Quantitative Analysis of Bioactive Compounds in Commercial Teas: Profiling Catechin Alkaloids, Phenolic Acids, and Flavonols Using Targeted Statistical Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Tea Sample Extraction
2.3. Development of UHPLC-DAD Analytical Method
2.4. Statistical Analysis
3. Results
3.1. Development and Validation of a UHPLC-DAD Analytical Method
3.2. Comparison of Alkaloids Levels in Six Different Types of Chinese Teas
3.3. Dynamic Changes in Catechins in Six Different Types of Tea
3.4. Dynamics Changes in Flavonols in Six Different Types of Teas
3.5. Dynamics Changes in Phenolic Acids in Six Different Types of Tea
3.6. Identification of Potential Biomarkers for Tea Classification Using Random Forests
3.7. Principal Component Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Farag, M.A.; Elmetwally, F.; Elghanam, R.; Kamal, N.; Hellal, K.; Hamezah, H.S.; Zhao, C.; Mediani, A. Metabolomics in tea products; a compile of applications for enhancing agricultural traits and quality control analysis of Camellia sinensis. Food Chem. 2023, 404 Pt B, 134628. [Google Scholar] [CrossRef]
- Tang, G.Y.; Meng, X.; Gan, R.Y.; Zhao, C.N.; Liu, Q.; Feng, Y.B.; Li, S.; Wei, X.-L.; Atanasov, A.G.; Corke, H.; et al. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int. J. Mol. Sci. 2019, 20, 6196. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kan, Z.; Thompson, H.J.; Ling, T.; Ho, C.T.; Li, D.; Wan, X. Impact of Six Typical Processing Methods on the Chemical Composition of Tea Leaves Using a Single Camellia sinensis Cultivar, Longjing 43. J. Agric. Food Chem. 2019, 67, 5423–5436. [Google Scholar] [CrossRef]
- Truong, V.L.; Jeong, W.S. Cellular Defensive Mechanisms of Tea Polyphenols: Structure-Activity Relationship. Int. J. Mol. Sci. 2021, 22, 9109. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yu, F.; Qin, L.; Zhang, N.; Cao, Q.; Schwab, W.; Li, D.; Song, C. Dynamic change in amino acids, catechins, alkaloids, and gallic acid in six types of tea processed from the same batch of fresh tea (Camellia sinensis L.) leaves. J. Food Compos. Anal. 2019, 77, 28–38. [Google Scholar] [CrossRef]
- Chen, S.; Li, M.; Zheng, G.; Wang, T.; Lin, J.; Wang, S.; Wang, X.; Chao, Q.; Cao, S.; Yang, Z.; et al. Metabolite Profiling of 14 Wuyi Rock Tea Cultivars Using UPLC-QTOF MS and UPLC-QqQ MS Combined with Chemometrics. Molecules 2018, 23, 104. [Google Scholar] [CrossRef] [PubMed]
- Rahim, A.A.; Nofrizal, S.; Saad, B. Rapid tea catechins and caffeine determination by HPLC using microwave-assisted extraction and silica monolithic column. Food Chem. 2014, 147, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Stodt, U.; Engelhardt, U.H. Progress in the analysis of selected tea constituents over the past 20 years. Food Res. Int. 2013, 53, 636–648. [Google Scholar] [CrossRef]
- Chen, G.; Yuan, Q.; Saeeduddin, M.; Ou, S.; Zeng, X.; Ye, H. Recent advances in tea polysaccharides: Extraction, purification, physicochemical characterization and bioactivities. Carbohydr. Polym. 2016, 153, 663–678. [Google Scholar] [CrossRef]
