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Abstract: Nowadays, different systems for reducing pesticides in table grapes are being tested at
different production stages either in the field or in postharvest. The present study tested ozonated
water treatments at the beginning of the cold storage of the Princess® seedless table grape variety
to reduce the residue contents of some pesticides and to evaluate their effect on gray mold and the
berry microbiome. An ozone generator capable of producing an ozone concentration ranging from 18
to 65 Nm3 was utilized for obtaining three ozone concentration levels in water: 3, 5 and 10 mg/L.
Ozonated water was placed in a 70 L plastic box where 500 g grape samples closed in perforated
plastic clamshell containers were immersed utilizing two washing times (5 and 10 min). Overall, six
ozonated water treatments were tested. After the ozonated water treatments, all samples were stored
for 30 days at 2 ◦C and 95% relative humidity to simulate commercial practices. The pesticide residue
contents were determined before the ozonated water treatments (T0) and 30 days after the cold
storage (T1). The treatments with ozonated water washing reduced the pesticide residues up to 100%,
while the SO2 control treatment reduced the pesticide residues ranging from 20.7 to 60.7%. Using
3 mg/L ozonated water to wash grapes for 5 min represented the optimal degradation conditions for
all of the analyzed pesticides, except for fludioxonil, which degraded better with a washing time of
10 min. The ozone treatments did not significantly reduce the gray mold and the fungal and bacterial
microbiome, while a relevant reduction was observed in the yeast population.

Keywords: ozonated water; pesticide; grape; postharvest; storage

1. Introduction

Plant protection products (PPPs), or pesticides for short, are widely used against
pathogens, insects or weeds to prevent crop damage. It was estimated that 30–40% of
food is lost if adequate protection is not provided by PPPs [1]. Therefore, it is essential to
provide the minimum level of pesticides that ensure food health and accessibility. For this
reason, the application of PPPs and their subsequent degradation have to be investigated.
The degradation processes of PPPs are due to dissolution in the surrounding atmosphere,
hydrolysis, microbial degradation, oxidation, penetration and photodegradation [2]. Never-
theless, minimal amounts may remain as pesticide residues in food until harvest and reach
consumers with possible chronic health effects [3]. Pesticide residues are subject to legal
regulation and monitoring. For each active compound, the maximum residue limit (MRL)
indicates the legal amount for placement on the market and allows national authorities to
verify that PPPs have been used correctly.

Table grapes are among the foods where MRLs are most frequently exceeded [4].
Residues in fresh and processed products are controlled not only via official monitoring by
national authorities but also independently by distributors, processing industries, importers
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and growers through the application of secondary requirements that are becoming more
numerous and complex. Initially introduced in the European Union, they now play an
increasingly important role in international trade. These requirements may be based on the
limits set by law, but they go beyond the legal requirements; in fact, secondary requirements
are generally based on a lower percentage of the MRLs set by law and, for certain crops,
on a maximum number of detectable residues at the limit of quantification (LOQ) of the
analytical method. For this reason, many distribution chains and food industries require
growers to reduce residue levels to an even greater extent. Therefore, in addition to
controlling PPPs’ preharvest interval time in the field, effective ways are being considered
to preventively remove pesticide residues already present on vegetables to avoid adverse
effects on human’s health [5].

One of the latest methods involves the generation of ozone gas in water as a washing
treatment to reduce pesticide residues in different fruits and vegetables [6–12]. Ozone
is a natural substance in the atmosphere that is generally recognized as safe (GRAS) for
food contact applications [13]. Ozone is also an effective sanitizer against a wide range of
microorganisms and enables the elimination of mycotoxins [14–19]. The impact of ozone
on pesticide residues is not always equally effective. Swami et al. [6] found that ozonated
water was more efficient than normal water washing for the removal of pesticide residues
from grapes and green peppers. By contrast, Sadlo et al. [20] found that ozonated water was
no more effective than simple washing processes in reducing pesticide residues on apples.
However, the efficiency of ozone treatment in degrading pesticide residues is influenced by
several factors, mainly the ozone concentration, the duration of treatment, the type of food,
the class of pesticide and the degree of contamination by pesticide residues [21].

