Predictive Modeling of Riboflavin Production in Lactiplantibacillus plantarum MTCC 25432 Using Fuzzy Inference System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Media, and Growth Conditions
2.2. Impact of Different Concentrations of Selected SDM Ingredients on the Production of Riboflavin
2.3. Riboflavin Extraction
2.4. Riboflavin Quantification
2.5. One Factor at a Time
2.6. Predictive Modeling Using Fuzzy Inference (FIS) Approach
2.7. Statistical Analysis
3. Results and Discussion
3.1. Selection of Riboflavin Overproducing Strain
3.2. Impact of Different Concentrations of Some Selected SDM Nutrient, Ingredients on the Production of Riboflavin
3.3. Riboflavin Quantification
3.4. Predictive Modeling Using OFAT-FIS Approach
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fraaije, M.W.; Mattevi, A. Flavoenzymes: Diverse catalysts with recurrent features. Trends Biochem. Sci. 2000, 25, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Burgess, C.M.; Smid, E.J.; Rutten, G.; van Sinderen, D. A general method for selection of riboflavin-overproducing food grade micro-organisms. Microb. Cell Factories 2006, 5, 24. [Google Scholar] [CrossRef] [PubMed]
- Schallmey, M.; Singh, A.; Ward, O.P.; Sumi, C.D.; Yang, B.W.; Yeo, I.-C.; Hahm, Y.T.; Zhang, C.; Zhang, X.; Yao, Z.; et al. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 2004, 50, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Oakley, G.P.; Tulchinsky, T.H. folic acid and vitamin B12 fortification of flour: A global basic food security requirement. Public Health Rev. 2010, 32, 284–295. [Google Scholar] [CrossRef]
- Thakur, K.; Lule, V.K.; Rajni, C.S.; Kumar, N.; Mandal, S.; Anand, S.; Kumari, V.; Tomar, S.K. Riboflavin producing probiotic lactobacilli as a biotechnological strategy to obtain riboflavin-enriched fermented foods. J. Pure Appl. Microbiol. 2016, 10, 161–166. [Google Scholar]
- Palacios, C.; Hofmeyr, G.J.; Cormick, G.; Garcia-Casal, M.N.; Peña-Rosas, J.P.; Betrán, A.P. Current calcium fortification experiences: A review. Ann. N. Y. Acad. Sci. 2020, 1484, 55–73. [Google Scholar] [CrossRef]
- LeBlanc, J.; Laiño, J.; del Valle, M.J.; Vannini, V.; van Sinderen, D.; Taranto, M.; de Valdez, G.F.; de Giori, G.S.; Sesma, F. B-Group vitamin production by lactic acid bacteria—Current knowledge and potential applications. J. Appl. Microbiol. 2011, 111, 1297–1309. [Google Scholar] [CrossRef]
- Gu, Q.; Li, P. Biosynthesis of vitamins by probiotic bacteria. In Probiotics and Prebiotics in Human Nutrition and Health; InTechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Capozzi, V.; Russo, P.; Dueñas, M.T.; López, P.; Spano, G. Lactic acid bacteria producing B-group vitamins: A great potential for functional cereals products. Appl. Microbiol. Biotechnol. 2012, 96, 1383–1394. [Google Scholar] [CrossRef]
- Vikram; Mishra, V.; Rana, A.; Ahire, J.J. Riboswitch-mediated regulation of riboflavin biosynthesis genes in prokaryotes. 3 Biotech 2022, 12, 278. [Google Scholar] [CrossRef]
