Effect of Heat Treatment on Protein Self-Digestion in Ruminants’ Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Milk Sampling
2.2. Heat Treatments and Self-Digestion
2.3. Degree of Hydrolysis by Determination of Free Amino Groups
2.4. Peptide Analysis
2.4.1. Peptide Extraction
2.4.2. Peptide Characterisation via LC-MS/MS
2.4.3. Peptide Identification
2.4.4. Protein of Origin
2.4.5. Potential Bioactive Peptide Search
2.5. Statistical Analysis
3. Results
3.1. Degree of Protein Hydrolysis of Ruminant Milk Prior and Post Self-Digestion
3.2. Similarity between Non-Redundant Peptides Identified in Ruminant Milk Samples
3.3. Number of Non-Redundant Peptides in Heat-Treated Ruminant Milk
3.4. Protein of Origin
3.5. Potential Bioactive Peptides in Ruminant Milk after Self-Digestion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Zhou, R.; Zhang, J.; Zhou, P. Heat-induced denaturation and bioactivity changes of whey proteins. Int. Dairy J. 2021, 123, 105175. [Google Scholar] [CrossRef]
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of raw or heated milk from different species: An evaluation of the nutritional and potential health benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Leite, J.A.S.; Montoya, C.A.; Loveday, S.M.; Maes, E.; Mullaney, J.A.; McNabb, W.C.; Roy, N.C. Heat-Treatments Affect Protease Activities and Peptide Profiles of Ruminants’ Milk. Front. Nutr. 2021, 8, 626475. [Google Scholar] [CrossRef] [PubMed]
- Leite, J.A.S.; Montoya, C.A.; Loveday, S.M.; Mullaney, J.A.; Loo, T.S.; McNabb, W.C.; Roy, N.C. The impact of heating and drying on protease activities of ruminant milk before and after in vitro infant digestion. Food Chem. 2023, 429, 136979. [Google Scholar] [CrossRef]
- Singh, H. Heat stability of milk. Int. J. Dairy Technol. 2004, 57, 111–119. [Google Scholar] [CrossRef]
- Anema, S.G. Age Gelation, Sedimentation, and Creaming in UHT Milk: A Review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 140–166. [Google Scholar] [CrossRef]
- Jeswan Singh, M.; Chandrapala, J.; Udabage, P.; McKinnon, I.; Augustin, M.A. Heat-induced changes in the properties of modified skim milks with different casein to whey protein ratios. J. Dairy Res. 2015, 82, 135–142. [Google Scholar] [CrossRef]
- Denis, T.S.; Humbert, G.; Gaillard, J. Heat inactivation of native plasmin, plasminogen and plasminogen activators in bovine milk: A revisited study. Lait 2001, 81, 715–729. [Google Scholar] [CrossRef]
- Prado, B.M.; Sombers, S.E.; Ismail, B.; Hayes, K.D. Effect of heat treatment on the activity of inhibitors of plasmin and plasminogen activators in milk. Int. Dairy J. 2006, 16, 593–599. [Google Scholar] [CrossRef]
- Hossain, S.; Khetra, Y.; Ganguly, S.; Kumar, R.; Sabikhi, L. Effect of heat treatment on plasmin activity and bio-functional attributes of Cheddar cheese. LWT 2020, 120, 108924. [Google Scholar] [CrossRef]
- Lu, D.D.; Nielsen, S.S. Heat Inactivation of Native Plasminogen Activators in Bovine Milk. J. Food Sci. 1993, 58, 1010–1012. [Google Scholar] [CrossRef]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A standardised static in vitro digestion method suitable for food—An international consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef]
- Mulet-Cabero, A.-I.; Torcello-Gómez, A.; Saha, S.; Mackie, A.R.; Wilde, P.J.; Brodkorb, A. Impact of caseins and whey proteins ratio and lipid content on in vitro digestion and ex vivo absorption. Food Chem. 2020, 319, 126514. [Google Scholar] [CrossRef]
- Boutrou, R.; Gaudichon, C.; Dupont, D.; Jardin, J.; Airinei, G.; Marsset-Baglieri, A.; Benamouzig, R.; Tomé, D.; Leonil, J. Sequential release of milk protein–derived bioactive peptides in the jejunum in healthy humans. Am. J. Clin. Nutr. 2013, 97, 1314–1323. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Ye, A.; Moughan, P.J.; Singh, H. Structural changes in cow, goat, and sheep skim milk during dynamic in vitro gastric digestion. J. Dairy Sci. 2021, 104, 1394–1411. [Google Scholar] [CrossRef] [PubMed]
- Church, F.C.; Swaisgood, H.E.; Porter, D.H.; Catignani, G.L. Spectrophotometric Assay Using o-Phthaldialdehyde for Determination of Proteolysis in Milk and Isolated Milk Proteins1. J. Dairy Sci. 1983, 66, 1219–1227. [Google Scholar] [CrossRef]
- Nielsen, S.D.; Beverly, R.L.; Qu, Y.; Dallas, D.C. Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chem. 2017, 232, 673–682. [Google Scholar] [CrossRef]
- Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.-A. mixOmics: An R package for ’omics feature selection and multiple data integration. PLoS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 2 August 2022).
