The Effects of Genotype × Environment on Physicochemical and Sensory Properties and Differences of Volatile Organic Compounds of Three Rice Types (Oryza sativa L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rice Samples
2.2. Chemicals
2.3. Apparent Amylose Content
2.4. Protein Content
2.5. Gel Consistency
2.6. Alkali Spreading Value
2.7. Pasting Viscosity
2.8. Sensory Evaluation
2.9. Characteristic Volatile Organic Compounds
2.10. Statistical Analysis
3. Results
3.1. Genotype × Environment Effects on Physicochemical and Sensory Properties
3.2. Correlation Analysis
3.3. Principal Component Analysis
3.4. Volatile Organic Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, D.; Zhang, X.; He, F.; Chen, Y.; Li, R.; Yao, J.; Zhang, M.; Zheng, W.; Yu, G. Genetic Improvements in Rice Grain Quality: A Review of Elite Genes and Their Applications in Molecular Breeding. Agron. J. 2023, 13, 1375. [Google Scholar] [CrossRef]
- Jamieson, J.A.; Neufeld, A. Food sources of energy and nutrients among Canadian adults following a gluten-free diet. PeerJ 2020, 8, e9590. [Google Scholar] [CrossRef] [PubMed]
- Bairagi, S.; Gustafson, C.R.; Custodio, M.C.; Ynion, J.; Demont, M. What drives consumer demand for packaged rice? Evidence from South and Southeast Asia. Food Control 2021, 129, 108261. [Google Scholar] [CrossRef]
- Okpiaifo, G.; Durand-Morat, A.; West, G.H.; Nalley, L.L.; Nayga, R.M.; Wailes, E.J. Consumers’ preferences for sustainable rice practices in Nigeria. Glob. Food Secur. 2020, 24, 100345. [Google Scholar] [CrossRef]
- Aznan, A.; Viejo, C.G.; Pang, A.; Fuentes, S. Review of technology advances to assess rice quality traits and consumer perception. Food Res. Int. 2023, 172, 113105. [Google Scholar] [CrossRef]
- Ch, R.; Chevallier, O.; McCarron, P.; McGrath, T.F.; Wu, D.; Nguyen Doan Duy, L.; Kapil, A.P.; McBride, M.; Elliott, C.T. Metabolomic fingerprinting of volatile organic compounds for the geographical discrimination of rice samples from China, Vietnam and India. Food Chem. 2021, 334, 127553. [Google Scholar] [CrossRef]
- Mahattanatawee, K.; Rouseff, R.L. Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC-olfactometry and GCPFPD. Food Chem. 2014, 154, 1–6. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, Y.; Gu, Z.B.; Peng, Y.H.; Cheng, L.; Li, Z.F.; Li, C.M.; Chen, Z.G.; Hong, Y. Effects of different waxy rice varieties and their starch on the taste quality of zongzi. J. Cereal Sci. 2022, 108, 103571. [Google Scholar] [CrossRef]
- Tang, S.; Chen, W.; Liu, W.; Zhou, Q.; Zhang, H.; Wang, S. Open-field warming regulates the morphological structure, protein synthesis of grain and affects the appearance quality of rice. J. Cereal Sci. 2018, 84, 20–29. [Google Scholar] [CrossRef]
- Bao, J.; Kong, X.; Xie, J.; Xu, L. Analysis of genotypic and environmental effects on rice starch. 1. Apparent amylose content, pasting viscosity, and gel texture. J. Agric. Food Chem. 2004, 52, 6010–6016. [Google Scholar] [CrossRef]
- Wani, A.A.; Singh, P.; Shah, M.A.; Schweiggert-Weisz, U.; Gul, K.; Wani, I.A. Rice Starch Diversity: Effects on Structural, Morphological, Thermal, and Physicochemical Properties—A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 417–436. [Google Scholar] [CrossRef]
- Wang, L.; Xie, B.; Shi, J.; Xue, S.; Deng, Q.; Wei, Y.; Tian, B. Physicochemical properties and structure of starches from Chinese rice cultivars. Food Hydrocoll. 2010, 24, 208–216. [Google Scholar] [CrossRef]
- Gao, Z.Y.; Zeng, D.L.; Cheng, F.M.; Tian, Z.X.; Guo, L.B.; Su, Y.; Yan, M.X.; Jiang, H.; Dong, G.J.; Huang, Y.C.; et al. ALK, the key gene for gelatinization temperature, is a modifier gene for gel consistency in rice. J. Integr. Plant Biol. 2011, 53, 756–765. [Google Scholar] [PubMed]
