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Abstract: During the last few years, the increasing evidence of dietary antioxidant compounds and
reducing chronic diseases and the relationship between diet and health has promoted an important
innovation within the baked product sector, aiming at healthier formulations. This study aims to
develop a tool based on mathematical models to predict baked goods’ total antioxidant capacity
(TAC). The high variability of antioxidant properties of flours based on the aspects related to the type
of grain, varieties, proximal composition, and processing, among others, makes it very difficult to
innovate on food product development without specific analysis. Total phenol content (TP), oxygen
radical absorbance capacity (ORAC), and ferric-reducing antioxidant power assay (FRAP) were used
as markers to determine antioxidant capacity. Three Bayesian-type models are proposed based on a
double exponential parameterized curve that reflects the initial decrease and subsequent increase as a
consequence of the observed processes of degradation and generation, respectively, of the antioxidant
compounds. Once the values of the main parameters of each curve were determined, support vector
machines (SVM) with an exponential kernel allowed us to predict the values of TAC, based on baking
conditions (temperature and time), proteins, and fibers of each native grain.

Keywords: pulses; antioxidant capacity; prediction; thermal processing; flour; Bayesian model;
cereals; support vector machines (SVM)

1. Introduction

Cereals and legumes are common staple foods. These products represent an important
source of nutrients from the diet and have an irreplaceable role in nutrition [1]. Cereals
are frequently consumed as baked goods, such as bread or biscuits, among other products,
with legumes gaining importance as total or partial substitutes for cereal flour in those
types of products. In the 1990s, different aspects such as industrialization and changes in
lifestyles, among other factors, favored the production of under-nourishing baked goods
based on refined flours, rich in sugars, and saturated fatty acids, with poor fiber and
naturally present antioxidants.

Traditionally, fruits and vegetables have been identified as major sources of dietary
antioxidants, but grains have gained interest due to the proven inverse association between
whole grain consumption and the risk of chronic diseases, such as cardiovascular diseases,
diabetes, and cancer [2–5], due to their high content in fiber and free and bound phenolic
compounds [6,7].

During the last few years, the increasing awareness by consumers of the relationship
between diet and health and the industrial innovation to satisfy consumer demands have
driven the baked-product sector to work on more nutritional and healthier formulations.
The market for natural antioxidants, with high demand not only in the food sector but with
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other applications such as cosmetics and plastic, is expected to grow from USD 321.4 million
in 2022 to USD 409.7 million in 2032, at a CAGR of 2.4% [8].

Our body is naturally equipped with antioxidant mechanisms to control damage
from ROS and RNS (reactive oxygen or nitrogen species); however, dietary antioxidants
from food or nutritional supplements are believed to contribute to oxidative balance [9].
Moreover, these compounds affect food quality by avoiding lipid and protein oxidation.

Food bioactive molecules are characterized by their chemical diversity, which com-
plicates the measurement of single-compound antioxidant capacity. The concept of total
antioxidant capacity (TAC), including the synergic and redox interactions between the
different molecules present in the food, was introduced to avoid these limitations. The
appropriate use of TAC measurements provides support for the interpretation of com-
plex phenomena and can be a tool for screening studies previous to in-depth research
investigations [10].

The broad types of chemical structures of antioxidant compounds in food complex
matrices make necessary the use of more than one measurement to assess their antioxidant
capacity. One of the main aspects of selecting antioxidant assays is the reaction mechanism.
There are two main mechanisms, single electron transfer (SET) and hydrogen atom transfer
(HAT). In SET antioxidant reactions, the free radical loses its condition by “pairing” its
unpaired electron. In HAT reactions, the free radical is electronically stabilized through a
mechanism that involves the direct transfer of a hydrogen atom [11].

Different assays can be used to estimate the total capacity of foods to scavenge reactive
oxygen and nitrogen species and free radicals or to assess the content of reducing com-
pounds. Among the most popular assays, ABTS+• (2,2′-azinobis-(3-ethylbenzothiazoline-
6-sulfonic acid) and DPPH• (2,2-diphenyl-1-picrylhydrazyl) radical reduction methods
can be found; both can be reported with Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-
carboxylic acid) as standard. The ABTS+• assay is effective in estimating hydrophilic and
lipophilic antioxidants, while the DPPH• assay has important limitations for lipophilic
compounds. Although they are used widely in screening studies, both have limitations
associated with oxygen, pH, or uncertain reaction kinetic endpoints, which can reduce
their reproducibility. Also, both assays use synthetic radicals, which are not present in
biological systems.