Within this context, the present study was conducted to investigate the effectiveness
of postharvest washing with ozonated water on reducing pesticide residues in ready-to-eat
seedless table grapes. The effects of the treatment on the microbiological aspects were
evaluated, both in regard to the control of the gray mold, caused by Botrytis cinerea Pers.,
and the berry microbiome (fungi, bacteria and yeasts). PPPs commonly used in pest control
in table grapes were included in the study trial and detected as residues. The analyzed
PPPs were three systemic insecticides (Acetamiprid, Flupyradifurone and Spirotetramat),
together with five systemic, locally systemic and nonsystemic fungicides (Fludioxonil,
Fluxapyroxad, Penconazole, Proquinazid and Trifloxystrobin).

2. Materials and Methods
2.1. Plant Material, Growth Conditions and Viticulture Management Practices

The study was conducted in 2022 on Vitis vinifera L. (cv. Princess® seedless) located in
a commercial table grape vineyard growing in a Mediterranean environment [22]. Vines
were trained onto a ‘double tendone’ trellis system [23], and they were irrigated by means
of two 8 L h−1 drippers per vine. The vineyard was covered with plastic film from bud
break to harvest.

Plant nutrition and pest and disease control were carried out in accordance with local
standards. However, more treatments were added to simulate degradation of more pesti-
cides. In particular, the grapes were treated fifteen days before harvest with acetamiprid,
flupyradifurone, spirotetramat, fludioxonil and penconazole and forty days before harvest
with fluxapyroxad, proquinazid and trifloxystrobin in order to respect the preharvest inter-
val time of each product. The products were used according to the respective maximum
doses indicated on the labels (Table 1).

Starting from the onset of the cell enlargement stage, GA (BERELEX®, distributed
by Syngenta Crop Protection S.p.A., Milano, Italy) was applied on the vines at different
concentrations on the basis of the berry diameter.

The date of the harvest (15 October 2022) was determined on the basis of the commer-
cial ripening, which was fixed at 20 ◦Brix, 5.5 g/L tartaric acid and 4.5 as TSS, titratable
acidity and pH, respectively.
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Table 1. Activity spectra, mobility, water solubility (W.S.), water DT50 (W.DT50), soil DT50 (S.DT50)
and MRL of grapefruits in the European Union of the insecticides and fungicides studied.

Molecule
(Commercial Product, Dose) Activity Spectra Mobility W.S.

(mg/L)
W.DT50
(Days)

S.DT50
(Days)

MRL
(mg/Kg)

Acetamiprid
(Epik SL, 2 L/ha)

Aphids,
whiteflies, thrips Systemic 2950 4.7 3 0.5

Flupyradifurone
(Sivanto Prime, 0.5 L/ha)

Aphids,
leafhoppers Systemic 3200 31.4 130 3

Spirotetramat
(Movento 48 SC, 1.5 L/ha)

Aphids,
mealybugs Systemic 29.9 0.8 0.7 2

Fludioxonil
(Geoxe, 1 kg/ha) Gray mold Contact 1.8 2 16 5

Fluxapyroxad
(Sercadis, 0.15 L/ha) Powdery mildew Locally

systemic 3.4 4.4 181.5 3

Penconazole
(Scudex, 0.2 L/ha) Powdery mildew Systemic 73 2 89.7 0.5

Proquinazid
(Talendo, 0.2 L/ha) Powdery mildew Locally

systemic 0.9 0.8 30.5 0.5

Trifloxystrobin
(Flint, 0.15 kg/ha) Powdery mildew Locally

systemic 0.6 1.1 1.7 3

2.2. Ozonated Water Washing and Pesticide Residues Determination

Before the cold storage period (T0), a 60 kg grape sample was randomly collected
from the harvested grapes and preliminary utilized for picking three replicates of 500 g
each for pesticide residues determination (Figure 1). The remaining grapes were utilized
to assemble 500 g closed perforated plastic clamshell containers (12 for each treatment)
for the ozonated water treatments and subsequently for the cold storage period (Figure 1).
The ozonated water treatments were performed at the beginning of the cold storage.
A 70 L plastic box containing water was connected to an ozone generator, and it was
continuously alimented by ozonated water at different concentrations. The ozone generator
was capable of producing ozone concentrations ranging from 18 to 65 Nm3, and it was
utilized for obtaining three ozone concentration levels in water: 3, 5 and 10 mg/L, which
were monitored by an ozone analyzer (Figure 2).

