Recovery of Phenolic Compounds from Jackfruit Seeds Using Subcritical Water Extraction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials and Reagents
2.2. Soxhlet Extraction
2.3. Subcritical Water Extraction
2.4. Determination of Total Phenolic Content
2.5. Antioxidant Activity Analysis
2.6. High Performance Liquid Chromatography (HPLC) Analysis
2.7. Fourier Transform Infrared Spectroscopy (FTIR)
2.8. Surface Morphological Analysis
2.9. Statistical Analysis
3. Results and Discussion
3.1. Effect of Process Parameters on Total Phenolic Compounds (TPC) and Antioxidant Activity (AA) of Jackfruit Seed Extract
3.2. Correlation between Total Phenolic Compounds and Antioxidant Activity of Jackfruit Seeds Extract
3.3. Comparison between Subcritical Water Extraction with the Soxhlet Extraction
3.4. Surface Morphological Analysis
3.5. Determination of Functional Group of Jackfruit Seeds Extract
3.6. Identification of the Phenolic Acid from Jackfruit Seeds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swami, S.B.; Thakor, N.J.; Haldankar, P.M.; Kalse, S.B. Jackfruit and Its Many Functional Components as Related to Human Health: A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 565–576. [Google Scholar] [CrossRef]
- Pathak, N.; Singh, S.; Singh, P.; Singh, P.K.; Singh, R.; Bala, S.; Thirumalesh, B.V.; Gaur, R.; Tripathi, M. Valorization of jackfruit waste into value added products and their potential applications. Front. Nutr. 2022, 9, 1061098. [Google Scholar] [CrossRef] [PubMed]
- Gat, Y.; Sharma, R.; Rafiq, S. Chapter 9: Jackfruit Wastes and By-Products: Chemistry, processing, and utilization. In Handbook of Fruit Wastes and By-Products: Chemistry, Processing Technology and Utlization, 1st ed.; Muzaffar, K., Ahmad, S.S., Mir, S.A., Eds.; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Kalse, S.; Swami, S. Recent application of jackfruit waste in food and material engineering: A review. Food Biosci. 2022, 48, 101740. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, X.; Zhong, J.; Tan, L.; Liu, C. Effect of pH on emulsification performance of a new functional protein from jackfruit seeds. Food Hydrocoll. 2019, 93, 325–334. [Google Scholar] [CrossRef]
- Mohamad, S.S.; Said, F.M.; Munaim, M.A.; Sulaiman, W.W. Proximate composition, minerals contents, functional properties of Mastura variety jackfruit (Artocarpus heterophyllus) seeds and lethal effects of its crude extract on zebrafish (Danio rerio) embryos. Food Res. 2019, 3, 546–555. [Google Scholar] [CrossRef]
- Singh, A.; Maurya, S.; Singh, M.; Singh, U.P. Studies on the phenolic acid contents in different parts of raw and ripe jackfruit and their importance in human health. Int. J. Appl. Sci. Res. Rev. 2015, 2, 069–073. [Google Scholar]
- Devi, P.S.S.; Kumar, N.S.; and Sabu, K.K. Phytochemical profiling and antioxidant activities of different parts of Artocarpus heterophyllus Lam. (Moraceae): A review on current status of knowledge. Fut. J. Pharma. Sci. 2021, 7, 30. [Google Scholar] [CrossRef]
- Shingisov, A.U.; Alibekov, R.S.; Myrkhalykov, B.G.; Musayeva, S.A.; Urazbayeva, K.A.; Iskakova, S.K.; Taspoltayeva, A.R.; Kobzhasarova, Z.I. Physicochemical Characteristics of the New Polyphyto-component Composition for Food Industry. Biosci. Biotechnol. Res. Asia 2016, 13, 879–886. [Google Scholar] [CrossRef]
- Zheleuova, Z.S.; Uzakov, Y.M.; Shingisov, A.U.; Alibekov, R.S.; Khamitova, B.M. Development of halal cooked smoked beef and turkey sausage using a combined plant extracts. J. Food Process. Preserv. 2020, 45, e15028. [Google Scholar] [CrossRef]
