell envelope. J. Bacteriol. 1980, 144, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Sheu, C.W.; Freese, E. Lipopolysaccharide layer protection of Gram-negative bacteria against inhibition by long-chain fatty acids. J. Bacteriol. 1973, 115, 869–875. [Google Scholar] [CrossRef]
- Muroi, H.; Kubo, A.; Kubo, I. Antimicrobial activity of cashew apple flavor compounds. J. Agric. Food Chem. 1993, 41, 1106–1109. [Google Scholar] [CrossRef]
- Kabelitz, N.; Santos, P.M.; Heipieper, H.J. Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus. FEMS Microbiol. Lett. 2003, 220, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Kubo, I.; Muroi, H.; Masaki, H.; Kubo, A. Antibacterial activity of long-chain alcohols: The role of hydrophobic alkyl groups. Bioorganic Med. Chem. Lett. 1993, 3, 1305–1308. [Google Scholar] [CrossRef]
- Kubo, I.; Muroi, H.; Kubo, A. Antibacterial activity of long-chain alcohols against Streptococcus mutans. J. Agric. Food Chem. 1993, 41, 2447–2450. [Google Scholar] [CrossRef]
- Gurtler, J.B.; Garner, C.M. A review of essential oils as antimicrobials in foods with special emphasis on fresh produce. J. Food Prot. 2022, 85, 1300–1319. [Google Scholar] [CrossRef]
- Pint, L.; Tapia-Rodríguez, M.R.; Baruzzi, F.; Ayala-Zevala, J.F. Plant antimicrobials for food quality and safety: Recent views and future challenges. Foods 2023, 12, 2315. [Google Scholar] [CrossRef]
- Laird, K.; Phillips, C.; Phase, V. A potential future use for essential oils as antimicrobials?: Essential oil vapours and their antimicrobial activity. Lett. Appl. Microbiol. 2012, 54, 169–174. [Google Scholar] [CrossRef]
- Goñi, P.; López, P.; Sánchez, C.; Gómez-Lus, R.; Becerril, R.; Nerín, C. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chem. 2009, 116, 982–989. [Google Scholar] [CrossRef]
- Li, R.; Hu, H.-B.; Li, X.-F.; Zhang, P.; Xu, Y.-K.; Yang, J.-J.; Wang, Y.-F. Essential oils composition and bioactivities of two species leaves used as packaging materials in Xishuangbanna, China. Food Control 2015, 51, 9–14. [Google Scholar] [CrossRef]
- Horinouchi, T.; Maeda, T.; Furusawa, C. Understanding and engineering alcohol-tolerant bacteria using OMICS technology. World J. Microbiol. Biotechnol. 2018, 34, 157. [Google Scholar] [CrossRef] [PubMed]
- Ingram, L.O. Adaptation of membrane lipids to alcohols. J. Bacteriol. 1976, 125, 670–678. [Google Scholar] [CrossRef] [PubMed]
- Horne, J.E.; Brockwell, D.J.; Radford, S.E. Role of the lipid bilayer in outer membrane protein folding in Gram-negative bacteria. J. Biol. Chem. 2020, 295, 10340–10367. [Google Scholar] [CrossRef]
- Kubo, A.; Lunde, C.S.; Kubo, I. Antimicrobial activity of the olive oil flavor compounds. J. Agric. Food Chem. 1995, 43, 1629–1633. [Google Scholar] [CrossRef]
- Mates, A. The effect of alcohols on growth and lipase formation by Staphylococcus aureus. J. Appl. Bacteriol. 1974, 37, 1–6. [Google Scholar] [CrossRef]
- Inouye, S.; Abe, S.; Yamaguchi, H.; Asakura, M. Comparative study of antimicrobial and cytotoxic effects of selected essential oils by gaseous and solution contacts. Int. J. Aromather. 2003, 13, 33–41. [Google Scholar] [CrossRef]