- Wan, X.Y.; Wan, J.M.; Su, C.C.; Wang, C.M.; Shen, W.B.; Li, J.M.; Wang, H.L.; Jiang, L.; Liu, S.J.; Chen, L.M.; et al. QTL detection for eating quality of cooked rice in a population of chromosome segment substitution lines. Theor. Appl. Genet. 2004, 110, 71–79. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, C.F.; Zhou, L.H.; Zhao, Q.Y.; Zhu, Z.; Chen, T.; Yao, S.; Zhang, Y.D.; Wang, C.L. QTL mapping for starch paste viscosity of rice (Oryza sativa L.) using chromosome segment substitution lines derived from two sequenced cultivars with the same Wx allele. BMC Genom. 2021, 22, 596. [Google Scholar] [CrossRef]
- Tu, D.; Jiang, Y.; Salah, A.; Xi, M.; Cai, M.; Cheng, B.; Sun, X.; Cao, C.; Wu, W. Variation of rice starch structure and physicochemical properties in response to high natural temperature during the reproductive stage. Front. Plant Sci. 2023, 14, 1136347. [Google Scholar] [CrossRef]
- Xia, Y.J.; Sun, Y.Y.; Yuan, J.; Xing, C.R. Grain quality evaluation of japonica rice effected by cultivars, environment, and their interactions based on appearance and processing characteristics. Food Sci. Nutr. 2021, 9, 2129–2138. [Google Scholar] [CrossRef]
- Rahimsoroush, H.; Nazarian-Firouzabadi, F.; Chaloshtari, M.H.; Ismaili, A.; Ebadi, A.A. Identification of main and epistatic QTLs and QTL through environment interactions for eating and cooking quality in Iranian rice. Euphytica 2021, 217, 25. [Google Scholar] [CrossRef]
- Long, X.; Guan, C.; Wang, L.; Jia, L.; Fu, X.; Lin, Q.; Huang, Z.; Liu, C. Rice Storage Proteins: Focus on Composition, Distribution, Genetic Improvement and Effects on Rice Quality. Rice Sci. 2023, 30, 207–221. [Google Scholar]
- Peng, C.; Wang, Y.H.; Liu, F.; Ren, Y.L.; Zhou, K.N.; Lv, J.; Zheng, M.; Zhao, S.L.; Zhang, L.; Wang, C.M.; et al. FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. Plant J. 2014, 77, 917–930. [Google Scholar] [CrossRef]
- Ren, Y.L.; Wang, Y.H.; Pan, T.; Wang, Y.L.; Wang, Y.F.; Gan, L.; Wei, Z.Y.; Wang, F.; Wu, M.M.; Jing, R.N.; et al. GPA5 encodes a Rab5a effector required for post-Golgi trafficking of rice storage proteins. Plant Cell 2020, 32, 758–777. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Y.; Shi, W.; Ji, Q.; He, F.; Zhang, Z.; Cheng, Z.; Liu, X.; Xu, M. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 2008, 20, 1850–1861. [Google Scholar] [CrossRef]
- Zhang, G. The next generation of rice: Inter-subspecific indica-japonica hybrid rice. Front. Plant Sci. 2022, 13, 857896. [Google Scholar] [CrossRef] [PubMed]
- ISO 6647-2; Rice-Determination of Amylose Content-Part 2: Spectrophotometric Routine Method without Defatting Procedure and with Calibration from Rice Standards. International Organization for Standardization: Geneva, Switzerland, 2020.
- Cagampang, G.B.; Perez, C.M.; Juliano, B.O. A gel consistency test for eating quality of rice. J. Sci. Food Agric. 1973, 24, 1589–1594. [Google Scholar] [CrossRef] [PubMed]
- Little, R.R.; Hilder, G.B.; Dawson, E.H. Differential effect of dilute alkali on 25 varieties of milled white rice. Cereal Chem. 1958, 35, 111–126. [Google Scholar]
- Bhattacharya, K.R.; Sowbhagya, C.M. An improved alkali reaction test for rice quality. Int. J. Food Sci. Technol. 1972, 7, 323–331. [Google Scholar] [CrossRef]
- Tong, C.; Chen, Y.L.; Tang, F.F.; Xu, F.F.; Huang, Y.; Chen, H.; Bao, J.S. Genetic diversity of amylose content and RVA pasting parameters in 20 rice accessions grown in Hainan, China. Food Chem. 2014, 161, 239–245. [Google Scholar] [CrossRef]
- GB/T 15682-2008; Inspection of Grain and Oils-Method for Sensory Evaluation of Paddy or Rice Cooking and Eating Quality. Standards Press of Beijing: Beijing, China, 2008.
