Egg White and Yolk Protein Atlas: New Protein Insights of a Global Landmark Food
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database Screening
2.2. Sample Preparation
2.2.1. Sample Collection
2.2.2. Protein Extraction
2.3. Peptide Fractionation
2.4. LC-MS/MS Analysis
2.5. Bioinformatics Analysis
Bioactivity Classification
3. Results
3.1. Studies Involving Protein Analysis of Egg White-Yolk Proteins
3.2. Egg White and Egg Yolk Protein Bioactivity Classification
3.3. Molecular Function
3.4. G0 Annotation and Enrichment Analysis for the Sum of Egg White and Egg Yolk Protein Identifications
3.5. KEGG Annotation and Enrichment Analysis for the Sum of Egg White and Egg Yolk Proteins
3.6. Egg White and Egg Yolk Protein Atlas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mann, K. The chicken egg white proteome. Proteomics 2007, 7, 3558–3568. [Google Scholar] [CrossRef]
- Réhault-Godbert, S.; Guyot, N.; Nys, Y. The Golden Egg: Nutritional Value, Bioactivities, and Emerging Benefits for Human Health. Nutrients 2019, 11, 684. [Google Scholar] [CrossRef] [PubMed]
- Gautron, J.; Dombre, C.; Nau, F.; Feidt, C.; Guillier, L. Review: Production factors affecting the quality of chicken table eggs and egg products in Europe. Animal 2022, 16 (Suppl. 1), 100425. [Google Scholar] [CrossRef] [PubMed]
- Seuss-baum, I. Nutritional Evaluation of Egg Compounds. In Bioactive Egg Compounds; Huopalahti, R., López-Fandiño, R., Anton, M., Schade, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 117–144. [Google Scholar] [CrossRef]
- Mine, Y. Recent advances in the understanding of egg white protein functionality. Trends Food Sci. Technol. 1995, 6, 225–232. [Google Scholar] [CrossRef]
- Campbell, L.; Raikos, V.; Euston, S.R. Modification of functional properties of egg-white proteins. Nahrung 2003, 47, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, X.; Tang, Q.; Ma, M.; Jin, Y.; Sheng, L. Functional Properties and Extraction Techniques of Chicken Egg White Proteins. Foods 2022, 11, 2434. [Google Scholar] [CrossRef]
- Meng, Y.; Qiu, N.; Guyonnet, V.; Mine, Y. Unveiling and application of the chicken egg proteome: An overview on a two-decade achievement. Food Chem. 2022, 393, 133403. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, X.; Guo, D.; Zou, Y.; Gan, H.; Huang, X. Early use of probiotics might prevent antibiotic-associated diarrhea in elderly (>65 years): A systematic review and meta-analysis. BMC Geriatr. 2022, 22, 562. [Google Scholar] [CrossRef]
- Martínez-Olcina, M.; Rubio-Arias, J.A.; Reche-García, C.; Leyva-Vela, B.; Hernández-García, M.; Hernández-Morante, J.J.; Martínez-Rodríguez, A. Eating Disorders in Pregnant and Breastfeeding Women: A Systematic Review. Medicina 2020, 56, 352. [Google Scholar] [CrossRef] [PubMed]
- Dimou, S.; Georgiou, X.; Sarantidi, E.; Diallinas, G.; Anagnostopoulos, A.K. Profile of Membrane Cargo Trafficking Proteins and Transporters Expressed under N Source Derepressing Conditions in Aspergillus nidulans. J. Fungi 2021, 7, 560. [Google Scholar] [CrossRef]
- Anagnostopoulos, A.K.; Stravopodis, D.J.; Tsangaris, G.T. Yield of 6000 proteins by 1D nLC-MS/MS without pre-fractionation. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1047, 92–96. [Google Scholar] [CrossRef] [PubMed]
- UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Stamoula, E.; Sarantidi, E.; Dimakopoulos, V.; Ainatzoglou, A.; Dardalas, I.; Papazisis, G.; Kontopoulou, K.; Anagnostopoulos, A.K. Serum Proteome Signatures of Anti-SARS-CoV-2 Vaccinated Healthcare Workers in Greece Associated with Their Prior Infection Status. Int. J. Mol. Sci. 2022, 23, 10153. [Google Scholar] [CrossRef]