- Alibekov, R.S.; Utebaeva, A.S.; Nurseitova, Z.A.; Konarbayeva, Z.A.; Khamitova, B.M. Cottage cheese fortified by natural additives. Food Res. 2021, 5, 152–159. [Google Scholar] [CrossRef]
- Alibekov, R.; Kenzhibayeva, G.; Utebaeva, A.; Urazbayeva, K.; Tursynbay, L.; Kulanova, D. Enriched plum filling for the confectionery. Food Res. 2020, 4, 26–34. [Google Scholar] [CrossRef]
- Sorrenti, V.; Burò, I.; Consoli, V.; Vanella, L. Recent Advances in Health Benefits of Bioactive Compounds from Food Wastes and By-Products: Biochemical Aspects. Int. J. Mol. Sci. 2023, 24, 2019. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.M.; Santos, L. Incorporation of phenolic extracts from different by-products in yoghurts to create fortified and sustainable foods. Food Biosci. 2023, 51, 102293. [Google Scholar] [CrossRef]
- Granato, D.; Santos, J.S.; Salem, R.D.; Mortazavian, A.M.; Rocha, R.S.; Cruz, A.G. Effects of herbal extracts on quality traits of yogurts, cheeses, fermented milks, and ice creams: A technological perspective. Curr. Opin. Food Sci. 2018, 19, 1–7. [Google Scholar] [CrossRef]
- Delfanian, M.; Kenari, R.E.; Sahari, M.A. Utilization of Jujube Fruit (Ziziphus mauritiana Lam.) Extracts as Natural Antioxidants in Stability of Frying Oil. Int. J. Food Prop. 2015, 19, 789–801. [Google Scholar] [CrossRef]
- Hassoun, A.; Çoban, Ö.E. Essential oils for antimicrobial and antioxidant applications in fish and other seafood products. Trends Food Sci. Technol. 2017, 68, 26–36. [Google Scholar] [CrossRef]
- Cunha, L.C.M.; Monteiro, M.L.G.; Lorenzo, J.M.; Munekata, P.E.S.; Muchenje, V.; de Carvalho, F.A.L.; Conte-Junior, C.A. Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Res. Int. 2018, 111, 379–390. [Google Scholar] [CrossRef]
- O’Connell, J.E.; Fox, P.F. Significance and applications of phenolic compounds in the production and quality of milk and dairy products: A review. Int. Dairy J. 2001, 11, 103–120. [Google Scholar] [CrossRef]
- Comunian, T.A.; Silva, M.P.; Souza, C.J. The use of food by-products as a novel for functional foods: Their use as ingredients and for the encapsulation process. Trends Food Sci. Technol. 2021, 108, 269–280. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, P.; Chen, J.; Yan, Y.; Wu, Z. Recent Advances and Applications in Starch for Intelligent Active Food Packaging: A Review. Foods 2022, 11, 2879. [Google Scholar] [CrossRef]
- Ahmed, E.; Zeitoun, A.; Hamad, G.; Zeitoun, M.A.M.; Taha, A.; Korma, S.A.; Esatbeyoglu, T. Lignocellulosic Biomasses from Agricultural Wastes Improved the Quality and Physicochemical Properties of Frying Oils. Foods 2022, 11, 3149. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Santiago, J.O.; Rodríguez-Castillejos, G.C.; Montenegro, G.; Bridi, R.; Valdés-Gómez, H.; Alvarado-Reyna, S.; Castillo-Ruiz, O.; Santiago-Adame, R. Phenolic content, antioxidant and antifungal activity of jackfruit extracts (Artocarpus heterophyllus Lam.). Food Sci. Technol. 2022, 42, e02221. [Google Scholar] [CrossRef]
- Plaza, M.; Amigo-Benavent, M.; del Castillo, M.D.; Ibáñez, E.; Herrero, M. Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Res. Int. 2010, 43, 2341–2348. [Google Scholar] [CrossRef]
- Zakaria, S.M.; Kamal, S.M.M. Subcritical Water Extraction of Bioactive Compounds from Plants and Algae: Applications in Pharmaceutical and Food Ingredients. Food Eng. Rev. 2015, 8, 23–34. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 2019, 95, 183–195. [Google Scholar] [CrossRef]