- Roy, D.; Ye, A.; Moughan, P.J.; Singh, H. Composition, Structure, and Digestive Dynamics of Milk from Different Species—A Review. Front. Nutr. 2020, 7, 577759. [Google Scholar] [CrossRef]
- Ingham, B.; Smialowska, A.; Kirby, N.M.; Wang, C.; Carr, A.J. A structural comparison of casein micelles in cow, goat and sheep milk using X-ray scattering. Soft Matter 2018, 14, 3336–3343. [Google Scholar] [CrossRef]
- Bogahawaththa, D.; Vasiljevic, T. Shearing accelerates denaturation of β-lactoglobulin and α-lactalbumin in skim milk during heating. Int. Dairy J. 2020, 105, 104674. [Google Scholar] [CrossRef]
- Zhang, Y.; Yi, S.; Lu, J.; Pang, X.; Xu, X.; Lv, J.; Zhang, S. Effect of different heat treatments on the Maillard reaction products, volatile compounds and glycation level of milk. Int. Dairy J. 2021, 123, 105182. [Google Scholar] [CrossRef]
- Wijayanti, H.B.; Brodkorb, A.; Hogan, S.A.; Murphy, E.G. Chapter 6—Thermal Denaturation, Aggregation, and Methods of Prevention. In Whey Proteins; Deeth, H.C., Bansal, N., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 185–247. [Google Scholar]
- Zhang, Q.; Ames, J.M.; Smith, R.D.; Baynes, J.W.; Metz, T.O. A perspective on the Maillard reaction and the analysis of protein glycation by mass spectrometry: Probing the pathogenesis of chronic disease. J. Proteome Res. 2009, 8, 754–769. [Google Scholar] [CrossRef]
- Fatih, M.; Barnett, M.P.G.; Gillies, N.A.; Milan, A.M. Heat Treatment of Milk: A Rapid Review of the Impacts on Postprandial Protein and Lipid Kinetics in Human Adults. Front. Nutr. 2021, 8, 643350. [Google Scholar] [CrossRef]
- Li, S.; Ye, A.; Singh, H. Impacts of heat-induced changes on milk protein digestibility: A review. Int. Dairy J. 2021, 123, 105160. [Google Scholar] [CrossRef]
- Ren, Q.; Boiani, M.; He, T.; Wichers, H.J.; Hettinga, K.A. Heating affects protein digestion of skimmed goat milk under simulated infant conditions. Food Chem. 2023, 402, 134261. [Google Scholar] [CrossRef]
- Dupont, D.; Tomé, D. Chapter 20—Milk proteins: Digestion and absorption in the gastrointestinal tract. In Milk Proteins, 3rd ed.; Boland, M., Singh, H., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 701–714. [Google Scholar]
- Guo, M.R.; Fox, P.F.; Flynn, A.; Kindstedt, P.S. Susceptibility of beta-lactoglobulin and sodium caseinate to proteolysis by pepsin and trypsin. J. Dairy Sci. 1995, 78, 2336–2344. [Google Scholar] [CrossRef] [PubMed]
- Chauvet, L.; Ménard, O.; Le Gouar, Y.; Henry, G.; Jardin, J.; Hennetier, M.; Croguennec, T.; Van Audenhaege, M.; Dupont, D.; Lemaire, M.; et al. Protein ingredient quality of infant formulas impacts their structure and kinetics of proteolysis under in vitro dynamic digestion. Food Res. Int. 2023, 169, 112883. [Google Scholar] [CrossRef] [PubMed]
- Enjapoori, A.K.; Kukuljan, S.; Dwyer, K.M.; Sharp, J.A. In vivo endogenous proteolysis yielding beta-casein derived bioactive beta-casomorphin peptides in human breast milk for infant nutrition. Nutrition 2019, 57, 259–267. [Google Scholar] [CrossRef]
- Singh, B.P.; Vij, S. In vitro stability of bioactive peptides derived from fermented soy milk against heat treatment, pH and gastrointestinal enzymes. LWT 2018, 91, 303–307. [Google Scholar] [CrossRef]
- Mudgil, P.; Gan, C.-Y.; Affan Baig, M.; Hamdi, M.; Mohteshamuddin, K.; Aguilar-Toalá, J.E.; Vidal-Limon, A.M.; Liceaga, A.M.; Maqsood, S. In-depth peptidomic profile and molecular simulation studies on ACE-inhibitory peptides derived from probiotic fermented milk of different farm animals. Food Res. Int. 2023, 168, 112706. [Google Scholar] [CrossRef] [PubMed]
