Characterization of Nanoemulsions Stabilized with Different Emulsifiers and Their Encapsulation Efficiency for Oregano Essential Oil: Tween 80, Soybean Protein Isolate, Tea Saponin, and Soy Lecithin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Nanoemulsion Preparation
2.3. Measurement of the Droplet Size, Polydispersity Index (PDI), and Zeta Potential
2.4. Super-Resolution Micromorphology
2.5. Rheological Properties
2.6. Nanoemulsion Stability
2.6.1. Centrifugal Stability
2.6.2. Storage Stability
2.6.3. Oxidative Stability
2.7. OEO-Nanoemulsion Preparation
2.8. Encapsulation Efficiency
2.9. Environmental Stability of the OEO Nanoemulsion
2.9.1. pH Stability
2.9.2. Ionic Strength Stability
2.9.3. Thermal Stability
2.10. Statistical Analyses
3. Results and Discussion
3.1. Droplet Size and PDI
3.2. Zeta Potential
3.3. Super-Resolution Microscopy
3.4. Rheological Properties
3.5. Nanoemulsion Stability
3.5.1. Centrifugal Stability
3.5.2. Storage Stability
3.5.3. Oxidative Stability
3.6. Environmental Stability of OEO Nanoemulsions
3.6.1. pH Stability
3.6.2. Ionic Strength Stability
3.6.3. Thermal Stability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Da Silva, B.D.; do Rosário, D.K.A.; Weitz, D.A.; Conte-Junior, C.A. Essential oil nanoemulsions: Properties, development, and application in meat and meat products. Trends Sci. Technol. 2022, 121, 1–13. [Google Scholar] [CrossRef]
- Ebrahimi, R.; Fathi, M.; Ghoddusi, H.B. Nanoencapsulation of oregano essential oil using cellulose nanocrystals extracted from hazelnut shell to enhance shelf life of fruits: Case study: Pears. Int. J. Biol. Macromol. 2023, 242, 124704. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.S.; Ludueña, L.N.; Flores, S.K. Citric acid, chitosan and oregano essential oil impact on physical and antimicrobial properties of cassava starch films. Carbohydr. Polym. 2023, 5, 100307. [Google Scholar] [CrossRef]
- Dávila-Rodríguez, M.; López-Malo, A.; Palou, E.; Ramírez-Corona, N.; Jiménez-Munguía, M.T. Antimicrobial activity of nanoemulsions of cinnamon, rosemary, and oregano essential oils on fresh celery. LWT 2019, 112, 108247. [Google Scholar] [CrossRef]
- Liu, Y.G.; Yan, Y.Q.; Yang, K.H.; Yang, X.Y.; Dong, P.C.; Wu, H.; Luo, X.; Zhang, Y.M.; Zhu, L.X. Inhibitory mechanism of Salmonella Derby biofilm formation by sub-inhibitory concentrations of clove and oregano essential oil: A global transcriptomic study. Food Control. 2023, 150, 109734. [Google Scholar] [CrossRef]
- Lastra-Vargas, L.; Hernández-Nava, R.; Ruíz-González, N.; Jiménez-Munguía, M.T.; López-Malo, A.; Palou, E. Oregano essential oil as an alternative antimicrobial for the control of Listeria monocytogenes and Salmonella in Turkey mortadella during refrigerated storage. Food Chem. Adv. 2023, 2, 100314. [Google Scholar] [CrossRef]
- Xu, L.N.; Xu, X.L.; Xu, Y.J.; Huang, M.Y. Oregano essential oil-doped citric acid modified polyvinyl alcohol bio-active films: Properties, bio-functional performance and active packaging application of chicken breast. Food Packag. Shelf Life 2023, 38, 101125. [Google Scholar] [CrossRef]
- Hao, Y.P.; Guo, X.Q.; Zhang, W.Y.; Xia, F.; Sun, M.Y.; Li, H.; Bai, H.T.; Cui, H.X.; Shi, L. 1H NMR–based metabolomics reveals the antimicrobial action of oregano essential oil against Escherichia coli and Staphylococcus aureus in broth, milk, and beef. LWT 2023, 176, 114540. [Google Scholar] [CrossRef]