- Yang, Y.; Belghazi, M.; Lagadec, A.; Miller, D.J.; Hawthorne, S.B. Elution of organic solutes from different polarity sorbents using subcritical water. J. Chromatogr. A 1998, 810, 149–159. [Google Scholar] [CrossRef]
- Gbashi, S.; Adebo, O.A.; Piater, L.; Madala, N.E.; Njobeh, P.B. Subcritical Water Extraction of Biological Materials. Sep. Purif. Rev. 2016, 46, 21–34. [Google Scholar] [CrossRef]
- Jagdale, Y.D.; Mahale, S.V.; Zohra, B.; Nayik, G.A.; Dar, A.H.; Khan, K.A.; Abdi, G.; Karabagias, I.K. Nutritional Profile and Potential Health Benefits of Super Foods: A Review. Sustainability 2021, 13, 9240. [Google Scholar] [CrossRef]
- Ambily, K.M.; Davis, A. Effects of dehydration techniques for the development of ready to cook tender jackfruit. IOSR J. Agric. Vet. Sci. 2016, 9, 51–56. [Google Scholar]
- Rahmah, N.L.; Mazlina, S.; Kamal, M.; Sulaiman, A.; Saleena, F.; Siajam, S.I. Optimization of phenolic compounds and antioxidant extraction from Piper betle Linn. leaves using pressurized hot water. J. Appl. Sci. Eng. 2023, 26, 175–184. [Google Scholar] [CrossRef]
- Munir, M.T.; Kheirkhah, H.; Baroutian, S.; Quek, S.Y.; Young, B.R. Subcritical water extraction of bioactive compounds from waste onion skin. J. Clean. Prod. 2018, 183, 487–494. [Google Scholar] [CrossRef]
- Singh, P.P.; Saldaña, M.D. Subcritical water extraction of phenolic compounds from potato peel. Food Res. Int. 2011, 44, 2452–2458. [Google Scholar] [CrossRef]
- Cliffe, S.; Fawer, M.S.; Maier, G.; Takata, K.; Ritter, G. Enzyme assays for the phenolic content of natural juices. J. Agric. Food Chem. 1994, 42, 1824–1828. [Google Scholar] [CrossRef]
- Daeid, N.N. Systematic Drug Identification. In Encyclopedia of Analytical Science; Elsevier: Amsterdam, The Netherlands, 2019; pp. 75–80. [Google Scholar]
- Zakaria, S.M.; Kamal, S.M.M.; Harun, M.R.; Omar, R.; Siajam, S.I. Subcritical Water Technology for Extraction of Phenolic Compounds from Chlorella sp. Microalgae and Assessment on Its Antioxidant Activity. Molecules 2017, 22, 1105. [Google Scholar] [CrossRef] [PubMed]
- Niazmand, R.; Noghabi, M.S.; Niazmand, A. Optimization of subcritical water extraction of phenolic compounds from Ziziphus jujuba using response surface methodology: Evaluation of thermal stability and antioxidant activity. Chem. Biol. Technol. Agric. 2021, 8, 6. [Google Scholar] [CrossRef]
- Ko, M.-J.; Nam, H.-H.; Chung, M.-S. Subcritical water extraction of bioactive compounds from Orostachys japonicus A. Berger (Crassulaceae). Sci. Rep. 2020, 10, 10890. [Google Scholar] [CrossRef]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Zhang, X.; He, L.; Yan, Q.; Yuan, F.; Gao, Y. Optimization of subcritical water extraction parameters of antioxidant polyphenols from sea buckthorn (Hippophaë rhamnoides L.) seed residue. J. Food Sci. Technol. 2015, 52, 1534–1542. [Google Scholar] [CrossRef]
- Kheirkhah, H.; Baroutian, S.; Quek, S.Y. Evaluation of bioactive compounds extracted from Hayward kiwifruit pomace by subcritical water extraction. Food Bioprod. Process. 2019, 115, 143–153. [Google Scholar] [CrossRef]
- Zakaria, S.M.; Kamal, S.M.M.; Harun, R.; Omar, R.; Siajam, S.I. Characterization on phenolic acids and antioxidant activity of Chlorella sp. microalgae using subcritical water extraction. Sains Malays. 2020, 49, 765–774. [Google Scholar] [CrossRef]
- Yamin, R.; Mistriyani, S.; Ihsan, S.; Armadany, F.; Sahumena, M.; Fatimah, W. Determination of total phenolic and flavonoid contents of jackfruit peel and in vitro antiradical test. Food Res. 2021, 5, 84–90. [Google Scholar] [CrossRef]