- Shitandi, A.A. Chapter 16—Tea Processing and Its Impact on Catechins, Theaflavin and Thearubigin Formation; Elsevier Inc.: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Tang, C.; Guo, T.; Zhang, Z.; Yang, P.; Song, H. Rapid visualized characterization of phenolic taste compounds in tea extract by high-performance thin-layer chromatography coupled to desorption electrospray ionization mass spectrometry. Food Chem. 2021, 355, 129555. [Google Scholar] [CrossRef]
- Zhao, F.; Qian, J.; Liu, H.; Wang, C.; Wang, X.; Wu, W.; Wang, D.; Cai, C.; Lin, Y. Quantification, identification and comparison of oligopeptides on five tea categories with different fermentation degree by Kjeldahl method and ultra-high performance liquid chromatography coupled with quadrupole-orbitrap ultra-high resolution mass spectrometry. Food Chem. 2022, 378, 132130. [Google Scholar] [PubMed]
- Shirai, N. Organic Acid Analysis in Green Tea Leaves Using High-performance Liquid Chromatography. J. Oleo Sci. 2022, 71, 1413–1419. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhao, H.; Hu, Y.; Ren, D.; Yi, L. Comprehensive analysis of chemical constituents of tea flowers by ultra-performance liquid chromatography-high resolution mass spectrometry combined with integrated filtering strategy. Chin. J. Chromatogr. 2022, 40, 242–252. [Google Scholar] [CrossRef]
- Keuth, O.; Humpf, H.U.; Furst, P. Determination of pyrrolizidine alkaloids in tea and honey with automated SPE clean-up and ultra-performance liquid chromatography/tandem mass spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2022, 39, 149–157. [Google Scholar] [CrossRef]
- Li, H.; Zhong, Q.; Wang, M.; Luo, F.; Wang, X.; Zhou, L.; Zhang, X. Residue degradation, transfer and risk assessment of pyriproxyfen and its metabolites from tea garden to cup by ultra performance liquid chromatography tandem mass spectrometry. J. Sci. Food Agric. 2022, 102, 3983–3993. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Zhang, L.; Granvogl, M.; Ho, C.T.; Wan, X. Flavor of tea (Camellia sinensis): A review on odorants and analytical techniques. Compr. Rev. Food Sci. Food Saf. 2022, 21, 3867–3909. [Google Scholar] [CrossRef]
- Seo, C.S.; Song, K.H. Phytochemical Characterization for Quality Control of Phyllostachys pubescens Leaves Using High-Performance Liquid Chromatography Coupled with Diode Array Detector and Tandem Mass Detector. Plants 2021, 11, 50. [Google Scholar] [CrossRef] [PubMed]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2001, 2, 18–22. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Yélamos, I.; Escudero, G.; Graells, M.; Puigjaner, L. Simultaneous fault diagnosis in chemical plants using support Vector Machines. Comput. Aided Chem. Eng. 2007, 24, 1253–1258. [Google Scholar]