Oxygen radical absorbance capacity (ORAC) is another widely adopted method; in this
case, although the radical initiator is a synthetic compound, the peroxyl radicals produced,
against which antioxidant capacity is evaluated, are of relevance for food oxidation mecha-
nisms [12]. Lipid and protein peroxidation have been linked to the pathogenesis of various
diseases through different mechanisms, such as disturbance of membrane organization,
functional loss of proteins and DNA, or accumulation of modified proteins in cells [13].

The reducing capacity is also important to assess the TAC; the ferric-reducing an-
tioxidant power assay (FRAP) is based on the reduction of the 2,4,6-tripyridyl- -triazine
(TPTZ)–Fe3+ to TPTZ-Fe2+ complex.

Wholegrain cereals and pulses contain a wide range of bioactive components with
antioxidant effects, such as proteins, dietary fiber (TDF), and phenolic compounds present
in free and bound forms [14–16], which contribute to product antioxidant capacity. The
Folin−Ciocalteu assay is generally used to measure total phenol content (TPC); it is not a
specific method for phenolic compounds, although it is a quick and effective method to
evaluate them. It is important to highlight that this method can also respond to amines and
reducing sugars, which can interfere with the real value; but also, it can be interesting in
the case of processed foods, where Maillard reactions occur, as this method can evaluate
the antioxidant capacity of Maillard reaction products (MRP) [17].

During the last few years (2010–2022), more than 8000 articles have been published on
the antioxidant capacity in the food area [18]. However, there is a high variability of data
published, which comes from different aspects such as the complexity of food matrices,
raw material variability, lack of standards in the assays of the antioxidant capacity, and
extraction methodologies, among others.
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One strategy to overcome the difficulties of the variability in antioxidant capacity
evaluation is relying on extensive databases [19], which can be used for comparison and
reference. For example, USDA has developed two databases, one of reducing power values
of more than 1100 food raw and processed products [20] and a second of ORAC values, with
326 different food items [21]. Another example would be the attempt to estimate the daily
intake of hydrophilic antioxidants in the Japanese population by Takebayashi et al. [22].

The use of mathematical tools for assessing and predicting antioxidant properties
of compounds can also be used as a strategy for food antioxidant estimation. QSAR
models (quantitative structure-activity relationships) are used successfully to identify
patterns in chemical structure data and correlate and predict the antioxidant capacity of
compounds [23]. However, these studies have limited applications to food matrices, where
complex mixtures of different compounds are found.

Support vector machine (SVM) methodology is extensively used in pattern recogni-
tion because of its capability to classify future unseen data and its good generalization
performance [24]. SVM also has the ability to perform well with small datasets.

For this reason, the objective of this paper was to use the support vector machine
(SVM) technique to develop a mathematical modeling tool based on proximal composition
to predict total antioxidant capacity, as measured with three widely adopted methods
integrating different aspects of antioxidant capacity assays (TP, ORAC, and FRAP). This
work was intended to model the redox status of thermally-processed flours from different
types of cereals and pulses and provide an estimation of TAC of baked cereal- and legume-
based products to the food industry.

2. Materials and Methods

2.1. Raw Material

A total of 136 varieties of 10 different grain types (cereals and pulses) were provided by
the experimental agronomic program (PEA) of ITACyL or obtained from local markets. The
varieties provided by PEA were cultivated and harvested according to uniform protocols,
which reduce variability associated with agronomic aspects. The varieties and grains were
the following:

Wheat (Chambo, LGWF 16 1321, RW72009, LGWF17 118, LGWE 18 8199,
LGWF 17 5114, LGWF 5114, CF 14255, RW 21837, RW 72010, RW 72003, RW 72003, Mar-
copolo, RW 21846, Filón, Camargo, FDN 18 WW 0240, Nogal, Berdun, LG WE 178300,
Boticelli, HAW 18-001, RW21968, LGW 178302, RW 72006, RW71804, Candeal PANE 247,
Candeal, and 12 commercial flours provided from local markets). Rye (Teodor, Igor, Loretto,
Vinetto, Su Promotor, Petkus, Poseido, Arvid, Stannos, and two commercial flours provided
from local markets. Corn (LG3490, PO937, LG31545, SY Caarioca, Urbanix, 47M, Berlioz,
KWS Selecto, RGT Huxxo, and four commercial flours provided from local markets). Trit-
icale (Kitsurf, Saleroso, Randam, Rivolt, RGTsuliac, Vivacio, RGT/Zaragozac., Trimour,
Amarillo/105, LG Plutón, BELOTAC Cerraton (BU), RGT/KADJAC, RGT/COPLAC Cer-
raton, Bondadoso Cerraton). Oats (nine commercial flours provided from local markets).
Rice (six commercial flours provided from local markets). Sorghum (White: KSH9635W,
KSH8G26, KWS Octavius, KSH9G37W, KSH9G32W, P1288Y20, and Brown: KWS Nemesis,
PR88P68, Shamal, Foehm, Es Alize). Chickpea (Tauriton, Sultano, Turi, Villaturiel, Urbel,
Ituci, Krema, Maragia L., Reale L, Vulcano, Pirón, Kasin, and three commercial flours pro-
vided from local markets). Lentil (Guareña, Paula, and three commercial flours provided
from local markets). Soybean (Sirocca+, Sirocca-, SB8, ES Pallador, Luna, Pepita, Es Isidor,
Es Mentor, S/19/12, Primus, SB07, SB44, Proteix, Panoramix, Casleis).

