Evaluation of the Effect of Preharvest Melatonin Spraying on Fruit Quality of ‘Yuluxiang’ Pear Based on Principal Component Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Field Experiments
2.3. Appearance Quality
2.4. Internal Quality
2.5. Texture Quality
2.6. Statistical Analysis
3. Results
3.1. Effects of Exogenous MT on Appearance Quality of Pear Fruit
3.2. Effects of Exogenous MT on Internal Quality of Pear Fruit
3.3. Effects of Exogenous MT on Texture Quality of Pear Fruit
3.4. Comprehensive Evaluation of MT-Spraying Schemes
4. Discussion
4.1. Exogenous MT Affects the Appearance Quality of Pear Fruit
4.2. Exogenous MT Affects the Internal Quality of Pear Fruit
4.3. Exogenous MT Affects the Texture of Pear Fruit
4.4. Screening of Exogenous MT-Spraying Schemes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, J.; Wang, Z.; Shi, Z.; Zhang, S.; Ming, R.; Zhu, S.; Khan, M.A.; Tao, S.; Korban, S.S.; Wang, H.; et al. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res. 2013, 23, 396–408. [Google Scholar] [CrossRef] [PubMed]
- McCluskey, J.; Zhang, H.; Gallardo, K.; Kupferman, E. Consumers’ Willingness to Pay for Treatment-Induced Quality Attributes in Anjou Pears. J. Agric. Resour. Econ. 2010, 35, 105–117. [Google Scholar] [CrossRef]
- Roychoudhury, A.; Aftab, T. Phytohormones, plant growth regulators and signaling molecules: Cross-talk and stress responses. Plant Cell Rep. 2021, 40, 1301–1303. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Zhao, Y.; Qin, X.; Ding, C.; Chen, Y.; Tang, Z.; Huang, Y.; Reiter, R.J.; Yuan, S.; Yuan, M. New insights into the role of melatonin in photosynthesis. J. Exp. Bot. 2022, 73, 5918–5927. [Google Scholar] [CrossRef]
- Zhang, H.; Qiu, Y.; Ji, Y.; Wu, X.; Xu, X.; Wu, P. Melatonin Promotes Seed Germination via Regulation of ABA Signaling Under Low Temperature Stress in Cucumber. J. Plant Growth Regul. 2023, 42, 2232–2245. [Google Scholar] [CrossRef]
- Liu, J.; Yue, R.; Si, M.; Wu, M.; Cong, L.; Zhai, R.; Yang, C.; Wang, Z.; Ma, F.; Xu, L. Effects of Exogenous Application of Melatonin on Quality and Sugar Metabolism in ‘Zaosu’ Pear Fruit. J. Plant Growth Regul. 2019, 38, 1161–1169. [Google Scholar] [CrossRef]
- Chen, J.; Li, H.; Yang, K.; Wang, Y.; Yang, L.; Hu, L.; Liu, R.; Shi, Z. Melatonin facilitates lateral root development by coordinating PAO-derived hydrogen peroxide and Rboh-derived superoxide radical. Free Radic. Biol. Med. 2019, 143, 534–544. [Google Scholar] [CrossRef]
- Cui, G.; Sun, F.; Gao, X.; Xie, K.; Zhang, C.; Liu, S.; Xi, Y. Proteomic analysis of melatonin-mediated osmotic tolerance by improving energy metabolism and autophagy in wheat (Triticum aestivum L.). Planta 2018, 248, 69–87. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Alamri, S.; Al-Khaishany, M.Y.; Khan, M.N.; Al-Amri, A.; Ali, H.M.; Alaraidh, I.A.; Alsahli, A.A. Exogenous Melatonin Counteracts NaCl-Induced Damage by Regulating the Antioxidant System, Proline and Carbohydrates Metabolism in Tomato Seedlings. Int. J. Mol. Sci. 2019, 20, 253. [Google Scholar] [CrossRef]
- Li, Z.-G.; Xu, Y.; Bai, L.-K.; Zhang, S.-Y.; Wang, Y. Melatonin enhances thermotolerance of maize seedlings (Zea mays L.) by modulating antioxidant defense, methylglyoxal detoxification, and osmoregulation systems. Protoplasma 2019, 256, 471–490. [Google Scholar] [CrossRef]
