The Antioxidant Activities In Vitro and In Vivo and Extraction Conditions Optimization of Defatted Walnut Kernel Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparation of Walnut Kernel Extracts
2.3. In Vitro Antioxidant Activity Determination
2.3.1. DPPH Assay
2.3.2. ABTS Assay
2.3.3. FRAP Assay
2.4. In Vivo Antioxidant Activity Determination
2.4.1. Animals
2.4.2. Mice Grouping and Experimental Design
2.4.3. Antioxidant Assays
2.5. Optimization of Extraction Conditions of Defatted Walnut Kernel Extract
2.5.1. Single-Factor Experimental Design
2.5.2. Response Surface Methodology (RSM) Experimental Design
2.6. Statistical Analysis
3. Results and Discussion
3.1. In Vitro Antioxidant Activities of Walnut Kernel Extracts
3.2. In Vivo Antioxidant Activities of Walnut Kernel Extracts
3.2.1. Effect on Lipid Peroxidation
3.2.2. Effect on Antioxidant Enzyme Activities and Total Antioxidant Activities
3.3. Single Factor Experimental Results
3.4. Correlation Analysis of Antioxidant Activity and Total Phenolic Content
3.5. Response Surface Methodology to Optimize the DWE Extraction Conditions
3.5.1. ANOVA and Quadratic Regression Analysis
3.5.2. Response Surface Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Masoodi, L.; Masoodi, F.A.; Gull, A.; Gani, A.; Muzaffer, S.; Sidiq, M. Effect of γ-Irradiation on the Physicochemical and Sensory Properties of Fresh Walnut Kernels (Juglans regia) during Storage. Food Chem. Adv. 2023, 3, 100301. [Google Scholar] [CrossRef]
- Wei, F.; Chen, Q.; Du, Y.; Han, C.; Fu, M.; Jiang, H.; Chen, X. Effects of Hulling Methods on the Odor, Taste, Nutritional Compounds, and Antioxidant Activity of Walnut Fruit. LWT 2020, 120, 108938. [Google Scholar] [CrossRef]
- Hu, J.; Shi, H.; Zhan, C.; Qiao, P.; He, Y.; Liu, Y. Study on the Identification and Detection of Walnut Quality Based on Terahertz Imaging. Foods 2022, 11, 3498. [Google Scholar] [CrossRef]
- Wang, P.; Zhong, L.; Yang, H.; Zhu, F.; Hou, X.; Wu, C.; Zhang, R.; Cheng, Y. Comparative Analysis of Antioxidant Activities between Dried and Fresh Walnut Kernels by Metabolomic Approaches. LWT 2022, 155, 112875. [Google Scholar] [CrossRef]
- Wang, W.; Wen, H.; Jin, Q.; Yu, W.; Li, G.; Wu, M.; Bai, H.; Shen, L.; Wu, C. Comparative Transcriptome Analysis on Candidate Genes Involved in Lipid Biosynthesis of Developing Kernels for Three Walnut Cultivars in Xinjiang. Food Sci. Hum. Wellness 2022, 11, 1201–1214. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, S.; Xi, F.; Yang, W.; Zhou, L.; Zhang, G.; Zhu, H.; Zhang, Q. Preservation Effect of Plasma-Activated Water (PAW) Treatment on Fresh Walnut Kernels. Innov. Food Sci. Emerg. Technol. 2023, 85, 103304. [Google Scholar] [CrossRef]
- Cintesun, S.; Ozman, Z.; Kocyigit, A.; Mansuroglu, B.; Kocacaliskan, I. Effects of Walnut (Juglans regia L.) Kernel Extract and Juglone on Dopamine Levels and Oxidative Stress in Rats. Food Biosci. 2023, 51, 102327. [Google Scholar] [CrossRef]
- Jahanban-Esfahlan, A.; Ostadrahimi, A.; Tabibiazar, M.; Amarowicz, R. A Comparative Review on the Extraction, Antioxidant Content and Antioxidant Potential of Different Parts of Walnut (Juglans regia L.) Fruit and Tree. Molecules 2019, 24, 2133. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Guo, F.; Peng, X.; Cheng, K.; Xiao, L.; Zhang, H.; Li, H.; Jiang, L.; Deng, Z. Metabolism of Phenolics of Tetrastigma Hemsleyanum Roots under In Vitro Digestion and Colonic Fermentation as Well as Their In Vivo Antioxidant Activity in Rats. Foods 2021, 10, 2123. [Google Scholar] [CrossRef]