- Chen, T.; Li, H.; Chen, X.; Wang, Y.; Chen, Q.; Qi, X. Construction and application of exclusive flavour fingerprints from fragrant rice based on gas chromatography-ion mobility spectrometry (GC-IMS). Flavour. Frag. J. 2022, 37, 345–353. [Google Scholar] [CrossRef]
- Peng, Y.; Mao, B.; Zhang, C.; Shao, Y.; Wu, T.; Hu, L.; Hu, Y.; Tang, L.; Li, Y.; Tang, W.; et al. Influence of physicochemical properties and starch fine structure on the eating quality of hybrid rice with similar apparent amylose content. Food Chem. 2021, 353, 129461. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, S.; Zhou, L.; Tao, Y.; Tian, J.; Xing, Z.; Wei, H.; Zhang, H. Characteristics of Population Quality and Rice Quality of Semi-Waxy japonica Rice Varieties with Different Grain Yields. AGR 2022, 12, 241. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, C.; Liu, K.; Liu, Q. Volatile organic compounds, evaluation methods and processing properties for pooked rice flavor. Rice 2022, 15, 1–22. [Google Scholar] [CrossRef]
- Dangthaisong, P.; Sookgul, P.; Wanchana, S.; Arikit, S.; Malumpong, C. Abiotic stress at the early grain filling stage affects aromatics, grain quality and grain yield in Thai fragrant rice (Oryza sativa) cultivars. Agric. Res. 2023, 12, 285–297. [Google Scholar] [CrossRef]
- Zhang, C.Q.; Yang, Y.; Chen, Z.Z.; Chen, F.; Pan, L.X.; Lu, Y.; Li, Q.F.; Fan, X.L.; Sun, Z.Z.; Liu, Q.Q. Characteristics of grain physicochemical properties and the starch structure in rice carrying a mutated ALK/SSIIa gene. J. Agric. Food Chem. 2020, 68, 13950–13959. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch retrogradation: A comprehensive review. Compr. Rev. Food Sci. F. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Mao, T.; Zhang, Z.; Ni, S.J.; Zhao, Y.Z.; Li, X.; Zhang, L.L.; Liu, Y.; Zhong, C.S.; Huang, H.; Wang, S.L.; et al. Assisted selection of eating quality progeny of indica (O. sativa L. ssp. indica) and japonica (O. sativa L. ssp. japonica) hybrids using rice starch properties. Genet. Resour. Crop Evol. 2021, 68, 1–10. [Google Scholar]
- Gu, S.; Wang, Z.; Wang, J. Untargeted rapid differentiation and targeted growth tracking of fungal contamination in rice grains based on headspace-gas chromatography-ion mobility spectrometry. J. Sci. Food Agric. 2022, 102, 3673–3682. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Wu, F.; Zhou, G.; Guo, J.; Liu, X.; Zhang, T. Potential volatile markers of brown rice infested by the rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Food Chem. X 2023, 17, 100540. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Feng, X.; Iftikhar, M.; Meng, X.; Wang, J. The analysis of changes in nutritional components and flavor characteristics of Wazu rice wine during fermentation process. Food Anal. Method 2022, 15, 1132–1142. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, H.; Luo, J.; Liu, J.; Zhao, S.; Hu, Q.; Ding, C. Effect of dielectric barrier discharge cold plasma treatments on flavor fingerprints of brown rice. Food Chem. 2021, 352, 129402. [Google Scholar] [CrossRef]