- Guérin-Dubiard, C.; Pasco, M.; Mollé, D.; Désert, C.; Croguennec, T.; Nau, F. Proteomic analysis of hen egg white. J. Agric. Food Chem. 2006, 54, 3901–3910. [Google Scholar] [CrossRef] [PubMed]
- Mann, K.; Mann, M. The chicken egg yolk plasma and granule proteomes. Proteomics 2008, 8, 178–191. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, G.; Yang, N.; Yan, Y.; Wu, G.; Sun, C. Differential proteomic analysis revealed crucial egg white proteins for hatchability of chickens. Poult. Sci. 2019, 98, 7076–7089. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, N.; Mine, Y.; Sun, H.; Meng, Y.; Bin, L.; Keast, R. Quantitative Comparative Integrated Proteomic and Phosphoproteomic Analysis of Chicken Egg Yolk Proteins under Diverse Storage Temperatures. J. Agric. Food Chem. 2020, 68, 1157–1167. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrosio, C.; Arena, S.; Scaloni, A.; Guerrier, L.; Boschetti, E.; Mendieta, M.E.; Citterio, A.; Righetti, P.G. Exploring the chicken egg white proteome with combinatorial peptide ligand libraries. J. Proteome Res. 2008, 7, 3461–3474. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Righetti, P.G.; Fasoli, E.; Zolla, L. The egg white and yolk interactomes as gleaned from extensive proteomic data. J. Proteom. 2010, 73, 1028–1042. [Google Scholar] [CrossRef] [PubMed]
- Mann, K.; Mann, M. In-depth analysis of the chicken egg white proteome using an LTQ Orbitrap Velos. Proteome Sci. 2011, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liang, Y.; Omana, D.A.; Kav, N.N.V.; Wu, J. Proteomics Analysis of Egg White Proteins from Different Egg Varieties. J. Agric. Food Chem. 2012, 60, 272–282. [Google Scholar] [CrossRef]
- Sun, C.; Liu, J.; Li, W.; Xu, G.; Yang, N. Divergent Proteome Patterns of Egg Albumen from Domestic Chicken, Duck, Goose, Turkey, Quail and Pigeon. Proteomics 2017, 17, 1700145. [Google Scholar] [CrossRef]
- Bílková, B.; Świderská, Z.; Zita, L.; Laloë, D.; Charles, M.; Beneš, V.; Stopka, P.; Vinkler, M. Domestic Fowl Breed Variation in Egg White Protein Expression: Application of Proteomics and Transcriptomics. J. Agric. Food Chem. 2018, 7, 11854–11863. [Google Scholar] [CrossRef]
- Arena, S.; Renzone, G.; Scaloni, A. A multi-approach peptidomic analysis of hen egg white reveals novel putative bioactive molecules. J. Proteom. 2020, 20, 103646. [Google Scholar] [CrossRef]
- Farinazzo, A.; Restuccia, U.; Bachi, A.; Guerrier, L.; Fortis, F.; Boschetti, E.; Fasoli, E.; Citterio, A.; Righetti, P.G. Chicken egg yolk cytoplasmic proteome, mined via combinatorial peptide ligand libraries. J. Chromatogr. A 2009, 1216, 1241–1252. [Google Scholar] [CrossRef] [PubMed]
- Réhault-Godbert, S.; Mann, K.; Bourin, M.; Brionne, A.; Nys, Y. Effect of embryonic development on the chicken egg yolk plasma proteome after 12 days of incubation. J. Agric. Food Chem. 2014, 62, 2531–2540. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Qiu, N.; Liu, Y.; Ma, M. Comparative proteome analysis of egg yolk plasma proteins during storage. J. Sci. Food Agric. 2017, 97, 2392–2400. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qiu, N.; Gao, D.; Ma, M. Comparative proteomic analysis of chicken, duck, and quail egg yolks. Int. J. Food Properties. 2018, 21, 1311–1321. [Google Scholar] [CrossRef]
- Liu, Y.; Sheng, L.; Ma, M.; Jin, Y. Proteome-based identification of chicken egg yolk proteins associated with antioxidant activity on the Qinghai-Tibetan Plateau. Int. J. Biol. Macromol. 2019, 150, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Qiu, N.; Geng, F.; Sun, H.; Wang, H.; Meng, Y. Quantitative phosphoproteomic analysis of fertilized egg derived from Tibetan and lowland chickens. Int. J. Biol. Macromol. 2020, 149, 522–531. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Guha, S.; Majumder, K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients 2018, 10, 1738. [Google Scholar] [CrossRef] [PubMed]