- Peng, T.Q.; Yin, X.L.; Gu, H.W.; Sun, W.; Ding, B.; Hu, X.C.; Ma, L.-A.; Wei, S.-D.; Liu, Z.; Ye, S.-Y. HPLC-DAD fingerprints combined with chemometric techniques for the authentication of plucking seasons of Laoshan green tea. Food Chem. 2021, 347, 128959. [Google Scholar] [CrossRef] [PubMed]
- Boros, K.; Jedlinszki, N.; Csupor, D. Theanine and Caffeine Content of Infusions Prepared from Commercial Tea Samples. Pharmacogn. Mag. 2016, 12, 75–79. [Google Scholar] [PubMed]
- Bobkova, A.; Demianova, A.; Belej, L.; Harangozo, L.; Bobko, M.; Jurcaga, L.; Poláková, K.; Božiková, M.; Bilčík, M.; Árvay, J. Detection of Changes in Total Antioxidant Capacity, the Content of Polyphenols, Caffeine, and Heavy Metals of Teas in Relation to Their Origin and Fermentation. Foods 2021, 10, 1821. [Google Scholar] [CrossRef] [PubMed]
- Hajiaghaalipour, F.; Sanusi, J.; Kanthimathi, M.S. Temperature and Time of Steeping Affect the Antioxidant Properties of White, Green, and Black Tea Infusions. J. Food Sci. 2016, 81, H246–H254. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, J.; Li, J.; Zhou, X.; Xiao, Y.; Liao, Y.; Tang, J.; Dong, F.; Zeng, L. Effects of temperature and light on quality-related metabolites in tea [Camellia sinensis (L.) Kuntze] leaves. Food Res. Int. 2022, 161, 111882. [Google Scholar] [CrossRef]
- Ren, Z.; Chen, Z.; Zhang, Y.; Lin, X.; Weng, W.; Liu, G.; Li, B. Characteristics of Pickering emulsions stabilized by tea water-insoluble protein nanoparticles at different pH values—ScienceDirect. Food Chem. 2021, 375, 131795. [Google Scholar] [CrossRef] [PubMed]
- Wakamatsu, M.; Yamanouchi, H.; Sahara, H.; Iwanaga, T.; Kuroda, R.; Yamamoto, A.; Minami, Y.; Sekijima, M.; Yamada, K.; Kajiya, K. Catechin and caffeine contents in green tea at different harvest periods and their metabolism in miniature swine. Food Sci. Nutr. 2019, 7, 2769–2778. [Google Scholar] [CrossRef] [PubMed]
- Musial, C.; Kuban-Jankowska, A.; Gorska-Ponikowska, M. Beneficial Properties of Green Tea Catechins. Int. J. Mol. Sci. 2020, 21, 1744. [Google Scholar] [CrossRef]
- Farhan, M. Green Tea Catechins: Nature’s Way of Preventing and Treating Cancer. Int. J. Mol. Sci. 2022, 23, 10713. [Google Scholar] [CrossRef]
- Tan, J.; Dai, W.; Lu, M.; Lv, H.; Guo, L.; Zhang, Y.; Zhu, Y.; Peng, Q.; Lin, Z. Study of the dynamic changes in the non-volatile chemical constituents of black tea during fermentation processing by a non-targeted metabolomics approach. Food Res. Int. 2016, 79, 106–113. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Cui, Q.; Liu, Y.; Ning, J.; Zhang, Z. Qualitative and quantitative quality evaluation of black tea fermentation through noncontact chemical imaging. J. Food Compos. Anal. 2021, 106, 104300. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, Y.; An, T.; Liu, Z.; Dong, C. Quantitative Prediction and Visualization of Key Physical and Chemical Components in Black Tea Fermentation Using Hyperspectral Imaging. LWT-Food Sci. Technol. 2021, 141, 110975. [Google Scholar] [CrossRef]