After the ozone concentration reached the fixed level in the water, the 500 g replicate
plastic clamshell containers were immersed utilizing two immersion times: 5 and 10 min.
Overall, six different ozonated water treatments were provided and immediately destinated
to cold storage. Contemporarily, three SO2 generating plastic bags containing four 500 g
grape samples in the plastic clamshell containers were prepared and stored together with
the ozonated samples. To compare all treatments with a control and to test the effect of the
cold storage alone, four 500 g grape samples in plastic clamshell containers were prepared
and stored without any treatments. All activities were carried out at room temperature
(approximately 17 ◦C), and all samples were stored for 30 days at 2 ◦C and 95% relative
humidity to simulate commercial practices and to take into account the market requirements
for the shelf-life cold storage of packaged ready-to-eat table grapes [24]. At the end of
the 30-day cold storage period (T1), the pesticide residue contents were determined on
the three 500 g replicates for each treatment. The pesticide residues determination was
performed using the UNI EN 15662:2018 method with LC–MS/MS determination.
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Figure 2. Scheme of the apparatus used for the ozonated water washing of the grapes.

2.3. Biological Assessment of Gray Mold and Berry Microbiome

After 30 days of cold storage (T1), both the incidence and severity of gray mold were
evaluated in each treatment. The incidence of gray mold was calculated as the ratio between
the number of infected berries and the total number of berries. The severity of gray mold
for each plastic container/treatment was evaluated using an empirical rating scale from 0
to 4 considering the presence of fungus mycelia on the berries and the separation of the
cuticle from the flesh due to macerating enzymes produced by B. cinerea below the skin
(‘slip skin’) (Figure 3): 0 = no visible symptoms; 1 = 5–10% of the berries affected by ‘slip
skin’; 2 = 10–25% of the berries affected by ‘slip skin’; 3 = 25–50% of the berries affected
by ‘slip skin’ and covered by fungus mycelia; 4 = more than 50% of the berries affected
by ‘slip skin’ and covered by fungus mycelia. The relative McKinney’s index was also
calculated [25].
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affected by ‘slip skin’ and covered by fungus mycelia.

To evaluate berry microbiome, both at T0 and T1, an approximately 10 g of berries from
each treatment showing no signs of exterior damage was placed in a large beaker containing
200 mL of sterile Ringer solution (NaCl 2.25 g, KCl 0.01 g, CaCl2 0.12 g, NaHCO3 0.05 g
and four drops of TWEEN 20) under biological hood conditions. After coating the beaker
with aluminum foil, it was put under agitation for 30 min to allow the microorganisms to
separate from the skin of the berries. The resultant microbial suspension (mother solution)
was serially 1/10 diluted in sterile plastic vials, where 1 mL of the suspension was eluted
in 9 mL of sterile Ringer solution three times up to a 10−3 CFU mL−1 concentration.
Appropriate volumes of the diluted microbial suspensions were subsequently plated onto
selective solid growth media to evaluate the nature of the epiphytic microbiome: 200 µL
on Wallerstein Laboratory (WL) Nutrient Medium (VWR Chemicals, Leuven, Belgium)
for yeast populations; 100 µL on NB (NaCl 5 g, meat peptone 5 g, yeast extract 2 g and
agar powder 16 g) for bacteria; 500 µL on TSM (KCl 0.151 g, K2HPO4 0.9 g, MgSO4 0.2 g,
NH4NO3 3 g, glucose 3 g, Bengal rose 0.08 g, agar 20 g, ampicillin 790 µL and streptomycin
1 mL) for fungi. The plating process was followed by a 3 days of incubation at 25 ◦C, when
the colonies eventually reached the desired diameter of 0.25 ± 0.05 mm.
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2.4. Data Analysis