- Saikumar, P.; Dong, Z.; Mikhailov, V.; Denton, M.; Weinberg, J.M.; Venkatachalam, M.A. Apoptosis: Definition, mechanisms, and relevance to disease. Am. J. Med. 1999, 107, 489–506. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Li, R.; Liu, L.; Miao, Y.; Weng, P.; Wu, Z. Metabolic changes of Issatchenkia orientalis under acetic acid stress by transcriptome profile using RNA-sequencing. Int. Microbiol. 2022, 25, 417–426. [Google Scholar] [CrossRef]
- Memarpoor-Yazdi, M.; Asoodeh, A.; Chamani, J. A novel antioxidant and antimicrobial peptide from hen egg white lysozyme hydrolysates. J. Funct. Foods 2012, 4, 278–286. [Google Scholar] [CrossRef]
- Zhou, N.; Zhao, Y.; Yao, Y.; Wu, N.; Xu, M.; Du, H.; Wu, J.; Tu, Y. Antioxidant Stress and Anti-Inflammatory Activities of Egg White Proteins and Their Derived Peptides: A Review. J. Agric. Food Chem. 2021, 70, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Lianliang, L.; Jinxuan, C.; Jiong, C.; Xin, Z.; Zufang, W.; Huan, X. Effects of peptides from Phascolosoma esculenta on spatial learning and memory via anti-oxidative character in mice. Neurosci. Lett. 2016, 631, 30–35. [Google Scholar] [CrossRef]
- Majumder, K.; Wu, J. A new approach for identification of novel antihypertensive peptides from egg proteins by QSAR and bioinformatics. Food Res. Int. 2010, 43, 1371–1378. [Google Scholar] [CrossRef]
- Aluko, R.E. Antihypertensive peptides from food proteins. Annu. Rev. Food Sci. Technol. 2015, 6, 235–262. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, L.; Lu, B.; Chen, M.; Zhang, Y. Evaluation of bamboo shoot peptide preparation with angiotensin converting enzyme inhibitory and antioxidant abilities from byproducts of canned bamboo shoots. J. Agric. Food Chem. 2013, 61, 5526–5533. [Google Scholar] [CrossRef]
- Castellani, O.; Guérin-Dubiard, C.; David-Briand, E.; Anton, M. Influence of physicochemical conditions and technological treatments on the iron binding capacity of egg yolk phosvitin. Food Chem. 2004, 85, 569–577. [Google Scholar] [CrossRef]
- Xu, X.; Katayama, S.; Mine, Y. Antioxidant activity of tryptic digests of hen egg yolk phosvitin. J. Sci. Food Agric. 2007, 87, 2604–2608. [Google Scholar] [CrossRef]
- Huang, X.; Tu, Z.; Xiao, H.; Wang, H.; Zhang, L.; Hu, Y.; Zhang, Q.; Niu, P. Characteristics and antioxidant activities of ovalbumin glycated with different saccharides under heat moisture treatment. Food Res. Int. 2012, 48, 866–872. [Google Scholar] [CrossRef]
- Kim, J.; Moon, S.H.; Ahn, D.U.; Paik, H.D.; Park, E. Antioxidant effects of ovotransferrin and its hydrolysates. Poult. Sci. 2012, 91, 2747–2754. [Google Scholar] [CrossRef]
- Majumder, K.; Wu, J. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides derived from enzymatic hydrolysate of ovotransferrin. Food Chem. 2011, 126, 1614–1619. [Google Scholar] [CrossRef]
- Mine, Y.; Ma, F.; Lauriau, S. Antimicrobial peptides released by enzymatic hydrolysis of hen egg white lysozyme. J. Agric. Food Chem. 2004, 52, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, A.; Hülsmeier, A.J.; Hunziker, P.; Thomas, U. Proteolytic fragments of ovalbumin display antimicrobial activity. Biochim. Biophys. Acta 2004, 1672, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Paik, H.-D. Anticancer and immunomodulatory activity of egg proteins and peptides: A review. Poult. Sci. 2019, 98, 6505–6516. [Google Scholar] [CrossRef] [PubMed]