2.2. Sample Preparation

Grain samples were reduced to uniform powder using a mill (Model Cyclotec 1093,
Foss, Hilleroed, Denmark) fitted with a 0.5 mm screen, and then stored in sealed polyethy-
lene/plastic bags in dark conditions to ensure stability until analysis.
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Afterward, wheat and rye flours were used as models for the evaluation of thermal
processing (temperature and time) on the antioxidant capacity (Figure 1). Biscuit was used
as a model food. Biscuits were formulated with 10.17 g of flour, 3.85 g of sunflower oil,
and 0.98 g of water. Each biscuit weighed 15 g. After kneading, the dough was cut using
a round mold of Ø 9.5 cm and 0.5 cm in height. Biscuits were baked at temperatures of
180, 200, and 220 ◦C for 0–1500 s. The biscuits were frozen and lyophilized to stabilize
the samples. After that, biscuits were milled to a particle size below 0.5 mm and stored
in sealed polyethylene/plastic bags in dark conditions to ensure stability until analysis.
The baking procedure for each sample, temperature and baking time, was carried out in
duplicate with six biscuits. Each set of six biscuits was pooled for analysis.
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2.3. Proximal Composition

Moisture content was measured gravimetrically by drying samples at 100 ◦C for 24 h.
Total protein content was determined by the Dumas method (AOAC method 990.03) [25]. A
conversion factor of 5.7 was used to calculate protein content from nitrogen values. Total fat
content was determined using dried samples extracted with petroleum ether (BP 40–60 ◦C)
for 4 h in a Soxtec fat extracting unit (AOAC 2005, method 2003.05) [25]. Ash content
was determined by sample incineration in a muffle furnace at 550 ◦C for 5 h (AOAC 2005,
method 923.03) [25]. Carbohydrates were estimated by difference. Total dietary fiber (TDF)
content was evaluated using a kit provided by Sigma (TDF100A-1KT, St. Louis, MO, USA),
in accordance with the manufacturer’s instructions, based on the AOAC method 985.29 [25].
All parameters were evaluated in duplicate. Proximal composition analysis was expressed
in g 100 g−1 dry matter (d.m.).

2.4. Colorimetric Analysis

Color parameters lightness (L*), redness (a*), and yellowness (b*) were measured
using a colorimeter (CM-2600d, Konica Minolta, Osaka, Japan) adjusted as D65 standard
illuminate, 45/0 sensor, and 10◦ standard observer. The colorimeter was standardized
using a light trap and a white calibration plate. Four measurements per sample were taken
directly on the samples.

2.5. Extract Preparation

One gram of ground (mesh size 0.5 mm) sample was extracted with 8 mL of methanol:
water (1:1, v/v; acidified to pH = 2 with 0.1 M HCl) in an orbital shaker (250 rpm, 30 min)
using magnetic agitation. After centrifugation (2057× g, 10 min), the supernatant was
collected and filtered (Filter lab paper n. 1249). The extraction was repeated three times.
The combined methanol extracts were adjusted to 25 mL. All analyses were performed in
duplicate. Extract aliquots were stored at −80 ◦C until further analysis.
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2.6. Total Phenol (TP) Content

TP was measured using the Folin−Ciocalteu method as described by Slinkard and
Singleton, with modifications [26]. The absorbance was measured at 765 nm with a mi-
croplate reader (Fluostar Omega, BMG, Ortenberg, Germany). Results were calculated
using a calibration curve with gallic acid as standard (9.8–70 mM) and expressed as mg
gallic acid equivalents (GAE) 100 g−1 sample (d.m.).

2.7. Oxygen Radical Absorbance Capacity (ORAC)

The procedure was based on a previously reported method by Ou et al. [27], with slight
modifications. The standard curve of Trolox (7.5–180 mM) and samples were diluted in
phosphate buffer (10 mM, pH 7.4). Fluorescence was monitored between 100 and 120 min
with a microplate reader (Fluostar Omega, BMG, Ortenberg, Germany), using 485 nm
excitation and 520 nm emission filters. Results were calculated using the areas under the
fluorescein decay curves between the blank and the sample and expressed as µmol Trolox
equivalents (TE) 100 g−1 sample (d.m.).