- Zhao, D.; Yu, Y.; Shen, Y.; Liu, Q.; Zhao, Z.; Sharma, R.; Reiter, R.J. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front. Endocrinol. 2019, 10, 249. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Nagar, S.; Dhakar, R.; Arora, A.; Kumar, K.G.; Barman, D. Melatonin: A new player in plant growth regulation and stress tolerance. Biotech Express 2019, 6, 16–19. [Google Scholar]
- Hardeland, R.; Tan, D.X.; Reiter, R.J. Kynuramines, metabolites of melatonin and other indoles: The resurrection of an almost forgotten class of biogenic amines. J. Pineal Res. 2009, 47, 109–126. [Google Scholar] [CrossRef]
- Verde, A.; Míguez, J.M.; Gallardo, M. Role of Melatonin in Apple Fruit during Growth and Ripening: Possible Interaction with Ethylene. Plants 2022, 11, 688. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, R.; Sun, Y.; Liu, Z.; Jin, W.; Sun, Y. The beneficial effects of exogenous melatonin on tomato fruit properties. Sci. Hortic. 2016, 207, 14–20. [Google Scholar] [CrossRef]
- Dou, J.; Wang, J.; Tang, Z.; Yu, J.; Wu, Y.; Liu, Z.; Wang, J.; Wang, G.; Tian, Q. Application of Exogenous Melatonin Improves Tomato Fruit Quality by Promoting the Accumulation of Primary and Secondary Metabolites. Foods 2022, 11, 4097. [Google Scholar] [CrossRef]
- Meng, J.-F.; Xu, T.-F.; Song, C.-Z.; Yu, Y.; Hu, F.; Zhang, L.; Zhang, Z.-W.; Xi, Z.-M. Melatonin treatment of pre-veraison grape berries to increase size and synchronicity of berries and modify wine aroma components. Food Chem. 2015, 185, 127–134. [Google Scholar] [CrossRef]
- Xu, L.; Yue, Q.; Bian, F.; Sun, H.; Zhai, H.; Yao, Y. Melatonin Enhances Phenolics Accumulation Partially via Ethylene Signaling and Resulted in High Antioxidant Capacity in Grape Berries. Front. Plant Sci. 2017, 8, 1426. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin in flowering, fruit set and fruit ripening. Plant Reprod. 2020, 33, 77–87. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Hosseini, M.S.; Abadia, J.; Marjani, M. Melatonin foliar sprays elicit salinity stress tolerance and enhance fruit yield and quality in strawberry (Fragaria x ananassa Duch.). Plant Physiol. Biochem. 2020, 149, 313–323. [Google Scholar] [CrossRef]
- Debnath, B.; Hussain, M.; Li, M.; Lu, X.; Sun, Y.; Qiu, D. Exogenous Melatonin Improves Fruit Quality Features, Health Promoting Antioxidant Compounds and Yield Traits in Tomato Fruits under Acid Rain Stress. Molecules 2018, 23, 1868. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, C.; Sun, J.; Jackson, A. Dynamic changes of enzymes involved in sugar and organic acid level modification during blueberry fruit maturation. Food Chem. 2020, 309, 125617. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.L.; Jin, Y.; Yang, Y.J.; Li, G.J.; Boyer, J.S. Sugar input, metabolism, and signaling mediated by invertase: Roles in development, yield potential, and response to drought and heat. Mol. Plant 2010, 3, 942–955. [Google Scholar] [CrossRef]
- Li, M.; Li, P.; Ma, F.; Dandekar, A.M.; Cheng, L. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. Hortic. Res. 2018, 5, 60. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Shen, Y.; Deng, H.; Wang, J.; Lin, L.; Deng, Q.; Lv, X.; Liang, D.; Hu, R.; Wang, Z.; et al. Melatonin application improves berry coloration, sucrose synthesis, and nutrient absorption in ‘Summer Black’ grape. Food Chem. 2021, 356, 129713. [Google Scholar] [CrossRef]