For the collected data and for each pesticide residue, the analysis of variance (ANOVA)
was carried out using a one-way model to evaluate the effect of the cold storage period and
the effect of SO2 with respect to the ozonated water treatments. For each molecule, a two-
way model was performed to test the effect of the washing time and ozone concentration
in the water. An F test was used to compare averages in the one-way models and to test
the factors’ interaction in the two-way model. When interactions were significant, the
means were separated with Tukey’s HSD test (p < 0.05). The ANOVAs was performed
using STATISTICA software v. 6.0 (StatSoft Inc., Tulsa, OK, USA).

3. Results
3.1. Pesticide Residues’ Detection and Degradation Effects of Ozonated Water

The residues of all three insecticides (acetamiprid, flupyradifurone and spirotetra-
mat) and the five fungicides (fludioxonil, fluxapyroxad, penconazole, proquinazid and
trifloxystrobin) were found in different quantities in the samples at time T0 (Figure 4).
Fludioxonil and fluxapyroxad were detected in major measurements (1.227 ± 0.140 and
1.070 ± 0.149 mg/kg, respectively) (Figure 4). All molecules were lower than the EU MRL
(Table 1). Proquinazid and trifloxystrobin were detected at trace levels, namely, smaller
than the limit of quantification (LOQ) of the analytical method (<0.005 mg/kg) (Figure 4).
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The ozonated water treatments showed, in general, better results compared to the
SO2 treatment (Figure 6). Fludioxonil, which has a contact effect, showed the highest
average rate of degradation, which was reduced, on average, by 81.9% in the treatments
with ozonated water and by 60.7% in the SO2 control treatments. Spirotetramat and
fluxapyroxad showed the best results in terms of residues degradation due to the ozone
treatment compared to SO2: the two systemic molecules were reduced by 100% (trace
level < 0.005 mg/kg) and 67%, respectively, compared to the SO2 treatment, where reduc-
tions of only 16.7% and 32% were observed. Differently, acetamiprid and flupyradifurone
showed a low degradation rate, being reduced, on average, by 46.1% and 40.8%, respec-
tively, in the treatments with ozonated water and by 41.2% and 20.7%, respectively, in the
SO2 control treatments. It should be highlighted that, because of the effects of all of the
treatments, only traces (<0.005 mg/kg) of penconazole and proquinazid were detected at
T1, while trifloxystrobin residues were totally degraded in all of the samples.
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Figure 6. The residual pesticide (mg/kg) values in the grapes at harvest time (T0) and after 30 days
of cold storage with sulfur dioxide (SO2 T1) and ozone (Ozone T1) treatments. The bars labeled with
different letters are significantly different according to Tukey’s test (p < 0.05).

The influence of the ozone concentration and washing time, together with their inter-
actions, on the pesticide residues removal are reported in Table 2. Significant differences in
residual fludioxonil were found either because of ozone concentrations (p < 0.01) or wash-
ing time (p < 0.05). A positive interaction between ozone concentration and washing time
was observed (p < 0.01) (Figure 7a). Significant differences (p < 0.05) in flupyradifurone and
fluxapyroxad residues were only due to ozone concentration (Figure 7b,c). No significant
effect due to the two factors was observed in the other pesticides.

Table 2. Residual pesticide as affected by ozone concentration, washing time and their interaction.

Factors Acetamiprid s.e. Flupyradifurone s.e. Fludioxonil s.e. Fluxapyroxad s.e.

Ozone concentration

3 mg/L 0.009 ±0.001 0.041 b ±0.005 0.126 b ±0.024 0.287 b ±0.037

5 mg/L 0.010 ±0.001 0.064 a ±0.005 0.276 a ±0.024 0.418 a ±0.037

10 mg/L 0.010 ±0.001 0.051 a ±0.005 0.265 a ±0.024 0.355 a ±0.037

Significance n.s. * ** *
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Table 2. Cont.