- Smaoui, S.; Hlima, H.B.; Ben Braiek, O.; Ennouri, K.; Mellouli, L.; Mousavi Khaneghah, A. Recent advancements in encapsulation of bioactive compounds as a promising technique for meat preservation. Meat Sci. 2021, 181, 108585. [Google Scholar] [CrossRef]
- Naseema, A.; Kovooru, L.; Behera, A.K.; Kumar, K.P.P.; Srivastava, P. A critical review of synthesis procedures, applications and future potential of nanoemulsions. Adv. Colloid. Interface Sci. 2021, 287, 102318. [Google Scholar]
- Rehman, A.; Qunyi, T.; Sharif, H.R.; Korma, S.A.; Karim, A.; Manzoor, M.F.; Mehmood, A.; Iqbal, M.W.; Raza, H.; Ali, A.; et al. Biopolymer based nanoemulsion delivery system: An effective approach to boost the antioxidant potential of essential oil in food products. Carbohydr. Polym. 2021, 2, 100082. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, C.; Dai, L.; Mao, L.; Yuan, F.; Gao, Y. Novel Bilayer Emulsions Costabilized by Zein Colloidal Particles and Propylene Glycol Alginate. 2. Influence of Environmental Stresses on Stability and Rheological Properties. J. Agric. Food Chem. 2019, 67, 1209–1221. [Google Scholar] [CrossRef] [PubMed]
- Christaki, S.; Moschakis, T.; Hatzikamari, M.; Mourtzinos, I. Nanoemulsions of oregano essential oil and green extracts: Characterization and application in whey cheese. Food Control 2022, 141, 109190. [Google Scholar] [CrossRef]
- Marhamati, M.; Ranjbar, G.; Rezaie, M. Effects of emulsifiers on the physicochemical stability of Oil-in-water Nanoemulsions: A critical review. J. Mol. Liq. 2021, 340, 117218. [Google Scholar] [CrossRef]
- Luisa Ludtke, F.; Aparecida Stahl, M.; Grimaldi, R.; Bruno Soares Forte, M.; Lucia Gigante, M.; Paula Badan Ribeiro, A. Optimization of high pressure homogenization conditions to produce nanostructured lipid carriers using natural and synthetic emulsifiers. Food Res. Int. 2022, 160, 111746. [Google Scholar] [CrossRef]
- Li, Y.; Liu, B.; Jiang, L.; Regenstein, J.M.; Jiang, N.; Poias, V.; Zhang, X.; Qi, B.; Li, A.; Wang, Z. Interaction of soybean protein isolate and phosphatidylcholine in nanoemulsions: A fluorescence analysis. Food Hydrocoll. 2019, 87, 814–829. [Google Scholar] [CrossRef]
- Deng, M.; Chen, H.J.; Xie, L.; Liu, K.; Zhang, X.M.; Li, X.F. Tea saponins as natural emulsifiers and cryoprotectants to prepare silymarin nanoemulsion. LWT 2022, 156, 113042. [Google Scholar] [CrossRef]
- Nash, J.J.; Erk, K.A. Stability and interfacial viscoelasticity of oil-water nanoemulsions stabilized by soy lecithin and Tween 20 for the encapsulation of bioactive carvacrol. Colloids Surf. A 2017, 517, 1–11. [Google Scholar] [CrossRef]
- Xu, J.; Mukherjee, D.; Chang, S.K.C. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization. Food Chem. 2018, 240, 1005–1013. [Google Scholar] [CrossRef]
- Long, J.Y.; Song, J.W.; Zhang, X.M.; Deng, M.; Xie, L.; Zhang, L.L.; Li, X.F. Tea saponins as natural stabilizers for the production of hesperidin nanosuspensions. Int. J. Pharm. 2020, 583, 119406. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, Y.; Zhang, M.; Jiang, H.Y.; Yan, Z.H.; Liu, J.B.; Liu, X.T. Effect of soy lecithin concentration on physiochemical properties and rehydration behavior of egg white protein powder: Role of dry and wet mixing. J. Food Eng. 2022, 328, 111062. [Google Scholar] [CrossRef]