- Jia, D.; Xu, Z.; Chen, L.; Huang, Q.; Huang, C.; Tao, J.; Qu, X.; Xu, X. Analysis of organic acid metabolism reveals citric acid and malic acid play major roles in determining acid quality during the development of kiwifruit (Actinidia eriantha). J. Sci. Food Agric. 2023, 103, 6055–6069. [Google Scholar] [CrossRef]
- Ozturk, A.; Burhan, O.; Gul, O. Effects of Rootstocks on Sugar and Organic Acid Contents of ‘Deveci’ Pear. Uluslararası Tarım Ve Yaban Hayatı Bilim. Derg. 2017, 3, 49–53. [Google Scholar] [CrossRef]
- Chen, F.; Liu, X.; Chen, L. Advances in research on organic acid metabolism in fruits. J. Fruit Sci. 2005, 22, 526–531. [Google Scholar]
- Kliewer, W.M. Effect of Day Temperature and Light Intensity on Concentration of Malic and Tartaric Acids in Vitis vinifera L. Grapes. J. Am. Soc. Hortic. Sci. 1971, 96, 372–377. [Google Scholar] [CrossRef]
- Jing, C.J.; Feng, D.P.; Zhao, Z.Y.; Wu, X.H.; Chen, X.F. Effect of environmental factors on skin pigmentation and taste in three apple cultivars. Acta Physiol. Plant. 2020, 42, 69. [Google Scholar] [CrossRef]
- Zheng, Y.J.; Yang, Z.Q.; Luo, J.; Zhang, Y.; Jiang, N.; Khattak, W.A. Transcriptome analysis of sugar and acid metabolism in young tomato fruits under high temperature and nitrogen fertilizer influence. Front. Plant Sci. 2023, 14, 1197553. [Google Scholar] [CrossRef]
- Ma, W.F.; Li, Y.B.; Nai, G.J.; Liang, G.P.; Ma, Z.H.; Chen, B.H.; Mao, J. Changes and response mechanism of sugar and organic acids in fruits under water deficit stress. PeerJ 2022, 10, e13691. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.; Kang, Y.; Ma, G.; Yuan, H. Relationship between soil fertility and quality of wine grape. Acta Agric. Univ. Jiangxiensis 2008, 30, 226–229, 234. [Google Scholar]
- Paponov, M.; Kechasov, D.; Lacek, J.; Verheul, M.J.; Paponov, I.A. Supplemental Light-Emitting Diode Inter-Lighting Increases Tomato Fruit Growth Through Enhanced Photosynthetic Light Use Efficiency and Modulated Root Activity. Front. Plant Sci. 2019, 10, 1656. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, D.; Qin, M.; Xie, Z.; Chen, R.; Zhang, Y. Effects of Supplemental Lighting on Potassium Transport and Fruit Coloring of Tomatoes Grown in Hydroponics. Int. J. Mol. Sci. 2021, 22, 2687. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, L.; Wang, Y.; Tao, H.; Fan, J.; Zhao, Z.; Guo, Y. Effects of soil water stress on fruit yield, quality and their relationship with sugar metabolism in ‘Gala’ apple. Sci. Hortic. 2019, 258, 108753. [Google Scholar] [CrossRef]
- Movahed, N.; Pastore, C.; Cellini, A.; Allegro, G.; Valentini, G.; Zenoni, S.; Cavallini, E.; D’Incà, E.; Tornielli, G.B.; Filippetti, I. The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature. J. Plant Res. 2016, 129, 513–526. [Google Scholar] [CrossRef]