- Cegnar, M.; Premzl, A.; Zavasnik-Bergant, V.; Kristl, J.; Kos, J. Poly(lactide-co-glycolide) nanoparticles as a carrier system for delivering cysteine protease inhibitor cystatin into tumor cells. Exp. Cell Res. 2004, 301, 223–231. [Google Scholar] [CrossRef]
- Saleh, Y.; Siewiński, M.; Kielan, W.; Ziółkowski, P.; Gryboś, M.; Rybka, J. Regulation of cathepsin B and L expression in vitro in gastric cancer tissues by egg cystatin. J. Exp. Ther. Oncol. 2003, 3, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Corti, A.; Gasparri, A.; Sacchi, A.; Curnis, F.; Sangregorio, R.; Colombo, B.; Siccardi, A.G.; Magni, F. Tumor targeting with biotinylated tumor necrosis factor alpha: Structure-activity relationships and mechanism of action on avidin pretargeted tumor cells. Cancer Res. 1998, 58, 3866–3872. [Google Scholar]
- Gasparri, A.; Moro, M.; Curnis, F.; Sacchi, A.; Pagano, S.; Veglia, F.; Casorati, G.; Siccardi, A.G.; Dellabona, P.; Corti, A. Tumor pretargeting with avidin improves the therapeutic index of biotinylated tumor necrosis factor alpha in mouse models. Cancer Res. 1999, 59, 2917–2923. [Google Scholar] [PubMed]
- Das, S.; Banerjee, S.; Gupta, J.D. Experimental evaluation of preventive and therapeutic potentials of lysozyme. Chemotherapy 1992, 38, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Mahanta, S.; Paul, S.; Srivastava, A.; Pastor, A.; Kundu, B.; Chaudhuri, T.K. Stable self-assembled nanostructured hen egg white lysozyme exhibits strong anti-proliferative activity against breast cancer cells. Colloids Surf. B Biointerfaces 2015, 130, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.H.; Lee, J.H.; Lee, M.; Park, E.; Ahn, D.U.; Paik, H.-D. Cytotoxic and antigenotoxic activities of phosvitin from egg yolk. Poult. Sci. 2014, 93, 2103–2107. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Tsuge, Y.; Shimoyamada, M.; Ogama, N.; Ebina, T. Antitumor Effects of Pronase-Treated Fragments, Glycopeptides, from Ovomucin in Hen Egg White in a Double Grafted Tumor System. J. Agric. Food Chem. 1998, 46, 3033–3038. [Google Scholar] [CrossRef]
- Moon, S.H.; Lee, J.H.; Lee, Y.J.; Chang, K.H.; Paik, J.Y.; Ahn, D.U.; Paik, H.D. Screening for cytotoxic activity of ovotransferrin and its enzyme hydrolysates. Poult. Sci. 2013, 92, 424–434. [Google Scholar] [CrossRef]
- Vis, E.H.; Plinck, A.F.; Alink, G.M.; van Boekel, M.A. Antimutagenicity of heat-denatured ovalbumin, before and after digestion, as compared to caseinate, BSA, and soy protein. J. Agric. Food Chem. 1998, 46, 3713–3718. Available online: https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2425143 (accessed on 29 May 2023). [CrossRef]
- Lee, J.H.; Ahn, D.U.; Paik, H.-D. In Vitro Immune-Enhancing Activity of Ovotransferrin from Egg White via MAPK Signaling Pathways in RAW 264.7 Macrophages. Korean J. Food Sci. Anim. Resour. 2018, 38, 1226–1236. [Google Scholar] [CrossRef]
- Lokugamage, K.G.; Narayanan, K.; Huang, C.; Makino, S. Severe acute respiratory syndrome coronavirus protein nsp1 is a novel eukaryotic translation inhibitor that represses multiple steps of translation initiation. J. Virol. 2012, 86, 13598–13608. [Google Scholar] [CrossRef]
- Cornillez-Ty, C.T.; Liao, L.; Yates, J.R.; Kuhn, P.; Buchmeier, M.J. Severe acute respiratory syndrome coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. J. Virol. 2009, 83, 10314–10318. [Google Scholar] [CrossRef]
- MUC2—An overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/muc2 (accessed on 29 July 2023).
- Tran, S.; Fairlie, W.D.; Lee, E.F. BECLIN1: Protein Structure, Function and Regulation. Cells 2021, 10, 1522. [Google Scholar] [CrossRef] [PubMed]
- Zyxin—An overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/zyxin (accessed on 29 July 2023).