- Li, J.F.; Li, Y.T.; Guo, S.T. The binding mechanism of lecithin to soybean 11S and 7S globulins using fluorescence spectroscopy. Food Sci. Biotechnol. 2014, 23, 1785–1791. [Google Scholar] [CrossRef]
- Mehmood, T.; Ahmed, A.; Ahmed, Z.; Ahmad, M.S. Optimization of soya lecithin and Tween 80 based novel vitamin D nanoemulsions prepared by ultrasonication using response surface methodology. Food Chem. 2019, 289, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Cuellar, C.E.; de Jesus Perea-Flores, M.; Quintanilla-Carvajal, M.X. In-vitro digestion of whey protein- and soy lecithin-stabilized High Oleic Palm Oil emulsions. J. Food Eng. 2020, 278, 109918. [Google Scholar] [CrossRef]
- Zou, Y.; Yu, Y.S.; Cheng, L.N.; Li, L.; Peng, S.D.; Zhou, W.; Xu, Y.J.; Li, J.H. Effect of citric acid/pomelo essential oil nanoemulsion combined with high hydrostatic pressure on the quality of banana puree. Food Chem. X 2023, 17, 100614. [Google Scholar] [CrossRef]
- Lotfy, T.M.R.; Shawir, S.M.S.; Badawy, M.E.I. The impacts of chitosan-essential oil nanoemulsions on the microbial diversity and chemical composition of refrigerated minced meat. Int. J. Biol. Macromol. 2023, 239, 124237. [Google Scholar] [CrossRef]
- Liu, H.T.; Zhang, J.N.; Wang, H.; Chen, Q.; Kong, B.H. High-intensity ultrasound improves the physical stability of myofibrillar protein emulsion at low ionic strength by destroying and suppressing myosin molecular assembly. Ultrason. Sonochem. 2021, 74, 105554. [Google Scholar] [CrossRef]
- Wang, S.N.; Yang, J.J.; Shao, G.Q.; Qu, D.N.; Zhao, H.K.; Yang, L.N.; Zhu, L.J.; He, Y.T.; Liu, H.; Zhu, D.S. Soy protein isolated-soy hull polysaccharides stabilized O/W emulsion: Effect of polysaccharides concentration on the storage stability and interfacial rheological properties. Food Hydrocoll. 2020, 101, 105490. [Google Scholar] [CrossRef]
- Qi, H.L.; Chen, S.; Zhang, J.Q.; Liang, H. Robust stability and antimicrobial activity of d-limonene nanoemulsion by sodium caseinate and high pressure homogenization. J. Food Eng. 2022, 334, 111159. [Google Scholar] [CrossRef]
- Li, Y.; Li, M.D.; Qi, Y.M.; Zheng, L.; Wu, C.L.; Wang, Z.J.; Teng, F. Preparation and digestibility of fish oil nanoemulsions stabilized by soybean protein isolate-phosphatidylcholine. Food Hydrocoll. 2020, 100, 105310. [Google Scholar] [CrossRef]
- Snoussi, A.; Chouaibi, M.; Ben Haj Koubaier, H.; Bouzouita, N. Encapsulation of Tunisian thyme essetial oil in O/W nanoemulsions: Application for meat preservation. Meat Sci. 2022, 188, 108785. [Google Scholar] [CrossRef] [PubMed]
- De Oca-Ávalos, J.M.M.; Candal, R.J.; Herrera, M.L. Nanoemulsions: Stability and physical properties. Curr. Opin. Food Sci. 2017, 16, 1–6. [Google Scholar] [CrossRef]
- Bai, L.; Huan, S.Q.; Gu, J.Y.; McClements, D.J. Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: Saponins, phospholipids, proteins, and polysaccharides. Food Hydrocoll. 2016, 61, 703–711. [Google Scholar] [CrossRef]
- Arancibia, C.; Riquelme, N.; Zúñiga, R.; Matiacevich, S. Comparing the effectiveness of natural and synthetic emulsifiers on oxidative and physical stability of avocado oil-based nanoemulsions. Innov. Food Sci. Emerg. Technol. 2017, 44, 159–166. [Google Scholar] [CrossRef]