- Hinge, V.R.; Patil, H.B.; Nadaf, A.B. Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice (Oryza sativa L.) cultivars. Rice 2016, 9, 38. [Google Scholar] [CrossRef]
- Song, X.B.; Jing, S.; Zhu, L.; Ma, C.F.; Song, T.; Wu, J.H.; Zhao, Q.Z.; Zheng, F.P.; Zhao, M.M.; Chen, F. Untargeted and targeted metabolomics strategy for the classification of strong aromatype baijiu (liquor) according to geographical origin using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Food Chem. 2020, 314, 126098. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Xie, T.; Xie, J.; Ai, L.; Tian, H. Characterization of key aroma compounds in Chinese rice wine using gas chromatography-mass spectrometry and gas chromatography-olfactometry. Food Chem. 2019, 293, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Routray, W.; Rayaguru, K. 2-Acetyl-1-pyrroline: A key aroma component of aromatic rice and other food products. Food Rev. Int. 2018, 34, 539–565. [Google Scholar] [CrossRef]
Genotype | Environment | Genotype × Environment | |
---|---|---|---|
df | 5 | 9 | 45 |
AC | 138.44 *** | 2.00 *** | 2.31 *** |
PC | 3.33 *** | 2.07 *** | 0.82 *** |
GC | 63.00 ** | 29.14 | 22.81 |
ASV | 3.39 *** | 0.13 *** | 0.07 *** |
PV | 399,211.89 *** | 57,304.47 *** | 55,995.30 *** |
TV | 173,974.05 *** | 17,034.43 *** | 23,336.27 *** |
FV | 631,332.05 *** | 26,787.22 *** | 32,768.32 *** |
BD | 688,496.63 *** | 14,815.58 *** | 22,161.57 *** |
SB | 1,395,159.39 *** | 24,517.35 *** | 48,816.35 *** |
CS | 635,183.62 *** | 9858.24 *** | 11,318.54 *** |
SBr | 0.27 *** | 0.01 *** | 0.01 *** |
Stab | 0.08 *** | 0.00 | 0.00 *** |
PTime | 0.77 *** | 0.01 * | 0.02 *** |
PT | 69.44 *** | 7.21 *** | 5.10 *** |
SCR | 92.92 | 111.76 * | 98.60 *** |
ACR | 321.33 *** | 51.33 | 57.94 ** |
PCR | 351.72 *** | 58.51 | 77.48 |
TCR | 97.13 | 41.38 | 44.22 |
TCCR | 207.16 *** | 62.93 | 98.04 *** |
SEV | 168.82 *** | 32.15 | 39.54 *** |
PV (cP) | TV (cP) | FV (cP) | BD (cP) | SB (cP) | CS (cP) | PTime (secs) | PT (°C) | |
---|---|---|---|---|---|---|---|---|
Genotype | ||||||||
HZY261 | 2470.5 ± 156.3 b | 1641.8 ± 118.6 bc | 2711.3 ± 187.3 a | 828.7 ± 123.0 b | 240.8 ± 224.8 b | 1069.5 ± 128.2 a | 5.98 ± 0.14 c | 88.41 ± 1.20 b |
ZZY8 | 2453.7 ± 190.2 b | 1508.1 ± 82.4 d | 2380.6 ± 117.5 c | 945.6 ± 127.7 a | –73.1 ± 193.1 d | 872.5 ± 98.7 c | 5.82 ± 0.08 d | 86.54 ± 1.85 c |
JFY2 | 2548.7 ± 177.9 ab | 1611.0 ± 102.7 c | 2581.6 ± 102.2 b | 937.8 ± 100.8 a | 32.9 ± 133.0 c | 970.7 ± 46.3 b | 5.83 ± 0.05 d | 86.96 ± 1.39 c |
YY15 | 2636.3 ± 144.0 a | 1691.6 ± 104.0 ab | 2628.6 ± 94.7 b | 944.7 ± 69.1 a | –7.8 ± 83.3 cd | 937.0 ± 32.3 b | 5.93 ± 0.08 c | 85.02 ± 2.25 d |
JHX1 | 2222.6 ± 154.7 c | 1757.9 ± 109.1 a | 2737.1 ± 93.6 a | 464.7 ± 103.3 c | 514.6 ± 103.3 a | 979.2 ± 45.1 b | 6.35 ± 0.11 a | 89.60 ± 0.97 a |