2.8. Ferric-Reducing Antioxidant Power (FRAP)

The procedure was based on a previously reported method by Benzie and Strain [28],
with slight modifications. A 300 mM acetate buffer, pH 3.6 (mixing a solution of 300 mM
sodium acetate and 300 mM glacial acetic acid until pH 3.6), a 10-mM TPTZ (2,4,6-tripyridyl-
triazine) solution in 40 mM HCL, and a 20-mM FeCL3.6H2O solution were prepared. The
FRAP working solution was prepared by mixing the acetate buffer, TPTZ solution, and
FeCl3.6H2O solution in a volume ratio of 10:1:1. The absorbance was measured at 593 nm
with a microplate reader (Fluostar Omega, BMG, Ortenberg, Germany) using a calibration
curve with FeSO4.7H2O (100–1000 µM). The results were expressed as mmol Fe equivalents
(FeE) 100 g−1 sample (d.m.).

2.9. Statistical Analysis and Mathematical Modelling

Chemical composition and antioxidant capacity were shown using average and stan-
dard deviation, ANOVA one-way analyses were carried out to find differences between
groups, and results were displayed in stacked bars and boxplot graphs. In addition,
prior centerd and standardized data, principal component analysis (PCA), and distributed
stochastic neighbor embedding (t-SNE) were used to visualize the chemical composition
profiles of the grains, and Spearman Rank correlation coefficients were performed to
elucidate the relationships among chemical variables and antioxidant biomarkers. All
statistical analyses were performed with both R (R: The R Project for Statistical Computing
(r-project.org) and Python (Welcome to Python.org) software packages.

Modeling of the antioxidant capacity of the grains, using as output variables (TP,
ORAC, and FRAP), was carried out considering as input variables the type of grain,
proximal composition (protein and fiber), and baking temperature. Model development
was performed with the RJAGS package (R Project). The maximization of R2 was used as
criteria for model applicability evaluation, using models from the scikit-learn packages
from Python and lme4, nlme, and e1071 libraries from R. Finally, a local sensitivity analysis
(using the complete final model and varying input values) was carried out to assess the
predictor importance and identify their effect on the curve response.

3. Results and Discussion

3.1. Compositional Characteristics of the Native Flours

Proximal analysis (protein, fat, and fiber) was evaluated in all samples as it has been
suggested that compositional variations can affect the antioxidant capacity of grains [29,30]
(Figures 2 and 3).
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As expected, grain showed a wide variation in protein content; values ranged from
6 to 40 g 100 g−1 (Figures 2 and 3I). The lowest values corresponded to cereals, corn
and rice, where the lowest protein content appeared and pulses where the highest values
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were observed. These results are within the range of those reported by the USDA food
database [31], which reports cereal protein values in the range of 6.69–7.5 g 100 g−1 for
rice, 3.0–16.7 g 100 g−1 for wheat, 10.1–15.1 g 100 g−1 for oat, or 5.43–6.67 g 100 g−1 for
corn. Pulses had higher protein content than cereals ranging from 14.50 to 23.97 g 100 g−1

for chickpea or 22.19 to 25.13 g 100 g−1 for lentil. As expected, soy was the grain with
the highest protein content (34.06–44.38 g 100 g−1) (Figures 2 and 3I). Cereals had higher
differences in protein content associated with the variety factor, as compared to pulses.
Rice was the grain where major variability due to variety was observed.

Protein content and profile differ with species, variety, genotype, and environmental
and fertilization conditions, among other factors [32,33]. The amount of protein is quite
important from a nutritional point of view, but the protein profile and the ratio of sec-
ondary structure are relevant regarding thermal stability after the process and in their
later digestibility [34]. For example, grains with higher β-sheet content are easier to cook
versus normal grains [35]. The reason is that temperature alters protein structure affecting
disulphide and hydrogen linkages resulting in the reorganization of protein structure and
becoming more or less accessible during protein digestibility. These changes can affect their
antioxidant properties since many of the protein fragments produced during digestion
exhibit antioxidant ability, as previously demonstrated in oats [36], rye [37], wheat [38],
buckwheat, rice, corn [39], soybean, lentil, and chickpeas [40–42] among other grains.

Fat was also evaluated in all the grains (Figures 2 and 3II), as variations in this fraction
can affect the antioxidant status of cereals and pulses [43,44]. The content ranged from
2 to 5 g 100 g−1 in cereal, similar to previous results by other authors, which reported
1.9 g 100 g−1 for rice, 2.0 g 100 g−1 for wheat, 3.9 for g 100 g−1 corn, and 3.3 for g 100 g−1

sorghum [39]. Pulses such as lentil, pea, and chickpea showed content from 1 to 4 g 100 g−1

and soy showed, as it also occurred in protein, the highest values ranging from 31 to 38 g
100 g−1. Oatmeal, chickpea, and soy were the grains where the effect of variety produced a
higher dispersion of results in fat content.