- Srisuksai, K.; Parunyakul, K.; Santativongchai, P.; Phaonakrop, N.; Roytrakul, S.; Tulayakul, P.; Fungfuang, W. Antioxidant Activity of Crocodile Oil (Crocodylus siamensis) on Cognitive Function in Rats. Foods 2023, 12, 791. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, K.; Charles, A.L. In Vitro Antioxidant Activity of Kyoho Grape Extracts in DPPH and ABTS Assays: Estimation Methods for EC50 Using Advanced Statistical Programs. Food Chem. 2019, 275, 41–49. [Google Scholar] [CrossRef]
- Amidžić Klarić, D.; Klarić, I.; Mornar, A.; Velić, N.; Velić, D. Assessment of Bioactive Phenolic Compounds and Antioxidant Activity of Blackberry Wines. Foods 2020, 9, 1623. [Google Scholar] [CrossRef] [PubMed]
- Kotha, R.R.; Tareq, F.S.; Yildiz, E.; Luthria, D.L. Oxidative Stress and Antioxidants—A Critical Review on In Vitro Antioxidant Assays. Antioxidants 2022, 11, 2388. [Google Scholar] [CrossRef]
- Latif, F.; Imran, M. Antioxidants—A Combat against Oxidative Stress in Dementia. Ann. Med. Surg. 2022, 82, 104632. [Google Scholar] [CrossRef] [PubMed]
- Mbah, C.; Orabueze, I.; Okorie, N. Antioxidants Properties of Natural and Synthetic Chemical Compounds: Therapeutic Effects on Biological System. Acta Sci. Pharm. Sci. 2019, 3, 28–42. [Google Scholar] [CrossRef]
- Olufunmilayo, E.O.; Gerke-Duncan, M.B.; Holsinger, R.M.D. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants 2023, 12, 517. [Google Scholar] [CrossRef]
- Fibbi, B.; Marroncini, G.; Anceschi, C.; Naldi, L.; Peri, A. Hyponatremia and Oxidative Stress. Antioxidants 2021, 10, 1768. [Google Scholar] [CrossRef]
- Muriach, M.; Flores-Bellver, M.; Romero, F.J.; Barcia, J.M. Diabetes and the Brain: Oxidative Stress, Inflammation, and Autophagy. Oxid. Med. Cell. Longev. 2014, 2014, 102158. [Google Scholar] [CrossRef]
- AlAshqar, A.; Lulseged, B.; Mason-Otey, A.; Liang, J.; Begum, U.A.M.; Afrin, S.; Borahay, M.A. Oxidative Stress and Antioxidants in Uterine Fibroids: Pathophysiology and Clinical Implications. Antioxidants 2023, 12, 807. [Google Scholar] [CrossRef]
- Bardelčíková, A.; Šoltys, J.; Mojžiš, J. Oxidative Stress, Inflammation and Colorectal Cancer: An Overview. Antioxidants 2023, 12, 901. [Google Scholar] [CrossRef]
- Jian, F.; Zhang, Z.; Li, D.; Luo, F.; Wu, Q.; Lu, F.; Dai, Z.; Nie, M.; Xu, Y.; Feng, L.; et al. Evaluation of the Digestibility and Antioxidant Activity of Protein and Lipid after Mixing Nuts Based on in Vitro and in Vivo Models. Food Chem. 2023, 414, 135706. [Google Scholar] [CrossRef] [PubMed]
- Moazzen, A.; Öztinen, N.; Ak-Sakalli, E.; Koşar, M. Structure-Antiradical Activity Relationships of 25 Natural Antioxidant Phenolic Compounds from Different Classes. Heliyon 2022, 8, e10467. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Shahidi, F.; Wrolstad, R.; Kilmartin, P.; Melton, L.D.; Hidalgo, F.J.; Miyashita, K.; van Camp, J.; Alasalvar, C.; Ismail, A.B.; et al. Antioxidant Activity, Total Phenolics and Flavonoids Contents: Should We Ban in Vitro Screening Methods? Food Chem. 2018, 264, 471–475. [Google Scholar] [CrossRef] [PubMed]