- He, H.; Yamamuro, C. Interplays between auxin and GA signaling coordinate early fruit development. Hortic. Res. 2022, 9, uhab078. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tan, D.-X.; Lei, Q.; Chen, H.; Wang, L.; Li, Q.-T.; Gao, Y.; Kong, J. Melatonin and its potential biological functions in the fruits of sweet cherry. J. Pineal Res. 2013, 55, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Li, H.; Liu, Q.; Liao, M.; Liu, L.; Lü, X.; Liang, D.; Wang, J.; Xia, H.; Lin, L.; et al. Effects of exogenous melatonin on growth and fruit quality of peach (Prunus persica). J. Fruit Sci. 2021, 38, 40–49. [Google Scholar] [CrossRef]
- Çolak, A.M. Effect of melatonin and gibberellic acid foliar application on the yield and quality of Jumbo blackberry species. Saudi J. Biol. Sci. 2018, 25, 1242–1246. [Google Scholar] [CrossRef]
- Zia, S.F.; Berkowitz, O.; Bedon, F.; Whelan, J.; Franks, A.E.; Plummer, K.M. Direct comparison of Arabidopsis gene expression reveals different responses to melatonin versus auxin. BMC Plant Biol. 2019, 19, 567. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Dong, T.; Qiu, X.; Rong, Y.; Wang, Z.; Zhu, J. Nitrogen nutrition is a key modulator of the sugar and organic acid content in citrus fruit. PLoS ONE 2019, 14, e0223356. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, J.; Han, X.; Chen, R.; Xue, X. Effects of Spraying Calcium Fertilizer on Photosynthesis, Mineral Content, Sugar–Acid Metabolism and Fruit Quality of Fuji Apples. Agronomy 2022, 12, 2563. [Google Scholar] [CrossRef]
- Gupta, K.; Wani, S.H.; Razzaq, A.; Skalicky, M.; Samantara, K.; Gupta, S.; Pandita, D.; Goel, S.; Grewal, S.; Hejnak, V.; et al. Abscisic Acid: Role in Fruit Development and Ripening. Front. Plant Sci. 2022, 13, 856. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, H.; Lei, D.; Zhao, B.; Zhou, X.; Yao, W.; Fan, J.; Lin, Y.; Chen, Q.; Wang, Y.; et al. Exogenous melatonin maintains postharvest quality in kiwiberry fruit by regulating sugar metabolism during cold storage. LWT 2023, 174, 114385. [Google Scholar] [CrossRef]
- Du, T.; Zhou, X.; Zhu, L.; Zhang, J.; Zou, Z. Effect of Melatonin Treatment on Tomato Fruit Quality and Volatile Compounds under Salt Stress. Food Sci. 2016, 37, 69–76. [Google Scholar]
- Matas, A.J.; Gapper, N.E.; Chung, M.-Y.; Giovannoni, J.J.; Rose, J.K.C. Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life. Curr. Opin. Biotechnol. 2009, 20, 197–203. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, Q.; Zhou, X.; Zhang, F.; Ji, S. Ethylene plays an important role in the softening and sucrose metabolism of blueberries postharvest. Food Chem. 2020, 310, 125965. [Google Scholar] [CrossRef]
- Karppinen, K.; Tegelberg, P.; Häggman, H.; Jaakola, L. Abscisic Acid Regulates Anthocyanin Biosynthesis and Gene Expression Associated With Cell Wall Modification in Ripening Bilberry (Vaccinium myrtillus L.) Fruits. Front. Plant Sci. 2018, 9, 1259. [Google Scholar] [CrossRef]
- Dhakar, M.K.; Das, B.; Nath, V.; Sarkar, P.K.; Singh, A.K. Genotypic diversity for fruit characteristics in bael [Aegle marmelos (L.) Corr.] based on principal component analysis. Genet. Resour. Crop Evol. 2019, 66, 951–964. [Google Scholar] [CrossRef]
- Peng, J.; Zhu, S.; Lin, X.; Wan, X.; Zhang, Q.; Njie, A.; Luo, D.; Long, Y.; Fan, R.; Dong, X. Evaluation of Preharvest Melatonin on Soft Rot and Quality of Kiwifruit Based on Principal Component Analysis. Foods 2023, 12, 1414. [Google Scholar] [CrossRef]