Total dietary fiber (TDF) has been strongly related to food antioxidant capacity [7,45].
TDF, according to the European Food Safety Authority (EFSA), contains nondigestible
carbohydrates and lignin, nonstarch polysaccharides (cellulose, hemicelluloses, pectins,
and hydrocolloids such as β-glucans), resistant oligosaccharides (fructo-oligosaccharides
and galacto-oligosaccharides), other resistant oligosaccharides, and resistant starch (RS).
The lowest values were observed in corn, which ranged from 3.49 to 10.85 g 100 g−1, and
the highest in soy, with values from 31.60 to 37 g 100 g−1; the results agreed with TDF
reported for grains [46]. The content in TDF was strongly affected by the variety studied,
especially in the case of corn, oatmeal, and rice, where the variability associated was higher.

3.2. Colorimeter Analysis Characteristics of the Native Flours

The color of the grain samples was evaluated, and CIELAB parameters (L*, a* and
b*, Figure 4I–III) obtained. The color was measured since it is a quick assessment that
can show a certain significant (p ≤ 0.05) association with antioxidant activity [47]. The
type of grain was statistically significant (p ≤ 0.05) on L values; the darkest values were
observed in sorghum; meanwhile, the highest lightness was observed in corn grains. The
highest a* values (intensity of red) appeared in corn and sorghum samples, while the
grains with lowest a* values (lowest intensity of red) were observed in lentil, rye, and
soy. Significant differences (p ≤ 0.05) were observed when considering the b* parameter
(blueness-yellowness). Positive b* values were observed in all samples indicating a yellow
component in all the cases; the highest values were observed for corn, chickpea, and soy,
and the lowest b* values (lowest yellowness) were obtained in rye, rice, and sorghum.
The parameter a* was highly dispersed depending on the variety in the case of corn and
sorghum; meanwhile, in b* value, corn and rice were the two grains that showed higher
variability in yellowness as related to variety.
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3.3. Total Phenol (TP) Content of the Native Flours

Phenolic compounds are secondary metabolites linked with the color and antioxidant
activities of grains. The redox potentials of the phenolic compounds are the key factors for
their antioxidant properties. Total phenol (TP) content was evaluated in all the samples
(Figure 5). The values ranged from 25 mg GAE 100 g−1 in rice to 250 mg GAE 100 g−1 in
lentil, where the highest values were observed.
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Lentil is a legume with a high level of phenol compounds and high antioxidant activity,
as it has been described previously by different authors [48,49]. Soy was the second grain
with higher TP content (120 mg GAE 100 g−1), significantly higher than sorghum (90 mg
GAE 100 g−1), which was the cereal with the highest TP content. The lowest TP values
appeared in three of the cereals studied (rice, corn, and wheat) and chickpea. The effect of
variety on TP was more significant in the case of sorghum, lentil, pea, and oatmeal. In the
case of triticale, rye, wheat, corn, and chickpea, the TP content showed a lower dispersion
associated with variety.

3.4. Oxygen Radical Absorbance Capacity (ORAC) of the Native Flours

The relevance of the ORAC methodology for antioxidant activity to in vivo conditions
is based on the free radical source used (peroxyl), which shows the highest prevalence in
human biology [50]. The ORAC assay was used to evaluate the ability of the 136 varieties
of cereal and pulse grains studied to scavenge peroxyl free radicals; the values ranged
from 437 to 7962 µmol Eq Trolox 100 g−1 dry weight (Figure 6I). The pulses, lentil and soy,
showed the highest ORAC values compared to the rest of the grains analyzed. A significant
effect of the variety was observed for the different grains, which can be associated with
genetic and environmental factors, as has been observed in different studies [51]. The
values observed agreed with hydrophilic ORAC values reported by USDA [52] for these
types of grain.Foods 2023, 12, x FOR PEER REVIEW 10 of 23 
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3.5. Ferric-Reducing Antioxidant Power Assay (FRAP) of the Native Flours

Reducing power was also evaluated in all the samples (Figure 6II); FRAP ranged from
0.24 to 22.6 (µmol reduced iron 100 g−1). Pea was the grain where higher reducing power
was observed, 15–20-fold the values of the other grains analyzed. Lentil also showed high
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FRAP capacity after pea, presenting the highest differences due to variety. In contrast, a
very low variability due to variety was observed in most of the grains.