- Nimal, R.; Selcuk, O.; Kurbanoglu, S.; Shah, A.; Siddiq, M.; Uslu, B. Trends in Electrochemical Nanosensors for the Analysis of Antioxidants. TrAC Trends Anal. Chem. 2022, 153, 116626. [Google Scholar] [CrossRef]
- Caleja, C.; Barros, L.; Antonio, A.L.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. A Comparative Study between Natural and Synthetic Antioxidants: Evaluation of Their Performance after Incorporation into Biscuits. Food Chem. 2017, 216, 342–346. [Google Scholar] [CrossRef]
- Blasi, F.; Cossignani, L. An Overview of Natural Extracts with Antioxidant Activity for the Improvement of the Oxidative Stability and Shelf Life of Edible Oils. Processes 2020, 8, 956. [Google Scholar] [CrossRef]
- Bellucci, E.R.B.; Bis-Souza, C.V.; Domínguez, R.; Bermúdez, R.; da Barretto, A.C.S. Addition of Natural Extracts with Antioxidant Function to Preserve the Quality of Meat Products. Biomolecules 2022, 12, 1506. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, C.; Liu, C.; Tan, J.; Ma, H.; Wang, J. Physiochemical Responses of the Kernel Quality, Total Phenols and Antioxidant Enzymes of Walnut in Different Forms to the Low-Temperature Storage. Foods 2021, 10, 2027. [Google Scholar] [CrossRef]
- Ampofo, J.; Grilo, F.S.; Langstaff, S.; Wang, S.C. Oxidative Stability of Walnut Kernel and Oil: Chemical Compositions and Sensory Aroma Compounds. Foods 2022, 11, 3151. [Google Scholar] [CrossRef]
- Hama, J.R.; Omer, R.A.; Rashid, R.S.M.; Mohammad, N.-E.-A.; Thoss, V. The Diversity of Phenolic Compounds along Defatted Kernel, Green Husk and Leaves of Walnut (Juglansregia L.). Anal. Chem. Lett. 2016, 6, 35–46. [Google Scholar] [CrossRef]
- Pop, O.L.; Suharoschi, R.; Socaci, S.A.; Ceresino, E.B.; Weber, A.; Gruber-Traub, C.; Vodnar, D.C.; Fărcaș, A.C.; Johansson, E. Polyphenols—Ensured Accessibility from Food to the Human Metabolism by Chemical and Biotechnological Treatments. Antioxidants 2023, 12, 865. [Google Scholar] [CrossRef]
- Ruiz-Caro, P.; Espada-Bellido, E.; García-Guzmán, J.J.; Bellido-Milla, D.; Vázquez-González, M.; Cubillana-Aguilera, L.; Palacios-Santander, J.M. An Electrochemical Alternative for Evaluating the Antioxidant Capacity in Walnut Kernel Extracts. Food Chem. 2022, 393, 133417. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Gu, F.; Yang, T.; Shao, Z.; Zhang, Q.; Zhu, J.; Wang, F. Quantitative Conversion of Free, Acid-Hydrolyzable, and Bound Ellagic Acid in Walnut Kernels during Baking. Food Chem. 2023, 400, 134070. [Google Scholar] [CrossRef]
- Wu, S.; Shen, D.; Wang, R.; Li, Q.; Mo, R.; Zheng, Y.; Zhou, Y.; Liu, Y. Phenolic Profiles and Antioxidant Activities of Free, Esterified and Bound Phenolic Compounds in Walnut Kernel. Food Chem. 2021, 350, 129217. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Ding, Y.; Liu, M.; Zhang, X.; Wang, D.; Pan, Y.; Ren, S.; Liu, X. Neuroprotective Mechanisms of Defatted Walnut Powder against Scopolamine-Induced Alzheimer’s Disease in Mice Revealed through Metabolomics and Proteomics Analyses. J. Ethnopharmacol. 2023, 319, 117107. [Google Scholar] [CrossRef]
- Trandafir, I.; Cosmulescu, S. Total Phenolic Content, Antioxidant Capacity and Individual Phenolic Compounds of Defatted Kernel from Different Cultivars of Walnut. Erwerbs-Obstbau 2020, 62, 309–314. [Google Scholar] [CrossRef]