- Nowicka, P.; Wojdyło, A.; Laskowski, P. Principal component analysis (PCA) of physicochemical compounds’ content in different cultivars of peach fruits, including qualification and quantification of sugars and organic acids by HPLC. Eur. Food Res. Technol. 2019, 245, 929–938. [Google Scholar] [CrossRef]
Order Number | Treatment | Spraying Time | Spray Concentration (in μmol/L) | Spraying Times (No. of Times) |
---|---|---|---|---|
1 | 30 d-50 | 30 d after full bloom | 50 | one |
2 | 30 d-100 | 30 d after full bloom | 100 | one |
3 | 30 d-200 | 30 d after full bloom | 200 | one |
4 | 30 d-300 | 30 d after full bloom | 300 | one |
5 | 90 d-50 | 90 d after full bloom | 50 | one |
6 | 90 d-100 | 90 d after full bloom | 100 | one |
7 | 90 d-200 | 90 d after full bloom | 200 | one |
8 | 90 d-300 | 90 d after full bloom | 300 | one |
9 | 30 + 90 d-50 | 30 + 90 d after full bloom | 50 | two |
10 | 30 + 90 d-100 | 30 + 90 d after full bloom | 100 | two |
11 | 30 + 90 d-200 | 30 + 90 d after full bloom | 200 | two |
12 | 30 + 90 d-300 | 30 + 90 d after full bloom | 300 | two |
Treatment | Sugar Components (%) | |||
---|---|---|---|---|
Sucrose | Sorbitol | Fructose | Glucose | |
CK | 2.721 ± 0.067 b | 3.470 ± 0.029 f | 5.819 ± 0.227 d | 0.838 ± 0.071 g |
30 d-50 | 1.636 ± 0.023 g | 3.708 ± 0.012 de | 7.079 ± 0.208 a | 1.145 ± 0.034 cd |
30 d-100 | 3.020 ± 0.045 a | 4.168 ± 0.023 ab | 5.880 ± 0.234 cd | 1.076 ± 0.005 de |
30 d-200 | 2.431 ± 0.011 c | 4.036 ± 0.132 abc | 5.945 ± 0.162 cd | 1.024 ± 0.039 ef |
30 d-300 | 1.171 ± 0.023 h | 3.450 ± 0.014 f | 6.692 ± 0.188 b | 1.537 ± 0.119 a |
90 d-50 | 1.778 ± 0.010 f | 3.673 ± 0.027 def | 6.645 ± 0.029 b | 1.213 ± 0.003 bc |
90 d-100 | 2.477 ± 0.034 c | 3.602 ± 0.120 ef | 6.171 ± 0.240 c | 0.979 ± 0.043 ef |
90 d-200 | 1.947 ± 0.094 e | 4.072 ± 0.093 abc | 6.867 ± 0.193 ab | 1.270 ± 0.057 b |
90 d-300 | 2.231 ± 0.043 d | 3.860 ± 0.127 cd | 6.125 ± 0.001 cd | 0.949 ± 0.033 f |
30 + 90 d-50 | 2.495 ± 0.026 c | 4.193 ± 0.034 a | 6.705 ± 0.332 b | 1.124 ± 0.050 cd |
30 + 90 d-100 | 2.977 ± 0.061 a | 4.165 ± 0.341 ab | 7.108 ± 0.092 a | 1.143 ± 0.067 cd |
30 + 90 d-200 | 1.601 ± 0.018 g | 3.941 ± 0.080 bc | 6.923 ± 0.250 ab | 1.258 ± 0.082 b |
30 + 90 d-300 | 1.754 ± 0.040 f | 3.446 ± 0.169 f | 6.663 ± 0.113 b | 1.215 ± 0.037 bc |
Treatment | Acid Components (mg/g) | |||
---|---|---|---|---|
Malic Acid | Citric Acid | Quinic Acid | Shikimic Acid | |
CK | 3.114 ± 0.048 gh | 0.146 ± 0.011 bc | 0.268 ± 0.008 ab | 0.051 ± 0.003 h |
30 d-50 | 3.160 ± 0.101 fgh | 0.180 ± 0.002 a | 0.281 ± 0.022 a | 0.083 ± 0.004 a |
30 d-100 | 3.258 ± 0.017 de | 0.125 ± 0.001 d | 0.256 ± 0.003 bc | 0.059 ± 0.002 ef |
30 d-200 | 3.082 ± 0.010 h | 0.157 ± 0.006 b | 0.258 ± 0.008 bc | 0.057 ± 0.002 fg |
30 d-300 | 2.971 ± 0.021 i | 0.115 ± 0.005 de | 0.256 ± 0.009 bc | 0.071 ± 0.002 b |
90 d-50 | 3.607 ± 0.037 a | 0.158 ± 0.011 b | 0.203 ± 0.005 f | 0.060 ± 0.001 def |
90 d-100 | 3.424 ± 0.015 c | 0.148 ± 0.011 bc | 0.227 ± 0.002 de | 0.062 ± 0.006 cdef |
90 d-200 | 3.207 ± 0.047 def | 0.145 ± 0.001 c | 0.200 ± 0.005 f | 0.054 ± 0.002 gh |
90 d-300 | 3.275 ± 0.047 d | 0.147 ± 0.002 bc | 0.271 ± 0.017 ab | 0.061 ± 0.002 def |
30 + 90 d-50 | 3.511 ± 0.076 b | 0.185 ± 0.002 a | 0.243 ± 0.012 cd | 0.054 ± 0.003 gh |
30 + 90 d-100 | 2.535 ± 0.015 j | 0.060 ± 0.004 f | 0.278 ± 0.007 a | 0.065 ± 0.002 cd |