3.6. Parameter Correlations and Distribution of Parameters Based on Principal Component
Analysis (PCA) and T-Distributed Stochastic Neighbor Embedding (T-SNE) of Native Flours

The degree of correlation between antioxidants (TP, ORAC, and FRAP), proximal
parameters (proteins, fiber, and fat), and color parameters (L* a* and b*) was analyzed.
(Supplementary Figure S1). Among the methods used to evaluate the antioxidant capacity
of the samples, a higher correlation was found between ORAC and total phenol content
(R2 0.47). The highest correlation of composition parameters with antioxidant markers was
for fiber and ORAC (R2 0.49) and the lowest was for fat and ORAC (R2 0.23). According to
the results, ORAC was a feature that explained that TAC was associated not only with total
phenol but also with other compounds involved directly or indirectly with antioxidant
activity, such as protein (peptides) and fiber.

A projection of the proximal composition (protein, fiber, fat) and type of grain on
the principal component plane, with PC1 and PC2 on the X and Y axes, respectively, are
presented in Figure 7I. PC1 explained 91% of the variance; meanwhile, PC2 explained
6%. PC1 and PC2 are two distinct main clusters, cereals and pulses. Protein/fat and
fiber showed an orthogonal spatial disposition, contributing to separate different type of
grains. Fat resulted in redundancy with protein to identify the different types of grain.
Protein appeared as the most useful parameter to segregate the different samples. Soy, pea,
chickpea, and lentil appeared clearly separated from cereals, with the exception of oatmeal.
Higher fat content was the proximal composition variable that clustered oatmeal within
the pulses.
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Figure 7II shows the PCA for color parameters L*a*b* and the type of grain. PC1
explained 51% of the variance, while PC2 only 38%. This level of variance explanation
was lower than that found in the PCA of compositional parameters. A good separation of
different samples was not achieved with the color parameters, as can be observed in the
intermeshing of the two groups of grains (cereals and pulses) and the species studied.

With the objective of finding nonlinear similarities in the antioxidant capacity between
the different grains, t-distributed stochastic neighbor embedding (T-SNE) analysis was
used, with the aim of reducing initial spatial dimensions and representing the observed
data based on the three antioxidant parameters evaluated. Different perplexity levels were
used to find the highest separation between samples, 20 being the level of perplexity where
better stratification was obtained (Figure 8). The legumes lentil and soy were the two grains
showing single clusters of points, appearing with a relative similarity between them and
clearly separated from the rest of the samples. The rest of the legumes (chickpea, pea) and
all cereals were distributed in groups with different levels of fragmentation. Wheat showed
a wide, round area of the main distribution, with some small groups of samples scattered
along axis T-SNE1; wheat was clearly separated from the other cereals except corn. Rye
distribution was clearly separated from wheat; these two cereals, wheat and rye, showed
similar variation in relation to axes T-SNE1 and T-SNE2. The rest of the cereals showed
fragmented dispersions, with projections separated in equivalent groups, as it occurred in
rice, corn, oatmeal, and sorghum, or highly dependent on the T-SNE1 axis, as in the case of
triticale.
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3.7. Effect of Thermal Treatment on Total Antioxidant Capacity (TAC)

Baked goods require a thermal process prior to consumption; the thermal treatment
conditions (time and temperature) will determine the final antioxidant capacity of the prod-
uct through the degradation of thermally unstable polyphenol compounds and formation of
the novo antioxidants from the polymerization of Maillard reaction products [53,54]. Baked
good models (biscuits) were used for the kinetic study to evaluate the effect of temperature
on the TAC. Wheat and rye were selected for model development and training, mainly due
to their small variabilities and similar profiles in regard to model input variables (protein
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and fiber content), and also relatively small variability and similar profiles in antioxidant
capacity results (silhouette coefficients for each grain type and antioxidant parameters are
reported in Supplementary Table S1); regarding varieties, Berdun (wheat) and Loretto, Igor,
and Teodor (rye) were selected due to their distribution of antioxidant data closer to a
normal distribution compared with the rest of the varieties.

Figure 9 shows the total antioxidant capacity of model-baked products (biscuits)
prepared using wheat and rye flours. TP content was affected by the baking thermal
process (Figure 9I). An initial decrease in the TP was observed, regardless of the type of
flour used (wheat/rye), with increasing temperatures until approximately 800 s.
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After this time, an increase in TP is observed in wheat biscuits baked at 220 ◦C and
in rye biscuits at 180, 200, and 220 ◦C. At the end of the baking process (1500 s), wheat
TP values were similar to or lower than the initial values, while significant increases after
thermal processing were observed in the case of rye samples treated at 200 and 220 ◦C. Rye
samples treated at 180 ◦C did not show significant variation after the baking process. TP
methodology based on the Folin−Ciocalteu reagent can reflect not only phenolic content
but also the presence of other antioxidants [11]. Rye TP content showed lower sensitivity to
temperature compared to wheat. This behavior could be explained by a faster degradation of
thermolabile antioxidants, in the case of wheat, or a significantly higher formation of Maillard
reaction products (MRPs), which in the case of rye, would be favored by its higher content in
lysine compared to wheat [55]. Previously, a correlation between acrylamide formation and
an increment in antioxidant capacity in wheat and rye bread models has been suggested [56],
suggesting health-related benefits with low-temperature, long-time treatments.