- Li, J.; Wu, S.; Yu, Q.; Wang, J.; Deng, Y.; Hua, J.; Zhou, Q.; Yuan, H.; Jiang, Y. Chemical profile of a novel ripened Pu-erh tea and its metabolic conversion during pile fermentation. Food Chem. 2022, 378, 132126. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.Y.; Shi, M.; Nie, Y.; Zhao, Y.; Ye, J.H.; Liang, Y.R. Differential behaviors of tea catechins under thermal processing: Formation of non-enzymatic oligomers. Food Chem. 2016, 196, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Popiolek-Kalisz, J.; Fornal, E. The Impact of Flavonols on Cardiovascular Risk. Nutrients 2022, 14, 1973. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. Nutrients 2020, 12, 457. [Google Scholar] [CrossRef]
- Hazafa, A.; Rehman, K.U.; Jahan, N.; Jabeen, Z. The Role of Polyphenol (Flavonoids) Compounds in the Treatment of Cancer Cells. Nutr. Cancer 2020, 72, 386–397. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Yao, Y.; Hua, J.; Zhou, Q.; Jiang, Y.; Deng, Y.; Yang, Y.; Wang, J.; Yuan, H.; et al. Phytochemical comparison of different tea (Camellia sinensis) cultivars and its association with sensory quality of finished tea. LWT-Food Sci. Technol. 2020, 117, 108595. [Google Scholar] [CrossRef]
- Selim, D.A.; Shawky, E.; El-Khair, R. Identification of the discriminatory chemical markers of different grades of Sri Lankan white, green and black tea (Camellia sinenesis L.) via metabolomics combined to chemometrics. J. Food Compos. Anal. 2022, 109, 104473. [Google Scholar] [CrossRef]
- Kongpichitchoke, T.; Chiu, M.T.; Huang, T.C.; Hsu, J.L. Gallic Acid Content in Taiwanese Teas at Different Degrees of Fermentation and Its Antioxidant Activity by Inhibiting PKCdelta Activation: In Vitro and in Silico Studies. Molecules 2016, 21, 1346. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.Z.; Xu, W.C.; Chen, W.J.; Wu, S.; Huang, Y.Y. Metabolite and Microbiome Profilings of Pickled Tea Elucidate the Role of Anaerobic Fermentation in Promoting High Levels of Gallic Acid Accumulation. J. Agric. Food Chem. 2020, 68, 13751–13759. [Google Scholar] [CrossRef] [PubMed]
- Dankowska, A.; Kowalewski, W. Tea types classification with data fusion of UV-Vis, synchronous fluorescence and NIR spectroscopies and chemometric analysis. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 211, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Yan, Y.; Li, J.; Chen, X.; Jiang, H. Classification of Tea Quality Levels Using Near-Infrared Spectroscopy Based on CLPSO-SVM. Foods 2022, 11, 1658. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Watson, D.G.; Johnston, B.F.; Clark, R.L.; Edrada-Ebel, R.; Elseheri, W. A chemometric study of chromatograms of tea extracts by correlation optimization warping in conjunction with PCA, support vector machines and random forest data modeling. Anal. Chim. Acta 2009, 642, 257–265. [Google Scholar] [CrossRef]
- Xu, M.; Wang, J.; Zhu, L. The qualitative and quantitative assessment of tea quality based on E-nose, E-tongue and E-eye combined with chemometrics. Food Chem. 2019, 289, 482–489. [Google Scholar] [CrossRef]