Factors Acetamiprid s.e. Flupyradifurone s.e. Fludioxonil s.e. Fluxapyroxad s.e.

Washing time

5 min 0.010 ±0.001 0.055 ±0.004 0.259 a ±0.020 0.390 ±0.030

10 min 0.008 ±0.001 0.048 ±0.004 0.185 b ±0.020 0.316 ±0.030

Significance n.s. n.s. * n.s.

Interactions

Ozone
concentration×
Washing time

n.s. n.s. ** n.s.

* p < 0.05, ** p < 0.01, n.s., Not significant. Different letters in the columns denote significant differences according
to Tukey’s test.
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3.2. Effects of Ozone Treatment on Gray Mold and Berries Microbiome

In our experiment, the effects of different ozonated water washing on gray mold and
the microbiome of berries in semi-commercial postharvest conditions were tested compared
to SO2 treatment. None of the tested ozonated water treatments was more effective in
controlling gray mold compared to the SO2 treatment (Table 3).

Berries treated with SO2 showed a McKinney’s Index of 30.6%, while the different
tested ozone treatments ranged from 66.7 to 80.6%. The lack of ozone impact on the control
of fungi was also confirmed by the results of microbiome analysis (Figure 8). Unlike the
SO2 treatment, the different tested ozone treatments did not significantly reduce the fungal
population initially present on the berries at harvest time (T0). The same result was also
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observed regarding the bacterial microbiome, whose ineffectiveness can be related to a high
ozone resistance of the bacterial spores, as reported by Khadre et al. [14]. Finally, relevant
differences were observed in yeast’s population by comparing the effects of different ozone
treatments vs. SO2 treatment. The greatest reduction of yeasts was caused by SO2 (−42.0%
compared to T0). With regard to the different ozone treatments tested, the greatest reduction
of yeasts was caused by a long washing time (10 min combined with 10 or 3 mg/L) (−19.7
and −16.8%, respectively) or high ozone dose with a short washing time (10 mg/L × 5 min)
(−15.4%). No effect was observed with a minimal ozone dose and minimal washing time
(3 mg/L × 5 min).

Table 3. McKinney’s Index of gray mold in grapes treated with SO2 and different ozone treatment
after 30 days cold storage.

Treatment McKinney’s Index (%)

Sulfur dioxide 30.6 b *
10 mg/L × 10 min 80.6 a
10 mg/L × 5 min 80.6 a
5 mg/L × 10 min 80.6 a
5 mg/L × 5 min 77.8 a

3 mg/L × 10 min 77.8 a
3 mg/L × 5 min 66.7 a

* Different letters indicate significant differences according to Tukey’s test (p < 0.05).
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4. Discussion

All three insecticides (acetamiprid, flupyradifurone and spirotetramat) are molecules
with systemic properties. Acetamiprid (neonicotinoid) and flupyradifurone (butenolide)
are classified as nicotinic acetylcholine receptor (nAChR) competitive modulators, while
spirotetramat is an inhibitor of acetyl CoA carboxylase, according to the IRAC classi-
fication [26]. According to fungicide FRAC classes [27], penconazole is classified as a
DMI-fungicide and shows systemic properties, while fluxapyroxad (SDHI-fungicides),
proquinazid (azanaphthalenes) and trifloxystrobin (QoI-fungicides) show locally sys-
temic properties; they are all widely used against powdery mildew. Finally, fludioxonil
(phenylpyrroles) is a contact fungicide effective against gray mold.

In our study, fludioxonil showed the highest average rate of degradation: pesticide
properties could be considered responsible for this behavior given that the ozonated water
could have degraded pesticide residues on the berry surface with a greater efficiency
compared to the pesticides absorbed into the tissues [7].

However, in spite of their low water solubility, spirotetramat (systemic) and fluxapy-
roxad (locally systemic) showed the best results in terms of residues degradation because
of the ozone treatment compared to SO2. These results suggest that in addition to the clean-
ing effect of the pesticide residues on berries’ surface the ozonated water may gradually
penetrate the first layers of the fruits and act on some pesticides that are absorbed into the
first layers of the fruits’ tissues, considering that the impact of ozone is significantly limited
once the active substance passes the cellular wall [15]. Therefore, the efficiency of pesticide
residue removal is different in various fruits, because their different type surfaces (soft,
coarse, smooth, glossy or hard) can affect the absorption and penetration properties [6].