- Chiu, C.; Bagnall, R.D.; Ingles, J.; Yeates, L.; Kennerson, M.; Donald, J.A.; Jormakka, M.; Lind, J.M.; Semsarian, C. Mutations in Alpha-Actinin-2 Cause Hypertrophic Cardiomyopathy: A Genome-Wide Analysis. J. Am. Coll. Cardiol. 2010, 55, 1127–1135. [Google Scholar] [CrossRef]
- Bagnall, R.D.; Molloy, L.K.; Kalman, J.M.; Semsarian, C. Exome sequencing identifies a mutation in the ACTN2 gene in a family with idiopathic ventricular fibrillation, left ventricular noncompaction, and sudden death. BMC Med. Genet. 2014, 15, 99. [Google Scholar] [CrossRef] [PubMed]
- Hatakeyama, J.; Bessho, Y.; Katoh, K.; Ookawara, S.; Fujioka, M.; Guillemot, F.; Kageyama, R. Hes genes regulate size, shape and histogenesis of the nervous system by control of the timing of neural stem cell differentiation. Development 2004, 131, 5539–5550. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, R.; Ohtsuka, T.; Kobayashi, T. Roles of Hes genes in neural development. Dev. Growth Differ. 2008, 50, S97–S103. [Google Scholar] [CrossRef] [PubMed]
- Crosnier, C.; Stamataki, D.; Lewis, J. Organizing cell renewal in the intestine: Stem cells, signals and combinatorial control. Nat. Rev. Genet. 2006, 7, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Haslinger, A.; Schwarz, T.J.; Covic, M.; Chichung Lie, D. Expression of Sox11 in adult neurogenic niches suggests a stage-specific role in adult neurogenesis. Eur. J. Neurosci. 2009, 29, 2103–2114. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, M.; Kojima, M.; Takeuchi, T. Jumonji Is a Nuclear Protein That Participates in the Negative Regulation of Cell Growth. Biochem. Biophys. Res. Commun. 2000, 274, 332–336. [Google Scholar] [CrossRef]
- Kim, T.G.; Kraus, J.; Chen, J.; Lee, Y. JUMONJI a Critical Factor for Cardiac Development, Functions as a Transcriptional Repressor. J. Biol. Chem. 2003, 278, 42247–42255. [Google Scholar] [CrossRef] [PubMed]
- Brick, P.; Bhat, T.N.; Blow, D.M. Structure of tyrosyl-tRNA synthetase refined at 2.3 Å resolution: Interaction of the enzyme with the tyrosyl adenylate intermediate. J. Mol. Biol. 1989, 208, 83–98. [Google Scholar] [CrossRef] [PubMed]
Egg White | Egg Yolk | |
---|---|---|
Proteins identified in present study * | 400 | 456 |
Unique proteins identified in present study (new entries) | 371 | 428 |
Proteins identified in previous studies | 408 | 357 |
Total proteins (all articles, incl. present study) | 808 | 813 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarantidi, E.; Ainatzoglou, A.; Papadimitriou, C.; Stamoula, E.; Maghiorou, K.; Miflidi, A.; Trichopoulou, A.; Mountzouris, K.C.; Anagnostopoulos, A.K. Egg White and Yolk Protein Atlas: New Protein Insights of a Global Landmark Food. Foods 2023, 12, 3470. https://doi.org/10.3390/foods12183470
Sarantidi E, Ainatzoglou A, Papadimitriou C, Stamoula E, Maghiorou K, Miflidi A, Trichopoulou A, Mountzouris KC, Anagnostopoulos AK. Egg White and Yolk Protein Atlas: New Protein Insights of a Global Landmark Food. Foods. 2023; 12(18):3470. https://doi.org/10.3390/foods12183470
Chicago/Turabian StyleSarantidi, Eleana, Alexandra Ainatzoglou, Christine Papadimitriou, Eleni Stamoula, Katerina Maghiorou, Argyro Miflidi, Antonia Trichopoulou, Konstantinos C. Mountzouris, and Athanasios K. Anagnostopoulos. 2023. "Egg White and Yolk Protein Atlas: New Protein Insights of a Global Landmark Food" Foods 12, no. 18: 3470. https://doi.org/10.3390/foods12183470
APA StyleSarantidi, E., Ainatzoglou, A., Papadimitriou, C., Stamoula, E., Maghiorou, K., Miflidi, A., Trichopoulou, A., Mountzouris, K. C., & Anagnostopoulos, A. K. (2023). Egg White and Yolk Protein Atlas: New Protein Insights of a Global Landmark Food. Foods, 12(18), 3470. https://doi.org/10.3390/foods12183470