Standard | Calibration Equation | R a | LR b | intraRSD c | interRSD d | LOD e | REC f |
---|---|---|---|---|---|---|---|
GAI | y = 19681x + 5061.6 | 0.9998 | 0.17–100 | 0.16 | 1.57 | 0.05 | 99.26 |
GAL | y = 17021x − 5572.6 | 0.9998 | 0.10–100 | 0.26 | 0.67 | 0.03 | 100.80 |
CAF | y = 15953x − 948.43 | 0.9999 | 0.63–100 | 0.21 | 2.37 | 0.19 | 97.44 |
THE | y = 1054.4x + 930.46 | 0.9991 | 0.33–100 | 0.31 | 0.52 | 0.10 | 106.25 |
EPI | y = 3799.5x + 759.99 | 0.9999 | 1.17–100 | 0.15 | 0.83 | 0.35 | 101.73 |
CAT | y = 8791.6x − 2528.8 | 0.9999 | 0.60–100 | 0.13 | 0.17 | 0.18 | 99.20 |
CHL | y = 14512x − 426.08 | 0.9999 | 0.50–100 | 0.13 | 0.42 | 0.15 | 95.92 |
THO | y = 20872x + 4110 | 0.9999 | 0.33–100 | 0.13 | 1.28 | 0.10 | 98.01 |
CAA | y = 12547x + 1496 | 0.9997 | 0.43–100 | 0.13 | 1.29 | 0.13 | 99.71 |
EPC | y = 4710.3x + 831.01 | 0.9998 | 1.07–100 | 0.10 | 0.86 | 0.32 | 101.12 |
EPG | y = 7230.3x − 3827.3 | 0.9998 | 0.87–100 | 0.15 | 0.47 | 0.26 | 100.01 |
COU | y = 16970x + 121844 | 0.9994 | 0.63–100 | 0.17 | 0.32 | 0.19 | 93.61 |
GAO | y = 7167.4x − 1372.7 | 0.9995 | 0.43–100 | 0.15 | 0.68 | 0.13 | 94.48 |
FER | y = 17762x + 4688.7 | 0.9999 | 1.00–100 | 0.08 | 0.44 | 0.30 | 102.63 |
SIN | y = 6074.3x + 1169.5 | 0.9999 | 0.37–100 | 0.06 | 1.06 | 0.11 | 95.24 |
EPA | y = 10336x − 2607 | 0.9999 | 1.40–100 | 0.06 | 0.68 | 0.42 | 105.92 |
RUT | y = 2781.4x − 1781.5 | 0.9992 | 0.40–100 | 0.08 | 3.31 | 0.12 | 100.17 |
MYR | y = 4158.4x − 3148.4 | 0.9993 | 0.80–100 | 0.01 | 2.53 | 0.24 | 96.74 |
QUE | y = 4763.1x − 2477.3 | 0.9997 | 9.10–100 | 0.01 | 3.71 | 2.73 | 96.22 |
KAE | y = 7795.4x + 5093.3 | 0.9994 | 2.17–100 | 0.01 | 2.87 | 0.65 | 100.95 |
Alkaloid | GT (n = 29) | YT (n = 7) | DT (n = 14) | WT (n = 12) | OT (n = 42) | BT (n = 17) | F Value | p Value |
---|---|---|---|---|---|---|---|---|
Caffine | 53.45 ± 22.07 (0–129.8) | 39.40 ± 14.49 (13.90–58.66) | 35.94 ± 25.26 (0–103.07) | 27.85 ± 23.14 (0.01–63.95) a | 25.98 ± 23.49 (0–147.47) a | 43.43 ± 29.42 (0–143.89) | 3.462 | 0.006 |
Percentage of total alkaloids | 97.30% | 93.84% | 95.45% | 96.01% | 98.03% | 97.21% | ||
Theophylline | 0.05 ± 0.05 (0–0.17) | 0.07 ± 0.15 (0–0.40) | 0.43 ± 0.60 (0–1.63) a, b | 0.07 ± 0.10 (0–0.34) c | 0.10 ± 0.22 (0–1.25) c | 0.06 ± 0.11 (0–0.35) c | 5.088 | 0.000 |
Percentage of total alkaloids | 0.10% | 0.17% | 1.15% | 0.23% | 0.29% | 0.14% | ||
Theobromine | 1.43 ± 0.69 (0.01–2.50) | 2.52 ± 1.67 (0.22–4.75) a | 1.28 ± 0.69 (0.25–2.28) b | 1.09 ± 0.91 (0.46–3.08) b | 0.57 ± 0.46 (0.09–2.36) a, b, c | 1.19 ± 0.80 (0.32–2.79) b | 10.67 | 0.000 |
Percentage of total alkaloids | 2.60% | 6.00% | 3.40% | 3.77% | 1.68% | 2.66% |
Catechin | GT (n = 29) | YT (n = 7) | DT (n = 14) | WT (n = 12) | OT (n = 42) | BT (n = 17) | F Value | p Value |
---|---|---|---|---|---|---|---|---|
Gallocatechin | 1.55 ± 1.10 (0–4.26) | 0.61 ± 0.68 (0–2.00) | 0.59 ± 0.29 (0–1.22) a | 0.42 ± 0.33 (0–0.98) a | 2.31 ± 1.17 (0–4.95) a, b, c, d | 0.14 ± 0.21 (0–0.64) a, e | 20.70 | 0.000 |