On the other hand, degradation of acrylamide may also occur in high-temperature
treatments [57], while final MRPs, melanoidins, have shown biological activities and could
be considered as antioxidant fiber [57,58].

Similar behavior of the antioxidant capacity measured against peroxyl radicals (ORAC)
was observed compared to TP results (Figure 9II). The antioxidant capacity of wheat sam-
ples decreased in the initial stages of the thermal treatment. After 1000 s of treatment,
the antioxidant capacity of all samples (wheat and rye) treated at higher temperatures
(200 ◦C and 220 ◦C) increased and, in the case of the rye samples, the levels reached
(2600–3800 µmol Eq Trolox 100 g−1) were significantly higher than the initial levels
(1500–2000 µmol Eq Trolox 100 g−1). The gradual formation during the thermal pro-
cess of high molecular weight melanoidins and binding of low molecular weight MRPs
to melanoidin skeletons can contribute to the final antioxidant activity of the samples.
These compounds react with the peroxyl radicals and are measured by the ORAC assay, as
happened in the case of the Folin−Ciocalteu reagent in the TP method [59].

The ferric-reducing ability (FRAP values) of the rye was significantly higher than that
of the wheat (Figure 9III). As observed in the TP and ORAC assays, a decrease in FRAP
values was observed for wheat samples up to 800 s of treatment. After this period, the
FRAP values increased in a temperature-dependent manner. Samples treated at 220 ◦C
showed the highest final ferric-reducing values (FRAP) values. This behavior again could
be associated with the presence of melanoidins, which have been reported among their
biological activities’ significant ferric-reducing capacity [54].

3.8. Modelling of the Effect of Thermal Treatment on Total Antioxidant Capacity (TAC)

Previous to model building, experimental data (Figure 9) were assumed to follow a
function with two exponential parts: a negative exponential simulating antioxidant com-
pound degradation and a positive exponential simulating de novo synthesis of antioxidant
compounds (Equation (1)), ‘t’ represents time, ‘T’ temperature and Ŷ antioxidant capacity
as TP, ORAC, or FRAP).

Ŷ = θ + α1· e−β1∗t∗T +
α2

100
· eβ2∗t∗T (1)

As a first exploratory search of space of hyperparameters (θ, α1, α2, β1, β2), iterative
optimization tools were used (R packages “nlme” and “nls”). Parameters β1 and β2 were
fixed at 0.08 and 0.12, respectively, due to their low influence on curve shape. The number of
hyperparameters was reduced to three (theta, alpha1 and alpha2), simplifying the solution
search space and facilitating convergence in the search for an optimal solution (Equation (2)).

Ŷ = θ + α1·e−0.08∗t∗T +
α2

100
· e0.12∗t∗T (2)
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3.8.1. First Level of Modeling

As each of the seven available curves could be clustered based on factors type of grain
and temperature, a hierarchical model was selected. A Bayesian hierarchical model was
used to determine the values of theta, alpha1, and alpha2 parameters for each of seven
combinations of temperature and variety, which uses the baking temperature, time, and type
of grain as predictors. After that, the median value of Monte Carlo distributions obtained in
the Bayesian training for each configuration (variety, temperature) was obtained (Table 1),
and training datasets for the SVM model for prediction of theta, alpha1, and alpha2 are
shown in Supplementary Tables S2–S4. Values corresponding to the main parameters of the
ORAC and FRAP models are displayed in Supplementary Tables S6 and S7, respectively.

Table 1. Values corresponding to the parameters theta, alpha1, and alpha2 of TP, ORAC, and
FRAP models.

Setting TP ORAC FRAP

Theta Alpha1 Alpha2 Theta Alpha1 Alpha2 Theta Alpha1 Alpha2

Berdun 180 ◦C 0.605 1.985 0.100 0.291 0.826 0.117 0.296 0.297 0.059
Igor 180 ◦C 1.497 0.850 0.573 0.317 0.588 0.106 0.231 0.246 0.061

Teodor 180 ◦C 1.391 0.375 1.013 0.112 0.926 0.566 0.186 0.409 0.292
Berdun 200 ◦C 0.431 1.960 0.265 1.875 0.134 0.564 1.285 0.045 1.020
Loretto 200 ◦C 1.717 0.938 1.022 0.873 1.016 3.034 1.131 0.090 2.658
Berdun 220 ◦C 0.309 1.976 0.566 1.371 0.220 0.450 1.278 0.034 0.680
Loretto 220 ◦C 1.462 1.020 2.516 1.140 0.062 0.686 0.836 0.025 0.755

With the use of the Bayesian hierarchical model, the parameters (theta, alpha1, and
alpha2) of the double exponential curve were obtained; the best-fitting curves obtained are
shown in Figure 10.