30 + 90 d-200 | 3.179 ± 0.110 efg | 0.105 ± 0.007 e | 0.225 ± 0.005 e | 0.067 ± 0.002 bc |
30 + 90 d-300 | 3.251 ± 0.040 def | 0.112 ± 0.004 e | 0.243 ± 0.006 g | 0.064 ± 0.002 cde |
Test | Results | |
---|---|---|
KMO value | 0.653 | |
Bartlett sphericity test | Approximate chi-squared | 76.137 |
df | 45 | |
P | 0.005 *** |
Components | Latent Root | Variance Explained Rate (in %) | Cumulative Variance Interpretation Rate (in %) |
---|---|---|---|
1 | 4.461 | 44.613 | 44.613 |
2 | 2.096 | 20.962 | 65.576 |
3 | 1.285 | 12.855 | 78.43 |
4 | 0.732 | 7.317 | 85.748 |
5 | 0.565 | 5.651 | 91.399 |
6 | 0.374 | 3.738 | 95.137 |
7 | 0.297 | 2.975 | 98.112 |
8 | 0.1 | 0.999 | 99.111 |
9 | 0.074 | 0.743 | 99.854 |
10 | 0.015 | 0.146 | 100 |
Index | Component 1 | Component 2 | Component 3 |
---|---|---|---|
Longitudinal diameter | 0.192 | −0.016 | −0.237 |
Transverse diameter | 0.204 | −0.117 | −0.065 |
Single fruit weight | 0.210 | −0.059 | −0.095 |
Peel strength | 0.144 | 0.316 | 0.071 |
Pulp hardness | 0.084 | 0.418 | −0.024 |
Pulp fineness | 0.120 | 0.218 | −0.101 |
Soluble solids content | 0.149 | −0.134 | −0.268 |
Soluble sugar content | 0.118 | −0.012 | 0.571 |
Titratable acid content | −0.107 | 0.333 | 0.043 |
a* value | 0.110 | −0.093 | 0.542 |
Component | Variance Explained Rate (%) | Cumulative Variance Interpretation Rate (%) | Weight (%) |
---|---|---|---|
Component 1 | 44.613 | 44.613 | 56.882 |
Component 2 | 20.962 | 65.576 | 26.727 |
Component 3 | 12.855 | 78.430 | 16.390 |
Ranking | Treatment | Comprehensive Score | Component 1 | Component 2 | Component 3 |
---|---|---|---|---|---|
1 | 30 + 90 d-100 | 1.358 | 1.863 | 0.556 | 0.916 |
2 | 90 d-200 | 0.647 | 0.996 | 0.545 | −0.398 |
3 | 30 d-100 | 0.495 | 0.661 | 0.131 | 0.511 |
4 | 90 d-100 | 0.42 | 0.141 | 1.381 | −0.18 |
5 | 90 d-50 | 0.137 | 0.221 | 0.328 | −0.469 |
6 | 30 + 90 d-300 | −0.081 | 0.334 | −0.335 | −1.108 |
7 | 30 + 90 d-200 | −0.171 | 0.907 | −2.146 | −0.69 |
8 | 30 d-50 | −0.205 | −0.746 | 1.297 | −0.776 |
9 | 30 d-200 | −0.246 | −0.056 | −0.346 | −0.744 |
10 | 30 d-300 | −0.292 | −1.079 | 0.319 | 1.442 |
11 | 90 d-300 | −0.302 | −0.986 | 0.37 | 0.976 |
12 | 30 + 90 d-50 | −0.382 | −0.473 | −1.498 | 1.753 |
13 | CK | −1.378 | −1.783 | −0.602 | −1.235 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Yan, S.; Wang, Y.; Xu, G.; Zhao, D. Evaluation of the Effect of Preharvest Melatonin Spraying on Fruit Quality of ‘Yuluxiang’ Pear Based on Principal Component Analysis. Foods 2023, 12, 3507. https://doi.org/10.3390/foods12183507
Zhao L, Yan S, Wang Y, Xu G, Zhao D. Evaluation of the Effect of Preharvest Melatonin Spraying on Fruit Quality of ‘Yuluxiang’ Pear Based on Principal Component Analysis. Foods. 2023; 12(18):3507. https://doi.org/10.3390/foods12183507
Chicago/Turabian StyleZhao, Liangliang, Shuai Yan, Yufei Wang, Gongxun Xu, and Deying Zhao. 2023. "Evaluation of the Effect of Preharvest Melatonin Spraying on Fruit Quality of ‘Yuluxiang’ Pear Based on Principal Component Analysis" Foods 12, no. 18: 3507. https://doi.org/10.3390/foods12183507
APA StyleZhao, L., Yan, S., Wang, Y., Xu, G., & Zhao, D. (2023). Evaluation of the Effect of Preharvest Melatonin Spraying on Fruit Quality of ‘Yuluxiang’ Pear Based on Principal Component Analysis. Foods, 12(18), 3507. https://doi.org/10.3390/foods12183507