- Zhu, Z.B.; Wen, Y.; Yi, J.H.; Cao, Y.G.; Liu, F.G.; McClements, D.J. Comparison of natural and synthetic surfactants at forming and stabilizing nanoemulsions: Tea saponin, Quillaja saponin, and Tween 80. J. Colloid. Interface Sci. 2019, 536, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Xie, F.Y.; Zhang, S.; Li, Y.; Qi, B.K. Homogenization pressure and soybean protein concentration impact the stability of perilla oil nanoemulsions. Food Hydrocoll. 2020, 101, 105575. [Google Scholar] [CrossRef]
- Silva, H.D.; Cerqueira, M.A.; Vicente, A.A. Influence of surfactant and processing conditions in the stability of oil-in-water nanoemulsions. J. Food Eng. 2015, 167, 89–98. [Google Scholar] [CrossRef]
- Xu, X.F.; Sun, Q.J.; McClements, D.J. Enhancing the formation and stability of emulsions using mixed natural emulsifiers: Hydrolyzed rice glutelin and quillaja saponin. Food Hydrocoll. 2019, 89, 396–405. [Google Scholar] [CrossRef]
- Chang, Y.G.; McClements, D.J. Influence of emulsifier type on the in vitro digestion of fish oil-in-water emulsions in the presence of an anionic marine polysaccharide (fucoidan): Caseinate, whey protein, lecithin, or Tween 80. Food Hydrocoll. 2016, 61, 92–101. [Google Scholar] [CrossRef]
- Kwaambwa, H.M.; Rennie, A.R. Interactions of surfactants with a water treatment protein from Moringa oleifera seeds in solution studied by zeta-potential and light scattering measurements. Biopolymers 2012, 97, 209–218. [Google Scholar] [CrossRef]
- Hu, K.L.; Cao, S.; Hu, F.Q.; Feng, J.F. Enhanced oral bioavailability of docetaxel by lecithin nanoparticles: Preparation, in vitro, and in vivo evaluation. Int. J. Nanomed. 2012, 7, 3537–3545. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Liu, T.X.; Tang, C.H. Facilitated formation of soy protein nanoemulsions by inhibiting protein aggregation: A strategy through the incorporation of polyols. Food Hydrocoll. 2023, 137, 108376. [Google Scholar] [CrossRef]
- Ozturk, B.; McClements, D.J. Progress in natural emulsifiers for utilization in food emulsions. Curr. Opin. Food Sci. 2016, 7, 1–6. [Google Scholar] [CrossRef]
- Sun, H.T.; Ma, Y.; Huang, X.Q.; Song, L.J.; Guo, H.T.; Sun, X.D.; Li, N.; Qiao, M.W. Stabilization of flaxseed oil nanoemulsions based on flaxseed gum: Effects of temperature, pH and NaCl on stability. LWT 2023, 176, 114512. [Google Scholar] [CrossRef]
- Wang, D.Q.; Zhong, M.M.; Sun, Y.F.; Fang, L.; Sun, Y.D.; Qi, B.K.; Li, Y. Effects of pH on ultrasonic-modified soybean lipophilic protein nanoemulsions with encapsulated vitamin E. LWT 2021, 144, 111240. [Google Scholar] [CrossRef]
- Wilking, J.N.; Mason, T.G. Irreversible shear-induced vitrification of droplets into elastic nanoemulsions by extreme rupturing. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2007, 75, 041407. [Google Scholar] [CrossRef]
- Kadiya, K.; Ghosh, S. Pectin degree of esterification influences rheology and digestibility of whey protein isolate-pectin stabilized bilayer oil-in-water nanoemulsions. Food Hydrocoll. 2022, 131, 107789. [Google Scholar] [CrossRef]
- Chen, Y.F.; Sun, Y.; Meng, Y.L.; Liu, S.L.; Ding, Y.C.; Zhou, X.X.; Ding, Y.T. Synergistic effect of microfluidization and transglutaminase cross-linking on the structural and oil-water interface functional properties of whey protein concentrate for improving the thermal stability of nanoemulsions. Food Chem. 2023, 408, 135147. [Google Scholar] [CrossRef]