- Trandafir, I.; Cosmulescu, S.; Nour, V. Phenolic Profile and Antioxidant Capacity of Walnut Extract as Influenced by the Extraction Method and Solvent. Int. J. Food Eng. 2017, 13, 20150284. [Google Scholar] [CrossRef]
- Tian, W.; Wu, B.; Sun, L.; Zhuang, Y. Protective Effect against D-Gal-Induced Aging Mice and Components of Polypeptides and Polyphenols in Defatted Walnut Kernel during Simulated Gastrointestinal Digestion. J. Food Sci. 2021, 86, 2736–2752. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Lv, D.; Mao, X. Polyphenol Removal with Ultrasound-Assisted Ethanol Extraction from Defatted Walnut Powder: Optimization of Conditions and Effect on Functional Properties of Protein Isolates. J. Sci. Food Agric. 2023. [Google Scholar] [CrossRef]
- Culetu, A.; Fernandez-Gomez, B.; Ullate, M.; del Castillo, M.D.; Andlauer, W. Effect of Theanine and Polyphenols Enriched Fractions from Decaffeinated Tea Dust on the Formation of Maillard Reaction Products and Sensory Attributes of Breads. Food Chem. 2016, 197, 14–23. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC Assays for Estimating Antioxidant Activity from Guava Fruit Extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Müller, L.; Fröhlich, K.; Böhm, V. Comparative Antioxidant Activities of Carotenoids Measured by Ferric Reducing Antioxidant Power (FRAP), ABTS Bleaching Assay (ATEAC), DPPH Assay and Peroxyl Radical Scavenging Assay. Food Chem. 2011, 129, 139–148. [Google Scholar] [CrossRef]
- Hilbig, J.; Alves, V.R.; Müller, C.M.O.; Micke, G.A.; Vitali, L.; Pedrosa, R.C.; Block, J.M. Ultrasonic-Assisted Extraction Combined with Sample Preparation and Analysis Using LC-ESI-MS/MS Allowed the Identification of 24 New Phenolic Compounds in Pecan Nut Shell [Carya illinoinensis (Wangenh) C. Koch] Extracts. Food Res. Int. 2018, 106, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Luo, H.; Xu, M.; Zhai, M.; Guo, Z.; Qiao, Y.; Wang, L. Dynamic Changes in Phenolics and Antioxidant Capacity during Pecan (Carya illinoinensis) Kernel Ripening and Its Phenolics Profiles. Molecules 2018, 23, 435. [Google Scholar] [CrossRef]
- Santos, J.; Alvarez-Ortí, M.; Sena-Moreno, E.; Rabadán, A.; Pardo, J.E.; Oliveira, M.B.P. Effect of Roasting Conditions on the Composition and Antioxidant Properties of Defatted Walnut Flour. J. Sci. Food Agric. 2018, 98, 1813–1820. [Google Scholar] [CrossRef]
- Arranz, S.; Pérez-Jiménez, J.; Saura-Calixto, F. Antioxidant Capacity of Walnut (Juglans regia L.): Contribution of Oil and Defatted Matter. Eur. Food Res. Technol. 2008, 227, 425–431. [Google Scholar] [CrossRef]
- Burbano, J.J.; Correa, M.J. Composition and Physicochemical Characterization of Walnut Flour, a By-Product of Oil Extraction. Plant Foods Hum. Nutr. 2021, 76, 233–239. [Google Scholar] [CrossRef]
- Slatnar, A.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R.; Solar, A. Identification and Quantification of Phenolic Compounds in Kernels, Oil and Bagasse Pellets of Common Walnut (Juglans regia L.). Food Res. Int. 2015, 67, 255–263. [Google Scholar] [CrossRef]
- Labuckas, D.O.; Maestri, D.M.; Perelló, M.; Martínez, M.L.; Lamarque, A.L. Phenolics from Walnut (Juglans regia L.) Kernels: Antioxidant Activity and Interactions with Proteins. Food Chem. 2008, 107, 607–612. [Google Scholar] [CrossRef]