- Kõiv, V.; Adamberg, K.; Adamberg, S.; Sumeri, I.; Kasvandik, S.; Kisand, V.; Maiväli, Ü.; Tenson, T. Microbiome of root vegetables—A source of gluten-degrading bacteria. Appl. Microbiol. Biotechnol. 2020, 104, 8871–8885. [Google Scholar] [CrossRef]
- Wassermann, B.; Rybakova, D.; Müller, C.; Berg, G. Harnessing the microbiomes of brassica vegetables for health issues. Sci. Rep. 2017, 7, 17649. [Google Scholar] [CrossRef]
- Sperber, W.H. Introduction to the microbiological spoilage of foods and beverages. In Compendium of the Microbiological Spoilage of Foods and Beverages; Sperber, W., Doyle, M., Eds.; Food Microbiology and Food Safety; Springer: New York, NY, USA, 2009; pp. 1–40. [Google Scholar]
- Solymosi, K.; Mysliwa-Kurdziel, B. Chlorophylls and their derivatives used in food industry and medicine. Mini-Rev. Med. Chem. 2017, 17, 1194–1222. [Google Scholar] [CrossRef]
Concentration (ppm) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1-Hexanol | 2-Hexanol | 3-Hexanol | ||||||||||
Strain | 300 | 150 | 75 | 38 | 300 | 150 | 75 | 38 | 300 | 150 | 75 | 38 |
Escherichia coli IAM 1264 | ++ | + | − | − | − | − | − | − | − | − | − | − |
Pseudomonas aeruginosa ATCC 10145 | ++ | + | − | − | − | − | − | − | − | − | − | − |
Salmonella enterica Enteritidis IFO 3313 | ++ | ++ | − | − | − | − | − | − | − | − | − | − |
Bacillus subtilis ATCC 11774 | − | − | − | − | − | − | − | − | − | − | − | − |
Lactiplantibacillus plantarum ATCC 8014 | − | − | − | − | − | − | − | − | − | − | − | − |
Listeria monocytogenes ATCC 15313 | − | − | − | − | − | − | − | − | − | − | − | − |
Staphylococcus aureus ATCC 12600 | − | − | − | − | − | − | − | − | − | − | − | − |
L | a | b | |
---|---|---|---|
before storage | 70.2 ± 7.0 a | −10.95 ± 2.12 a | 21.77 ± 1.11 ab |
0 ppm | 76.4 ± 6.2 a | −12.17 ± 1.80 a | 23.95 ± 1.03 a |
25 ppm | 73.1 ± 4.9 a | −5.42 ± 1.50 b | 19.14 ± 1.70 ab |
100 ppm | 70.9 ± 5.6 a | −4.90 ± 1.81 b | 18.25 ± 1.79 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyoui, D.; Saito, Y.; Takahashi, A.; Tanaka, G.; Yoshida, R.; Maegaki, Y.; Kawarai, T.; Ogihara, H.; Suzuki, C. Antibacterial Activity of Hexanol Vapor In Vitro and on the Surface of Vegetables. Foods 2023, 12, 3097. https://doi.org/10.3390/foods12163097
Kyoui D, Saito Y, Takahashi A, Tanaka G, Yoshida R, Maegaki Y, Kawarai T, Ogihara H, Suzuki C. Antibacterial Activity of Hexanol Vapor In Vitro and on the Surface of Vegetables. Foods. 2023; 12(16):3097. https://doi.org/10.3390/foods12163097
Chicago/Turabian StyleKyoui, Daisuke, Yuka Saito, Akifumi Takahashi, Gou Tanaka, Runa Yoshida, Yoshiyuki Maegaki, Taketo Kawarai, Hirokazu Ogihara, and Chise Suzuki. 2023. "Antibacterial Activity of Hexanol Vapor In Vitro and on the Surface of Vegetables" Foods 12, no. 16: 3097. https://doi.org/10.3390/foods12163097
APA StyleKyoui, D., Saito, Y., Takahashi, A., Tanaka, G., Yoshida, R., Maegaki, Y., Kawarai, T., Ogihara, H., & Suzuki, C. (2023). Antibacterial Activity of Hexanol Vapor In Vitro and on the Surface of Vegetables. Foods, 12(16), 3097. https://doi.org/10.3390/foods12163097