- Zzaman, W. Optimization of Antioxidant Extraction from Jackfruit (Artocarpus heterophyllus Lam.) Seeds Using Response Surface Methodology. Master’s Thesis, Ghent University, Ghent, Belgium, 2012. [Google Scholar]
- Luong, D.; Sephton, M.A.; Watson, J.S. Subcritical water extraction of organic matter from sedimentary rocks. Anal. Chim. Acta 2015, 879, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Kozłowicz, K.; Różyło, R.; Gładyszewska, B.; Matwijczuk, A.; Gładyszewski, G.; Chocyk, D.; Samborska, K.; Piekut, J.; Smolewska, M. Identification of sugars and phenolic compounds in honey powders with the use of GC–MS, FTIR spectroscopy, and X-ray diffraction. Sci. Rep. 2020, 10, 16269. Available online: https://link.springer.com/content/pdf/10.1038/s41598-020-73306-7.pdf (accessed on 1 August 2023). [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Rashmi, H.B.; Negi, P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res. Int. 2020, 136, 109298. [Google Scholar] [CrossRef]
- Cheng, Y.; Xu, Q.; Liu, J.; Zhao, C.; Xue, F.; Zhao, Y. Decomposition of Five Phenolic Compounds in High Temperature Water. J. Braz. Chem. Soc. 2014, 25, 2102–2107. [Google Scholar] [CrossRef]
Run Order | Temperature | Time | Total Phenolic Content | Antioxidant Activity |
---|---|---|---|---|
°C | min | mg GAE/100 g | % | |
1 | 180 | 10 | 0.84 ± 0.04 e | 61.29 ± 1.72 f |
2 | 180 | 20 | 1.07 ± 0.00 d | 63.96 ± 1.03 e,f |
3 | 180 | 30 | 1.17 ± 0.07 d | 67.23 ± 1.72 e |
4 | 210 | 10 | 1.34 ± 0.01 c | 74.421 ± 0.78 c,d |
5 | 210 | 20 | 1.58 ± 0.01 b | 82.021 ± 0.32 a,b |
6 | 210 | 30 | 1.84 ± 0.02 a | 86.00 ± 1.01 a |
7 | 240 | 10 | 1.58 ± 0.00 b | 79.36 ± 0.47 b,c |
8 | 240 | 20 | 1.41 ± 0.02 c | 75.20 ± 0.49 c,d |
9 | 240 | 30 | 1.41 ± 0.04 c | 72.39 ± 2.25 d |
Extraction Methods | Process Parameters | Concentration of Gallic Acid | Concentration of Ferulic Acid |
---|---|---|---|
(mg/mL) | (mg/mL) | ||
SWE 15% solid loading | 180 °C, 10 min | 0.082 ± 0.020 | 0.068 ± 0.027 |
180 °C, 20 min | 0.154 ± 0.070 | 0.042 ± 0.001 | |
180 °C, 30 min | 0.211 ± 0.112 | 0.042 ± 0.000 | |
210 °C, 10 min | 0.418 ± 0.175 | 0.041 ± 0.000 | |
210 °C, 20 min | 1.266 ± 0.292 | 0.043 ± 0.000 | |
210 °C, 30 min | 1.176 ± 0.335 | 0.045 ± 0.003 | |
240 °C, 10 min | 1.841 ± 0.082 | 0.042 ± 0.000 | |
240 °C, 20 min | 0.664 ± 0.003 | 0.046 ± 0.002 | |
240 °C, 30 min | 0.809 ± 0.037 | 0.054 ± 0.002 | |
Soxhlet extraction | 1 h | 0.138 ± 0.029 | 0.049 ± 0.003 |
4 h | 0.266 ± 0.094 | 0.046 ± 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alibekov, R.S.; Mustapa Kamal, S.M.; Taip, F.S.; Sulaiman, A.; Azimov, A.M.; Urazbayeva, K.A. Recovery of Phenolic Compounds from Jackfruit Seeds Using Subcritical Water Extraction. Foods 2023, 12, 3296. https://doi.org/10.3390/foods12173296
Alibekov RS, Mustapa Kamal SM, Taip FS, Sulaiman A, Azimov AM, Urazbayeva KA. Recovery of Phenolic Compounds from Jackfruit Seeds Using Subcritical Water Extraction. Foods. 2023; 12(17):3296. https://doi.org/10.3390/foods12173296
Chicago/Turabian StyleAlibekov, Ravshanbek Sultanbekovich, Siti Mazlina Mustapa Kamal, Farah Saleena Taip, Alifdalino Sulaiman, Abdugani Mutalovich Azimov, and Klara Abdyrazahovna Urazbayeva. 2023. "Recovery of Phenolic Compounds from Jackfruit Seeds Using Subcritical Water Extraction" Foods 12, no. 17: 3296. https://doi.org/10.3390/foods12173296
APA StyleAlibekov, R. S., Mustapa Kamal, S. M., Taip, F. S., Sulaiman, A., Azimov, A. M., & Urazbayeva, K. A. (2023). Recovery of Phenolic Compounds from Jackfruit Seeds Using Subcritical Water Extraction. Foods, 12(17), 3296. https://doi.org/10.3390/foods12173296