- Colaric, M.; Veberic, R.; Solar, A.; Hudina, M.; Stampar, F. Phenolic Acids, Syringaldehyde, and Juglone in Fruits of Different Cultivars of Juglans regia L. J. Agric. Food Chem. 2005, 53, 6390–6396. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Long, R.; Huang, G.; Huang, H. Extraction and Antioxidant Activities in Vivo of Pumpkin Polysaccharide. Ind. Crops Prod. 2020, 146, 112199. [Google Scholar] [CrossRef]
- Shang, H.-M.; Zhou, H.-Z.; Yang, J.-Y.; Li, R.; Song, H.; Wu, H.-X. In Vitro and in Vivo Antioxidant Activities of Inulin. PLoS ONE 2018, 13, e0192273. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, H.; Cheng, L.; Wang, L.; Qian, H.; Qi, X. In Vitro and in Vivo Antioxidant Activity of Polyphenols Extracted from Black Highland Barley. Food Chem. 2016, 194, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Chen, F.; Long, R.; Huang, G. The Antioxidant Activities in Vivo of Bitter Gourd Polysaccharide. Int. J. Biol. Macromol. 2020, 145, 141–144. [Google Scholar] [CrossRef]
- de Mendes, M.K.A.; dos Oliveira, C.B.S.; Veras, M.D.A.; Araújo, B.Q.; Dantas, C.; Chaves, M.H.; Lopes Júnior, C.A.; Vieira, E.C. Application of Multivariate Optimization for the Selective Extraction of Phenolic Compounds in Cashew Nuts (Anacardium occidentale L.). Talanta 2019, 205, 120100. [Google Scholar] [CrossRef]
- del Garcia-Mendoza, M.P.; Espinosa-Pardo, F.A.; Savoire, R.; Etchegoyen, C.; Harscoat-Schiavo, C.; Subra-Paternault, P. Recovery and Antioxidant Activity of Phenolic Compounds Extracted from Walnut Press-Cake Using Various Methods and Conditions. Ind. Crops Prod. 2021, 167, 113546. [Google Scholar] [CrossRef]
- Ma, Y.; Gao, J.; Wei, Z.; Shahidi, F. Effect of in Vitro Digestion on Phenolics and Antioxidant Activity of Red and Yellow Colored Pea Hulls. Food Chem. 2021, 337, 127606. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Xu, H.; Hanna, M.; Yuan, L. Identification and Quantification of Free, Esterified, Glycosylated and Insoluble-Bound Phenolic Compounds in Hawthorn Berry Fruit (Crataegus pinnatifida) and Antioxidant Activity Evaluation. LWT 2020, 130, 109643. [Google Scholar] [CrossRef]
Variable | Levels | ||||
---|---|---|---|---|---|
−1.68 | −1 | 0 | 1 | 1.68 | |
Ethanol concentration (A, %) | 16.36 | 30 | 50 | 70 | 83.64 |
Extraction time (B, minutes) | 46.36 | 60 | 80 | 100 | 113.64 |
Extraction temperature (C, °C) | 28.18 | 35 | 45 | 55 | 61.82 |
Run | Variables | Response Values | |||||
---|---|---|---|---|---|---|---|
A | B | C | ABTS | DPPH | FRAP | TPC | |
1 | 30 | 60 | 55 | 85.91 | 37.04 | 220.79 | 32.84 |
2 | 50 | 80 | 45 | 106.98 | 46.52 | 247.49 | 41.13 |
3 | 50 | 80 | 45 | 106.32 | 46.37 | 250.13 | 40.13 |
4 | 50 | 46.36 | 45 | 81.05 | 35.70 | 215.33 | 39.53 |
5 | 50 | 80 | 28.18 | 75.79 | 31.49 | 199.88 | 39.04 |
6 | 16.36 | 80 | 45 | 67.25 | 29.03 | 192.61 | 29.83 |
7 | 50 | 113.64 | 45 | 92.66 | 40.31 | 225.33 | 40.66 |
8 | 83.64 | 80 | 45 | 95.04 | 41.37 | 225.94 | 36.58 |
9 | 50 | 80 | 61.82 | 100.63 | 42.37 | 232.61 | 40.23 |
10 | 50 | 80 | 45 | 103.50 | 43.98 | 252.70 | 40.48 |
11 | 70 | 60 | 35 | 92.43 | 39.43 | 224.12 | 39.87 |
12 | 70 | 60 | 55 | 98.34 | 42.25 | 232.30 | 39.38 |