- Tokle, T.; McClements, D.J. Physicochemical properties of lactoferrin stabilized oil-in-water emulsions: Effects of pH, salt and heating. Food Hydrocoll. 2011, 25, 976–982. [Google Scholar] [CrossRef]
- Kang, Z.W.; Chen, S.; Zhou, Y.; Ullah, S.; Liang, H. Rational construction of citrus essential oil nanoemulsion with robust stability and high antimicrobial activity based on combination of emulsifiers. Innov. Food Sci. Emerg. Technol. 2022, 80, 103110. [Google Scholar] [CrossRef]
- Chaari, M.; Theochari, I.; Papadimitriou, V.; Xenakis, A.; Ammar, E. Encapsulation of carotenoids extracted from halophilic Archaea in oil-in-water (O/W) micro- and nano-emulsions. Colloids Surf. B 2018, 161, 219–227. [Google Scholar] [CrossRef]
- Tcholakova, S.; Denkov, N.D.; Ivanov, I.B.; Campbell, B. Coalescence stability of emulsions containing globular milk proteins. Adv. Colloid. Interface Sci. 2006, 123–126, 259–293. [Google Scholar] [CrossRef]
- Fernandez, C.; Escriu, R.; Trujillo, A.J. Ultra-High Pressure Homogenization enhances physicochemical properties of soy protein isolate-stabilized emulsions. Food Res. Int. 2015, 75, 357–366. [Google Scholar] [CrossRef]
- Tian, T.; Tong, X.H.; Yuan, Y.; Lyu, B.; Jiang, D.Z.; Cui, W.Y.; Cheng, X.Y.; Li, L.; Li, Y.; Jiang, L.Z.; et al. Preparation of benzyl isothiocyanate nanoemulsions by different emulsifiers: Stability and bioavailability. Process Biochem. 2021, 111, 128–138. [Google Scholar] [CrossRef]
- Sahafi, S.M.; Goli, S.A.H.; Kadivar, M.; Varshosaz, J.; Shirvani, A. Pomegranate seed oil nanoemulsion enriched by alpha-tocopherol; the effect of environmental stresses and long-term storage on its physicochemical properties and oxidation stability. Food Chem. 2021, 345, 128759. [Google Scholar] [CrossRef]
- Zhang, S.L.; Tian, L.; Yi, J.H.; Zhu, Z.B.; Decker, E.A.; McClements, D.J. Mixed plant-based emulsifiers inhibit the oxidation of proteins and lipids in walnut oil-in-water emulsions: Almond protein isolate-camellia saponin. Food Hydrocoll. 2020, 109, 106136. [Google Scholar] [CrossRef]
- Dickinson, E. Food emulsions: Principles, practice, and techniques. Food Hydrocoll. 2006, 20, 137. [Google Scholar]
- Teo, A.; Goh, K.K.; Wen, J.; Oey, I.; Ko, S.; Kwak, H.S.; Lee, S.J. Physicochemical properties of whey protein, lactoferrin and Tween 20 stabilised nanoemulsions: Effect of temperature, pH and salt. Food Chem. 2016, 197, 297–306. [Google Scholar] [CrossRef]
- Yang, Y.; Leser, M.E.; Sher, A.A.; McClements, D.J. Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale®). Food Hydrocoll. 2013, 30, 589–596. [Google Scholar] [CrossRef]
- Maier, C.; Conrad, J.; Carle, R.; Weiss, J.; Schweiggert, R.M. Phenolic constituents in commercial aqueous Quillaja (Quillaja saponaria Molina) wood extracts. J. Agric. Food Chem. 2015, 63, 1756–1762. [Google Scholar] [CrossRef]
- Riquelme, N.; Zúñiga, R.N.; Arancibia, C. Physical stability of nanoemulsions with emulsifier mixtures: Replacement of tween 80 with quillaja saponin. LWT 2019, 111, 760–766. [Google Scholar] [CrossRef]
- Li, Q.Y.; Zheng, J.B.; Ge, G.; Zhao, M.M.; Sun, W.Z. Impact of heating treatments on physical stability and lipid-protein co-oxidation in oil-in-water emulsion prepared with soy protein isolates. Food Hydrocoll. 2020, 100, 105167. [Google Scholar] [CrossRef]