Percentage of total catechins | 1.10% | 0.48% | 6.62% | 0.39% | 2.76% | 0.47% | ||
Epicatechin gallate | 22.01 ± 18.94 (0.84–79.73) | 14.08 ± 10.57 (4.16–30.84) | 1.36 ± 1.20 (0–4.26) a | 26.36 ± 32.27 (0.37–95.89) c | 20.07 ± 14.00 (0–50.19) c | 2.50 ± 2.73 (0–8.7) a, d, e | 6.458 | 0.000 |
Percentage of total catechins | 15.53% | 10.98% | 15.20% | 24.66% | 23.95% | 8.18% | ||
Epicatechin | 4.50 ± 2.97 (0.67–14.36) | 7.02 ± 3.99 (1.14–13.04) | 1.14 ± 0.79 (0–2.37) | 26.54 ± 36.68 (0.28–84.48) a, b, c | 2.62 ± 1.49 (0–6.95) d | 0.68 ± 0.89 (0.06–3.40) d | 9.478 | 0.000 |
Percentage of total catechins | 3.18% | 5.47% | 12.73% | 24.82% | 3.13% | 2.22% | ||
Epigallocatechin gallate | 83.90 ± 31.65 (46.11–158.61) | 82.38 ± 14.08 (65.42–107.9) | 3.57 ± 5.04 (0.11–18.87) a, b | 29.33 ± 30.13 (0.13–78.83) a, b | 46.43 ± 19.33 (1.87–86.42) a, b, c | 23.85 ± 45.66 (0.05–153.58) a, b | 23.42 | 0.000 |
Percentage of total catechins | 59.21% | 64.21% | 39.88% | 27.43% | 55.41% | 78.10% | ||
Gallocatechin gallate | 1.16 ± 0.77 (0.14–2.96) | 1.15 ± 0.75 (0.32–2.56) | 0.32 ± 0.27 (0.03–1.04) a | 0.25 ± 0.21 (0–0.55) a | 0.89 ± 0.94 (0–3.50) | 0.10 ± 0.13 (0.01–0.58) a, b, e | 7.591 | 0.000 |
Percentage of total catechins | 0.82% | 0.90% | 3.62% | 0.23% | 1.06% | 0.33% | ||
Epicatechin gallate | 24.94 ± 8.42 (11.89–41.84) | 20.66 ± 4.02 (15.25–27.86) | 1.40 ± 1.12 (0.04–3.55) a, b | 18.29 ± 11.45 (3.07–38.27) c | 10.09 ± 7.44 (0.44–46.60) a, b, c, d | 2.30 ± 1.54 (0.34–4.84) a, b, d, e | 34.83 | 0.000 |
Percentage of total catechins | 17.60% | 16.10% | 15.64% | 17.11% | 12.04% | 7.53% | ||
Catechin | 3.65 ± 5.83 (0–22.11) | 2.39 ± 1.16 (0.78–3.95) | 0.57 ± 0.53 (0–1.41) | 5.72 ± 15.15 (0.07–53.33) | 1.37 ± 2.46 (0–15.31) | 0.97 ± 1.19 (0–3.22) | 1.809 | 0.117 |
Percentage of total catechins | 2.57% | 1.86% | 6.32% | 5.35% | 1.64% | 3.16% |
Flavonol | GT (n = 29) | YT (n = 7) | DT (n = 14) | WT (n = 12) | OT (n = 42) | BT (n = 17) | F Value | p Value |
---|---|---|---|---|---|---|---|---|
Rutin | 2.82 ± 1.49 (0.12–6.91) | 1.31 ± 1 (0.28–3.00) | 1.52 ± 1.21 (0.18–3.49) | 2.29 ± 1.89 (0.38–5.62) | 1.86 ± 2.43 (0.15–15.25) | 2.34 ± 1.25 (0.31–4.00) | 1.586 | 0.169 |
Percentage of total flavonols | 75.14% | 79.54% | 77.98% | 59.99% | 57.68% | 74.91% | ||
Myricetin | 0.67 ± 0.78 (0.01–3.74) | 0.29 ± 0.24 (0.01–0.66) | 0.24 ± 0.25 (0–0.68) | 1.46 ± 1.67 (0.04–4.76) | 1.22 ± 3.15 (0–14.95) | 0.59 ± 0.64 (0.05–2.22) | 0.958 | 0.446 |
Percentage of total flavonols | 17.99% | 17.30% | 12.30% | 38.24% | 37.98% | 18.76% | ||
Quercetrin | 0.19 ± 0.86 (0–4.66) | 0.02 ± 0.01 (0–0.03) | 0.13 ± 0.19 (0.01–0.55) | 0.06 ± 0.03 (0–0.10) | 0.06 ± 0.10 (0–0.66) | 0.11 ± 0.12 (0.01–0.50) | 0.372 | 0.866 |
Percentage of total flavonols | 5.00% | 1.12% | 6.78% | 1.45% | 2.00% | 3.47% | ||
Kampferol | 0.07 ± 0.08 (0–0.25) | 0.03 ± 0.03 (0.01–0.07) | 0.06 ± 0.11 (0–0.40) | 0.01 ± 0.01 (0–0.03) | 0.08 ± 0.08 (0–0.34) | 0.09 ± 0.12 (0.01–0.39) | 1.631 | 0.157 |