IX

Figure 10. Curves of the level of TP (I–III), ORAC (IV–VI), and FRAP (VII–IX) predicted with the
second level models for the series according to baking temperature.
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3.8.2. Second Level of Modeling

Using as reference the optimal parameters (theta, alpha1, and alpha2) fitted with the
Bayesian hierarchical model, a training procedure was carried out using as input data the
compositional (protein and fiber), type of grain (wheat or rye) and temperature (180, 200
or 220 ◦C). Independent training steps using support vector regression (SVM) for each
combination of parameters (theta, alpha1, and alpha2) and antioxidant value (TP, ORAC,
and FRAP) were carried out. Datasets used for training in the different models are provided
in Supplementary Tables S1–S3. The corresponding cost parameter and R2 obtained for
SVM model training can be found in Supplementary Table S4.

Using the obtained SVM models, it is possible to predict the antioxidant capacity (TP,
ORAC, and FRAP) at any given thermal processing temperature and time, protein, and
fiber as proximal parameters, and wheat or rye as types of grain (Figure 10).

Therefore, relying solely on the secondary models to determine the shape of the curve
to be predicted, that is, using baking temperature, grain type, protein, and fiber as predictors,
the fit shown below was achieved (Table 2, Figure 10, and Supplementary Figure S2), where
it should be noted that they are accompanied by graphs in which the values of the residuals
are represented and that, except for the predictions of Teodor and Igor at 180 ◦C, all the
models manage to explain more than 80% of the variance present in the data.

Table 2. R2 of SRV models.

Temperature Variety R2_TP R2_ORAC R2_FRAP

180 ◦C Berdun 0.807 0.655 −0.372
180 ◦C Teodor 0.021 0.500 0.387
180 ◦C Igor 0.396 −0.404 −2.081
200 ◦C Berdun 0.893 0.716 −0.266
200 ◦C Loretto 0.952 −2.051 0.935
220 ◦C Berdun 0.632 0.712 0.423
220 ◦C Loretto 0.919 0.844 0.881

3.8.3. Sensitivity of Modeling

To estimate model stability, the variability of the predictions after different entry
values was analyzed. Temperature and proximal composition (protein, fiber) independent
variations (maintaining the rest of variables fixed) were used as inputs for the model and
compared with model outcome using available values of temperature and composition
as reference. Figure 11 shows the predicted behaviour of rye and wheat at a range of
temperatures from 175 to 225 ◦C at 5 ◦C intervals.

As can be observed, the model is more sensitive to temperature changes at advanced
treatment times, with a linear relationship of temperature and curve slope, with lower
variation at the initial stages of the thermal process; there was a higher variability of the final
TP values in the case of rye products compared with wheat (Figure 11), revealing more critical
importance in the first case of the temperature compared with the second, when selecting a
treatment temperature with the objective of obtaining a certain TP final value. Similarly, more
sensitivity of the model was observed in the case of rye compared to wheat when studying
the model sensitivity to protein and fiber content variations (Figures 12 and 13).
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on wheat (I) and rye (II).

The total antioxidant capacity profiles of a range of cereal and legume flours, as
evaluated through three different methods (TP, ORAC, and FRAP), and their distribution
variability related to proximal composition and color were reported. The distribution of
the variability of the antioxidant data was significantly affected by the protein and fiber
composition of the samples. The variability of legume flours showed in the generally higher
values of antioxidant capacity compared to cereals, with special relevance to lentil flour.
Reduced dimensionality techniques (PCA and T-SNE) applied to the data showed wheat
and rye as two samples with homogeneous distribution and well separated.

The behavior of the antioxidant capacity profiles of the baked products suffered a
decrease over the first half of the treatment times, with a subsequent increase afterward.
A predictive model for the estimation of the TAC of baked products, using Bayesian
and SVM modelling tools and considering protein and fiber content, was developed. A
double exponential parameterized curve that reflects the initial decrease and subsequent
increase as a consequence of the processes of degradation and generation of the antioxidant
compounds is proposed. An estimation of the antioxidant capacity of a baked product
during its thermal process has been achieved; this model (Figure 14) is intended to be
improved with further types of grains and varieties to create a tool that may be of interest
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to the food industry; this tool would estimate optimal processing conditions in order to
maximize the antioxidant capacity of baked products, using as input values type of grain,
protein, and fiber content, and temperature and time of the process.
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