On the contrary, in spite of their high water solubility, acetamiprid (systemic) and
flupyradifurone (systemic) showed a low rate of degradation with the ozone treatment.
This proves that molecule water solubility alone does not seem to govern the removal of a
pesticide. Instead, the very low initial concentration of acetamiprid and flupyradifurone
residues was probably one of the factors that inhibited their degradation. This is because
the higher initial contamination resulted in faster degradation owing to the higher con-
centration of the degradable target (reactant); this phenomenon could be attributed to the
pesticide degradation kinetics [7].

The best fludioxonil residues degradation was obtained with a minimum ozone dose
(3 mg/L) combined with a maximum washing time (10 min), providing a reduction of
94.8% (Figure 7a). Regarding flupyradifurone and fluxapyroxad, the minimum ozone
dose (3 mg/L) showed a better removal efficiency and independently from the washing
time (Figure 7b,c). The higher residues of flupyradifurone with 5 and 10 mg/L ozone
concentrations could be attributed not to a lower efficiency of these ozone treatments in
respect to the 3 mg/L dose but to the pesticide accumulation in the washing water; indeed,
this active substance has a high water solubility, and it is quite stable in water because of
its high water DT50 (Table 1). So, according to Sadlo et al. [20], the pesticide may have
transferred from the contaminated water to the grape clusters during the washing, since in
our test the treatments were performed in succession starting from the lowest dose. The
same could have occurred for fludioxonil and fluxapyroxad, despite their lower water
solubility and moderately fast water DT50 (Table 1).

On the basis of these results and considering the time, cost and treatment efficiency, it
could be concluded that using 3 mg/L ozonated water to wash grapes for 5 min represents
the optimal degradation conditions for all of the analyzed pesticides, except for fludioxonil,
which degrades better with a 10 min washing time. Consequently, the results supported
by the trials carried out may fit and be consistent with the usual commercial practices.
Finally, given that high ozone concentrations could likely affect human health and cause
corrosion [28], it has to be taken into account that a concentration of 3 mg/L could be
relatively safer for humans, as well as for vegetables. A potential health risk could be
linked to pesticide degradation byproducts caused by ozonated water treatments given
that they may be more toxic than the pesticides themselves. In this regard, earlier studies
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have already indicated that only traces of unstable degradation byproducts could be found
and that no bioaccumulation and toxicity were detected when ozone was used to degrade
pesticides [5,29]. However, further research should be undertaken to investigate the toxicity
of byproducts resulting from the ozonated water treatment of the tested pesticides.

Moreover, it may be useful to continue to apply ozone to waste water after the de-
scribed treatments in order to remove pesticide residues in it. Reports on the degradation
of pesticides in water using ozone or other oxidants are available [5,30,31], so it is expected
that continuous ozone treatment may be able to break down the molecules accumulated in
waste water, thus solving the issue of waste water disposal.

Ozone treatment is unlikely to replace sulphur dioxide treatment as a means of control-
ling gray mold of table grapes. Therefore, if this method were to be used commercially, it is
likely that packers would follow the ozone treatment with SO2, with possible additional
benefits in terms of reducing pesticide residues. The effect of using these techniques in
combination should be further investigated.

Cleaning grapes with ozonated water can also bring about a decrease in yeast pop-
ulations on berries, and this could play an important role in counteracting the onset of
alterations caused by non-Saccharomyces yeasts, preserving grape health; this could repre-
sent an element for further analysis if applied to grapes destined for winemaking.

Ozonation treatment could offer many advantages in degrading pesticide residues,
including ease of use, relatively low cost and user safety. In addition, ozone decomposes
into oxygen without producing any additional traces of byproducts. To conclude, fruit
safety and quality may benefit from the use of ozonated water washing as part of the
postharvest treatment of table grapes.
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