- Surowiec, I.; Vikström, L.; Hector, G.; Johansson, E.; Vikström, C.; Trygg, J. Generalized subset designs in analytical chemistry. Anal. Chem. 2017, 89, 6491–6497. [Google Scholar] [CrossRef]
- Kumari, M.; Bhushan, B.; Kokkiligadda, A.; Kumar, V.; Behare, P.; Tomar, S. Vitamin B12 biofortification of soymilk through optimized fermentation with extracellular B12 producing Lactobacillus isolates of human fecal origin. Curr. Res. Food Sci. 2021, 4, 646–654. [Google Scholar] [CrossRef]
- Bhushan, B.; Kumkum, C.; Kumari, M.; Ahire, J.J.; Dicks, L.M.; Mishra, V. Soymilk bio-enrichment by indigenously isolated riboflavin-producing strains of Lactobacillus plantarum. LWT 2020, 119, 108871. [Google Scholar] [CrossRef]
- del Valle, M.J.; Laiño, J.E.; de Giori, G.S.; LeBlanc, J.G. Factors stimulating riboflavin produced by Lactobacillus plantarum CRL 725 grown in a semi-defined medium. J. Basic Microbiol. 2016, 57, 245–252. [Google Scholar] [CrossRef] [PubMed]
- El-Gamal, M.; Abdulghafour, M. Fault isolation in analog circuits using a fuzzy inference system. Comput. Electr. Eng. 2003, 29, 213–229. [Google Scholar] [CrossRef]
- Tomasiello, S.; Pedrycz, W.; Loia, V. Fuzzy inference systems. In Contemporary Fuzzy Logic: Big and Integrated Artificial Intelligence; Springer: Cham, Switzerland, 2022; pp. 61–77. [Google Scholar] [CrossRef]
- Siler, W.; Buckley, J.J. Fuzzy Expert Systems and Fuzzy Reasoning; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar] [CrossRef]
- Kumar, V.; Amrutha, R.; Ahire, J.J.; Taneja, N.K. Techno-functional assessment of riboflavin-enriched yogurt-based fermented milk prepared by supplementing riboflavin-producing probiotic strains of Lactiplantibacillus plantarum. Probiotics Antimicrob. Proteins 2022, 1–11. [Google Scholar] [CrossRef]
- Kumar, V.; Ahire, J.J.; Amrutha, R.; Nain, S.; Taneja, N.K. Microencapsulation of riboflavin-producing Lactiplantibacillus plantarum MTCC 25432 and evaluation of its survival in simulated gastric and intestinal fluid. Probiotics Antimicrob. Proteins 2023, 1–11. [Google Scholar] [CrossRef]
- Narisetty, V.; Prabhu, A.A.; Bommareddy, R.R.; Cox, R.; Agrawal, D.; Misra, A.; Haider, M.A.; Bhatnagar, A.; Pandey, A.; Kumar, V. Development of hypertolerant strain of Yarrowia lipolytica accumulating succinic acid using high levels of acetate. ACS Sustain. Chem. Eng. 2022, 10, 10858–10869. [Google Scholar] [CrossRef]
- Kieliszek, M.; Pobiega, K.; Piwowarek, K.; Kot, A.M. Characteristics of the proteolytic enzymes produced by lactic acid bacteria. Molecules 2021, 26, 1858. [Google Scholar] [CrossRef]
- Abbas, C.A.; Sibirny, A.A. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol. Mol. Biol. Rev. 2011, 75, 321–360. [Google Scholar] [CrossRef] [PubMed]
- Mitsuda, H.; Nakajima, K. Guanosine nucleotide precursor for flavinogenesis of Eremothecium Ashbyii. J. Nutr. Sci. Vitaminol. 1975, 21, 331–345. [Google Scholar] [CrossRef]
- Kim, S.-H.; Singh, D.; Son, S.Y.; Lee, S.; Suh, D.H.; Lee, N.-R.; Park, G.-S.; Kang, J.; Lee, C.H. Characterization and temporal dynamics of the intra- and extracellular environments of Lactiplantibacillus plantarum using multi-platform metabolomics. LWT 2023, 175, 114376. [Google Scholar] [CrossRef]