- Li, Z.Q.; Dai, L.; Wang, D.; Mao, L.K.; Gao, Y.X. Stabilization and Rheology of Concentrated Emulsions Using the Natural Emulsifiers Quillaja Saponins and Rhamnolipids. J. Agric. Food Chem. 2018, 66, 3922–3929. [Google Scholar] [CrossRef] [PubMed]
Nanoemulsion Samples | Nanoemulsions without OEO | OEO-Nanoemulsions | |||||
---|---|---|---|---|---|---|---|
Emulsifier Concentration (%, w/v) | Aqueous Phase (%, v/v) | MCT-Oil (%, v/v) | Emulsifier Concentration (%, w/v) | Aqueous Phase (%, v/v) | MCT-Oil (%, v/v) | OEO (%, v/v) | |
T80 | 0.5–8 | 95 | 5 | 4 | 95 | 2.5 | 2.5 |
SPI | 95 | 5 | 1 | 95 | 2.5 | 2.5 | |
TS | 95 | 5 | 2 | 95 | 2.5 | 2.5 | |
SL | 95 | 5 |
Emulsifier Type | Emulsifier Concentration (%, w/v) | Droplet Size (nm) | PDI | Zeta Potential (mV) |
---|---|---|---|---|
T80 | 0.5 | 239.1 ± 4.15 a | 0.18 ± 0.02 a | −15.00 ± 0.36 a |
1 | 205.5 ± 1.59 b | 0.18 ± 0.01 a | −16.83 ± 1.63 b | |
2 | 189.1 ± 3.47 c | 0.19 ± 0.01 a | −18.87 ± 1.00 c | |
4 | 181.9 ± 1.19 d | 0.20 ± 0.01 a | −17.37 ± 0.49 b | |
8 | 180.1 ± 3.44 d | 0.20 ± 0.01 a | −18.10 ± 0.10 c | |
SPI | 0.5 | 324.2 ± 8.58 c | 0.21 ± 0.01 a | −34.60 ± 0.36 c |
1 | 271.5 ± 3.84 d | 0.21 ± 0.01 a | −33.40 ± 0.15 c | |
2 | 308.2 ± 8.55 cd | 0.17 ± 0.02 a | −30.10 ± 0.66 b | |
4 | 352.8 ± 3.49 b | 0.16 ± 0.02 a | −28.67 ± 0.29 b | |
8 | 371.7 ± 8.53 a | 0.20 ± 0.01 a | −26.27 ± 0.59 a | |
TS | 0.5 | 227.5 ± 4.69 a | 0.17 ± 0.01 a | −40.23 ± 0.42 a |
1 | 213.9 ± 4.77 b | 0.16 ± 0.01 a | −40.97 ± 3.07 a | |
2 | 206.1 ± 0.92 bc | 0.19 ± 0.01 a | −42.57 ± 1.30 a | |
4 | 199.3 ± 2.10 c | 0.19 ± 0.01 a | −44.50 ± 0.44 a | |
8 | 197.2 ± 5.16 c | 0.19 ± 0.01 a | −43.20 ± 0.52 a | |
SL | 0.5 | 301.8 ± 7.06 a | 0.20 ± 0.01 a | −25.37 ± 0.06 a |
1 | 266.2 ± 2.52 b | 0.17 ± 0.02 a | −26.50 ± 0.26 a | |
2 | 226.6 ± 2.45 c | 0.16 ± 0.01 a | −25.27 ± 0.21 a | |
4 | 184.9 ± 1.33 d | 0.18 ± 0.01 a | −28.70 ± 0.17 b | |
8 | 178.5 ± 2.62 d | 0.21 ± 0.01 a | −29.67 ± 0.08 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Wang, Z.; Wang, X.; Kong, B.; Liu, Q.; Xia, X.; Liu, H. Characterization of Nanoemulsions Stabilized with Different Emulsifiers and Their Encapsulation Efficiency for Oregano Essential Oil: Tween 80, Soybean Protein Isolate, Tea Saponin, and Soy Lecithin. Foods 2023, 12, 3183. https://doi.org/10.3390/foods12173183
Zhao S, Wang Z, Wang X, Kong B, Liu Q, Xia X, Liu H. Characterization of Nanoemulsions Stabilized with Different Emulsifiers and Their Encapsulation Efficiency for Oregano Essential Oil: Tween 80, Soybean Protein Isolate, Tea Saponin, and Soy Lecithin. Foods. 2023; 12(17):3183. https://doi.org/10.3390/foods12173183
Chicago/Turabian StyleZhao, Siqi, Ziyi Wang, Xuefei Wang, Baohua Kong, Qian Liu, Xiufang Xia, and Haotian Liu. 2023. "Characterization of Nanoemulsions Stabilized with Different Emulsifiers and Their Encapsulation Efficiency for Oregano Essential Oil: Tween 80, Soybean Protein Isolate, Tea Saponin, and Soy Lecithin" Foods 12, no. 17: 3183. https://doi.org/10.3390/foods12173183
APA StyleZhao, S., Wang, Z., Wang, X., Kong, B., Liu, Q., Xia, X., & Liu, H. (2023). Characterization of Nanoemulsions Stabilized with Different Emulsifiers and Their Encapsulation Efficiency for Oregano Essential Oil: Tween 80, Soybean Protein Isolate, Tea Saponin, and Soy Lecithin. Foods, 12(17), 3183. https://doi.org/10.3390/foods12173183