NJ46 | 2540.0 ± 160.0 ab | 1744.2 ± 124.6 a | 2302.6 ± 134.9 d | 795.8 ± 103.6 b | –237.5 ± 103.8 e | 558.4 ± 22.6 d | 6.08 ± 0.08 b | 84.86 ± 2.53 d |
Environment | ||||||||
E1 | 2569.8 ± 237.8 a | 1692.8 ± 113.6 ab | 2588.5 ± 211.3 ab | 877.0 ± 233.9 a | 18.8 ± 337.6 b | 895.8 ± 180.7 b | 5.96 ± 0.20 a | 85.98 ± 2.91 bc |
E2 | 2418.5 ± 174.2 bc | 1629.5 ± 183.7 ab | 2523.8 ± 118.2 ab | 789.0 ± 167.7 a | 105.3 ± 215.3 ab | 894.3 ± 142.9 b | 6.01 ± 0.24 a | 87.47 ± 1.36 ab |
E3 | 2551.1 ± 162.8 ab | 1683.6 ± 74.0 ab | 2582.0 ± 191.1 ab | 867.5 ± 198.2 a | 30.9 ± 292.2 ab | 898.4 ± 201.2 b | 5.96 ± 0.22 a | 86.75 ± 1.92 a–c |
E4 | 2393.4 ± 147.5 c | 1603.3 ± 153.2 b | 2476.5 ± 231.5 b | 790.2 ± 82.5 a | 83.1 ± 151.6 ab | 873.3 ± 173.1 b | 5.97 ± 0.18 a | 87.86 ± 1.10 a |
E5 | 2396.3 ± 149.4 c | 1614.1 ± 107.2 b | 2511.5 ± 157.1 ab | 782.3 ± 185.9 a | 115.2 ± 252.5 ab | 897.4 ± 163.3 b | 6.04 ± 0.20 a | 87.24 ± 2.64 ab |
E6 | 2435.3 ± 210.7 a–c | 1644.4 ± 124.2 ab | 2607.6 ± 138.3 a | 790.9 ± 167.5 a | 172.3 ± 329.9 a | 963.2 ± 224.1 a | 5.98 ± 0.13 a | 87.71 ± 1.82 a |
E7 | 2487.3 ± 166.9 a–c | 1665.8 ± 169.0 ab | 2570.8 ± 188.1 ab | 821.4 ± 182.6 a | 83.5 ± 225.8 ab | 904.9 ± 156.3 ab | 6.02 ± 0.24 a | 86.31 ± 2.01 a–c |
E8 | 2543.5 ± 287.7 ab | 1692.4 ± 66.4 ab | 2611.3 ± 229.0 a | 851.1 ± 299.2 a | 67.8 ± 459.7 ab | 918.8 ± 234.2 ab | 5.98 ± 0.21 a | 85.59 ± 4.56 c |
E9 | 2545.8 ± 221.4 ab | 1718.3 ± 198.2 a | 2587.4 ± 343.7 ab | 827.5 ± 219.8 a | 41.7 ± 288.1 ab | 869.2 ± 174.7 b | 6.01 ± 0.22 a | 86.57 ± 2.46 a–c |
E10 | 2445.3 ± 231.9 a–c | 1646.8 ± 103.5 ab | 2510.1 ± 176.3 ab | 798.5 ± 234.9 a | 64.8 ± 242.5 ab | 863.3 ± 159.9 b | 6.03 ± 0.22 a | 87.49 ± 1.56 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Zhu, D.; Zheng, X.; Shao, L.; Fang, C.; Yan, Q.; Zhang, L.; Qin, Y.; Shao, Y. The Effects of Genotype × Environment on Physicochemical and Sensory Properties and Differences of Volatile Organic Compounds of Three Rice Types (Oryza sativa L.). Foods 2023, 12, 3108. https://doi.org/10.3390/foods12163108
Yu J, Zhu D, Zheng X, Shao L, Fang C, Yan Q, Zhang L, Qin Y, Shao Y. The Effects of Genotype × Environment on Physicochemical and Sensory Properties and Differences of Volatile Organic Compounds of Three Rice Types (Oryza sativa L.). Foods. 2023; 12(16):3108. https://doi.org/10.3390/foods12163108
Chicago/Turabian StyleYu, Jing, Dawei Zhu, Xin Zheng, Liangliang Shao, Changyun Fang, Qing Yan, Linping Zhang, Yebo Qin, and Yafang Shao. 2023. "The Effects of Genotype × Environment on Physicochemical and Sensory Properties and Differences of Volatile Organic Compounds of Three Rice Types (Oryza sativa L.)" Foods 12, no. 16: 3108. https://doi.org/10.3390/foods12163108
APA StyleYu, J., Zhu, D., Zheng, X., Shao, L., Fang, C., Yan, Q., Zhang, L., Qin, Y., & Shao, Y. (2023). The Effects of Genotype × Environment on Physicochemical and Sensory Properties and Differences of Volatile Organic Compounds of Three Rice Types (Oryza sativa L.). Foods, 12(16), 3108. https://doi.org/10.3390/foods12163108