- Tolar, J.G.; Li, S.; Ajo-Franklin, C.M. The differing roles of flavins and quinones in extracellular electron transfer in Lactiplantibacillus plantarum. Appl. Environ. Microbiol. 2023, 89, e0131322. [Google Scholar] [CrossRef]
- Birkenmeier, M.; Neumann, S.; Röder, T. Kinetic modeling of riboflavin biosynthesis in Bacillus subtilis under production conditions. Biotechnol. Lett. 2014, 36, 919–928. [Google Scholar] [CrossRef]
- Douillard, F.P.; Ribbera, A.; Kant, R.; Pietilä, T.E.; Järvinen, H.M.; Messing, M.; Randazzo, C.L.; Paulin, L.; Laine, P.; Ritari, J.; et al. Comparative genomic and functional analysis of 100 Lactobacillus rhamnosus strains and their comparison with strain GG. PLoS Genet. 2013, 9, e1003683. [Google Scholar] [CrossRef] [PubMed]
- Møretrø, T.; Hagen, B.F.; Axelsson, L. A new, completely defined medium for meat lactobacilli. J. Appl. Microbiol. 1998, 85, 715–722. [Google Scholar] [CrossRef]
Ingredients | Quantity (g/L) |
---|---|
Sodium acetate | 5.0 |
Ammonium citrate | 1.0 |
MgSO4·7H2O | 0.4 |
MnSO4·7H2O | 0.038 |
KH2PO4 | 3.0 |
K2HPO4 | 3.0 |
FeSO2 | 0.02 |
Tween 80 | 1.0 |
Sucrose | 20.0 |
NaCl | 0.02 |
l-Aspartic acid | 0.020 |
l-Asparagine | 0.60 |
l-Phenylalanine | 0.1 |
l-Tyrosine | 0.1 |
l-Glutamic acid | 0.2 |
l-Glutamine | 0.2 |
l-Tryptophan | 0.2 |
l-Cysteine | 0.2 |
Uracil | 0.02 |
Guanosine | 0.02 |
Adenine | 0.02 |
Xanthine | 0.02 |
Orotic acid | 0.002 |
Biotin | 0.01 |
p-aminobenzoate | 0.01 |
Pantothenic acid | 0.001 |
Nicotinic acid | 0.001 |
Thiamine | 0.001 |
Pyridoxal | 0.004 |
B12 | 0.001 |
Folic acid | 0.001 |
Sr. No. | Parameter | Value | FIS-Predicted Riboflavin (µg/L) | Experimental Riboflavin (µg/L) | % Variation |
---|---|---|---|---|---|
1. | Casamino | 11 | 384 | 386.915 | 0.75 |
2. | GTP | 0.03 | 402 | 403.18 | 0.29 |
3. | Sodium acetate | 12 | 382 | 385.14 | 0.82 |
4. | Glycine | 12 | 383 | 380.69 | −0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, V.; Arora, V.K.; Rana, A.; Kumar, A.; Taneja, N.K.; Ahire, J.J. Predictive Modeling of Riboflavin Production in Lactiplantibacillus plantarum MTCC 25432 Using Fuzzy Inference System. Foods 2023, 12, 3155. https://doi.org/10.3390/foods12173155
Kumar V, Arora VK, Rana A, Kumar A, Taneja NK, Ahire JJ. Predictive Modeling of Riboflavin Production in Lactiplantibacillus plantarum MTCC 25432 Using Fuzzy Inference System. Foods. 2023; 12(17):3155. https://doi.org/10.3390/foods12173155
Chicago/Turabian StyleKumar, Vikram, Vinkel Kumar Arora, Ananya Rana, Ankur Kumar, Neetu Kumra Taneja, and Jayesh J. Ahire. 2023. "Predictive Modeling of Riboflavin Production in Lactiplantibacillus plantarum MTCC 25432 Using Fuzzy Inference System" Foods 12, no. 17: 3155. https://doi.org/10.3390/foods12173155
APA StyleKumar, V., Arora, V. K., Rana, A., Kumar, A., Taneja, N. K., & Ahire, J. J. (2023). Predictive Modeling of Riboflavin Production in Lactiplantibacillus plantarum MTCC 25432 Using Fuzzy Inference System. Foods, 12(17), 3155. https://doi.org/10.3390/foods12173155