Percentage of total flavonols | 1.87% | 2.04% | 2.94% | 0.31% | 2.34% | 2.86% |
Phenolic Acids | GT (n = 29) | YT (n = 7) | DT (n = 14) | WT (n = 12) | OT (n = 42) | BT (n = 17) | F Value | p Value |
---|---|---|---|---|---|---|---|---|
Gallic acid | 0.99 ± 0.52 (0.28–2.51) | 1.20 ± 0.66 (0.39–2.03) | 4.12 ± 2.89 (1.03–11.57) a, b | 2.24 ± 0.87 (0.9–3.61) a, c | 1.12 ± 0.94 (0.07–3.71) c | 2.54 ± 0.91 (1.23–5.04) a, c, e | 16.62 | 0.000 |
Percentage of total phenolic acids | 24.59% | 21.95% | 92.72% | 10.12% | 46.18% | 38.70% | ||
Chlorogenic acid | 1.50 ± 4.60 (0–22.83) | 3.28 ± 2.61 (0.1–7.88) | 0.01 ± 0.03 (0–0.09) | 19.25 ± 34.50 (0–80.76) | 0.15 ± 0.24 (0–1.29) d | 2.79 ± 11.19 (0–46.2) | 5.352 | 0.000 |
Percentage of total phenolic acids | 37.10% | 59.93% | 0.29% | 86.79% | 6.26% | 42.42% | ||
ρ-coumaric acid | 0.15 ± 0.13 (0–0.46) | 0.09 ± 0.11 (0.01–0.32) | 0.08 ± 0.18 (0–0.66) | 0.12 ± 0.18 (0–0.63) | 0.14 ± 0.32 (0–1.64) | 0.80 ± 1.64 (0.03–4.97) | 3.179 | 0.010 |
Percentage of total flavonols | 3.82% | 1.55% | 1.70% | 0.54% | 5.63% | 12.23% | ||
Ferulic acid | 1.05 ± 2.93 (0–15.05) | 0.24 ± 0.35 (0.02–1.02) | 0.06 ± 0.05 (0.01–0.18) | 0.33 ± 0.34 (0.02–0.96) | 0.64 ± 0.52 (0–1.62) | 0.13 ± 0.13 (0–0.39) | 1.358 | 0.245 |
Percentage of total phenolic acids | 26.16% | 4.45% | 1.32% | 1.47% | 26.41% | 1.93% | ||
Sinapic acid | 0.34 ± 0.31 (0.03–1.34) | 0.66 ± 0.83 (0.2–2.5) | 0.18 ± 0.11 (0.04–0.4) | 0.24 ± 0.28 (0–0.88) | 0.37 ± 0.36 (0–1.32) | 0.31 ± 0.46 (0.02–1.88) | 1.741 | 0.131 |
Percentage of total phenolic acids | 8.34% | 12.12% | 3.96% | 1.08% | 15.52% | 4.72% | ||
Caffeic acid | nd | nd | nd | nd | nd | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Lai, L.; You, Y.; Gao, R.; Xiang, J.; Wang, G.; Yu, W. Quantitative Analysis of Bioactive Compounds in Commercial Teas: Profiling Catechin Alkaloids, Phenolic Acids, and Flavonols Using Targeted Statistical Approaches. Foods 2023, 12, 3098. https://doi.org/10.3390/foods12163098
Chen Y, Lai L, You Y, Gao R, Xiang J, Wang G, Yu W. Quantitative Analysis of Bioactive Compounds in Commercial Teas: Profiling Catechin Alkaloids, Phenolic Acids, and Flavonols Using Targeted Statistical Approaches. Foods. 2023; 12(16):3098. https://doi.org/10.3390/foods12163098
Chicago/Turabian StyleChen, Yuan, Lingling Lai, Youli You, Ruizhen Gao, Jiaxin Xiang, Guojun Wang, and Wenquan Yu. 2023. "Quantitative Analysis of Bioactive Compounds in Commercial Teas: Profiling Catechin Alkaloids, Phenolic Acids, and Flavonols Using Targeted Statistical Approaches" Foods 12, no. 16: 3098. https://doi.org/10.3390/foods12163098
APA StyleChen, Y., Lai, L., You, Y., Gao, R., Xiang, J., Wang, G., & Yu, W. (2023). Quantitative Analysis of Bioactive Compounds in Commercial Teas: Profiling Catechin Alkaloids, Phenolic Acids, and Flavonols Using Targeted Statistical Approaches. Foods, 12(16), 3098. https://doi.org/10.3390/foods12163098