13 | 30 | 60 | 35 | 64.17 | 28.56 | 180.18 | 33.85 |
14 | 70 | 100 | 55 | 101.71 | 42.65 | 243.21 | 32.25 |
15 | 70 | 100 | 35 | 101.27 | 42.51 | 234.73 | 34.32 |
16 | 50 | 80 | 45 | 103.72 | 43.52 | 252.59 | 38.52 |
17 | 30 | 100 | 35 | 71.57 | 29.83 | 191.70 | 34.54 |
18 | 50 | 80 | 45 | 106.56 | 46.11 | 247.44 | 39.83 |
19 | 30 | 100 | 55 | 92.32 | 38.17 | 221.09 | 35.88 |
Sample | Concentration (mg/mL) | DPPH (μM TEAC/g) | ABTS (μM TEAC/g) | FRAP (μM TEAC/g) |
---|---|---|---|---|
Vitamin C | 0.025 | 4006.05 ± 4.03 | 9018.41 ± 85.58 | 20,018.69 ± 116.89 |
BHA | 0.025 | 3660.22 ± 13.98 | 7301.33 ± 171.15 | 16,362.42 ± 575.34 |
DWE | 0.025 | 1026.19 ± 52.95 | 2754.30 ± 42.79 | 5829.09 ± 36.36 |
WE | 0.025 | ND | ND | 4180.61 ± 41.99 a |
Fatty acid | 100 | ND | ND | ND |
FRAP | DPPH | ABTS | |
---|---|---|---|
DPPH | 0.971 ** | 1 | – |
ABTS | 0.976 ** | 0.991 ** | 1 |
TPC | 0.517 * | 0.566 * | 0.539 * |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
ABTS Model | 3352.62 | 9 | 372.51 | 38.43 | <0.0001 | *** |
A | 1172.04 | 1 | 1172.04 | 120.92 | <0.0001 | *** |
B | 151.87 | 1 | 151.87 | 15.67 | 0.0033 | ** |
C | 601.23 | 1 | 601.23 | 62.03 | <0.0001 | *** |
AB | 0.32 | 1 | 0.32 | 0.033 | 0.8597 | |
AC | 163.12 | 1 | 163.12 | 16.83 | 0.0027 | ** |
BC | 5.22 | 1 | 5.22 | 0.54 | 0.4815 | |
A2 | 803.14 | 1 | 803.14 | 82.86 | <0.0001 | *** |
B2 | 435.69 | 1 | 435.69 | 44.95 | <0.0001 | *** |
C2 | 364.90 | 1 | 364.90 | 37.65 | 0.0002 | *** |
Residual | 87.23 | 9 | 9.69 | |||
Lack of Fit | 76.09 | 5 | 15.22 | 5.46 | 0.0625 | Not significant |
Pure Error R2 | 11.14 0.9746 | 4 | 2.79 | |||
TPC | ||||||
Model | 180.26 | 9 | 20.23 | 5.75 | 0.0078 | ** |
A | 29.47 | 1 | 29.47 | 8.46 | 0.0174 | * |
B | 3.64 | 1 | 3.64 | 1.04 | 0.3334 | |
C | 3.83 × 10−3 | 1 | 3.83 × 10−3 | 1.10 × 10−3 | 0.9743 | |
AB | 33.66 | 1 | 33.66 | 9.66 | 0.0125 | * |
AC | 1.04 | 1 | 1.04 | 0.30 | 0.5974 | |
BC | 0.074 | 1 | 0.074 | 0.021 | 0.8872 | |
A2 | 111.96 | 1 | 111.96 | 32.14 | 0.0003 | *** |
B2 | 2.50 | 1 | 2.50 | 0.72 | 0.4189 | |
C2 | 4.76 | 1 | 4.76 | 1.37 | 0.2724 | |
Residual | 31.35 | 9 | 3.48 | |||
Lack of Fit | 27.61 | 5 | 5.52 | 5.90 | 0.0550 | Not significant |
Pure Error R2 | 3.74 0.8518 | 4 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Gong, X.; Li, X.; An, N.; He, J.; Zhou, X.; Zhao, C. The Antioxidant Activities In Vitro and In Vivo and Extraction Conditions Optimization of Defatted Walnut Kernel Extract. Foods 2023, 12, 3417. https://doi.org/10.3390/foods12183417
Zhou X, Gong X, Li X, An N, He J, Zhou X, Zhao C. The Antioxidant Activities In Vitro and In Vivo and Extraction Conditions Optimization of Defatted Walnut Kernel Extract. Foods. 2023; 12(18):3417. https://doi.org/10.3390/foods12183417
Chicago/Turabian StyleZhou, Xiaomei, Xiaojian Gong, Xu Li, Ning An, Jiefang He, Xin Zhou, and Chao Zhao. 2023. "The Antioxidant Activities In Vitro and In Vivo and Extraction Conditions Optimization of Defatted Walnut Kernel Extract" Foods 12, no. 18: 3417. https://doi.org/10.3390/foods12183417
APA StyleZhou, X., Gong, X., Li, X., An, N., He, J., Zhou, X., & Zhao, C. (2023). The Antioxidant Activities In Vitro and In Vivo and Extraction Conditions Optimization of Defatted Walnut Kernel Extract. Foods, 12(18), 3417. https://doi.org/10.3390/foods12183417