- White, K.; Hunt, B.J. Inherited antithrombin deficiency in pregnancy. Thromb. Update 2022, 6, 100094. [Google Scholar] [CrossRef]
- Kruijt, M.; Smit, N.P.M.; van Ham, J.J.; Cobbaert, C.M.; Ruhaak, L.R. Effects of sample matrix in the measurement of antithrombin by LC-MS: A role for immunocapture. J. Mass Spectrom. Adv. Clin. Lab 2023, 27, 61–65. [Google Scholar] [CrossRef]
- Mohanty, D.; Jena, R.; Choudhury, P.K.; Pattnaik, R.; Mohapatra, S.; Saini, M.R. Milk Derived Antimicrobial Bioactive Peptides: A Review. Int. J. Food Prop. 2016, 19, 837–846. [Google Scholar] [CrossRef]
- Law, I.K.M.; Cheng, M.W.; Shih, D.Q.; McGovern, D.P.B.; Koon, H.W. Chapter 3—The Roles of Antimicrobial Peptides in the Regulation of Gastrointestinal Microbiota and Innate Immunity. In Antimicrobial Peptides in Gastrointestinal Diseases; Cho, C.H., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 35–60. [Google Scholar]
- Amarh, M.A.; Laryea, M.K.; Borquaye, L.S. De novo peptides as potential antimicrobial agents. Heliyon 2023, 9, e19641. [Google Scholar] [CrossRef]
- Yamamoto, N.; Akino, A.; Takano, T. Antihypertensive Effect of the Peptides Derived from Casein by an Extracellular Proteinase from Lactobacillus helveticus CP790. J. Dairy Sci. 1994, 77, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yan, W.; Zhang, Y.-Q.; Dai, Z.-Y. A novel angiotensin-converting enzyme (ACE) inhibitory peptide from tilapia skin: Preparation, identification and its potential antihypertensive mechanism. Food Chem. 2024, 430, 137074. [Google Scholar] [CrossRef] [PubMed]
- Viana de Freitas, T.; Karmakar, U.; Vasconcelos, A.G.; Santos, M.A.; Oliveira do Vale Lira, B.; Costa, S.R.; Barbosa, E.A.; Cardozo-Fh, J.; Correa, R.; Ribeiro, D.J.S.; et al. Release of immunomodulatory peptides at bacterial membrane interfaces as a novel strategy to fight microorganisms. J. Biol. Chem. 2023, 299, 103056. [Google Scholar] [CrossRef]
- Rivero-Pino, F. Bioactive food-derived peptides for functional nutrition: Effect of fortification, processing and storage on peptide stability and bioactivity within food matrices. Food Chem. 2023, 406, 135046. [Google Scholar] [CrossRef]
- Cheung, R.C.F.; Ng, T.B.; Wong, J.H. Marine Peptides: Bioactivities and Applications. Mar. Drugs 2015, 13, 4006–4043. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Quintanar-Guerrero, D.; Liceaga, A.M.; Zambrano-Zaragoza, M.L. Encapsulation of bioactive peptides: A strategy to improve the stability, protect the nutraceutical bioactivity and support their food applications. RSC Adv. 2022, 12, 6449–6458. [Google Scholar] [CrossRef] [PubMed]
Species (S) | Heating (H) | Self-Digestion (SD) | S × H | S × SD | H × SD | S × H × SD | |
---|---|---|---|---|---|---|---|
Free NH2 | <0.0001 | <0.0001 | 0.01 | <0.0001 | 0.01 | 0.01 | - 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leite, J.A.S.; Montoya, C.A.; Maes, E.; Hefer, C.; Cruz, R.A.P.A.; Roy, N.C.; McNabb, W.C. Effect of Heat Treatment on Protein Self-Digestion in Ruminants’ Milk. Foods 2023, 12, 3511. https://doi.org/10.3390/foods12183511
Leite JAS, Montoya CA, Maes E, Hefer C, Cruz RAPA, Roy NC, McNabb WC. Effect of Heat Treatment on Protein Self-Digestion in Ruminants’ Milk. Foods. 2023; 12(18):3511. https://doi.org/10.3390/foods12183511
Chicago/Turabian StyleLeite, Juliana A. S., Carlos A. Montoya, Evelyne Maes, Charles Hefer, Raul A. P. A. Cruz, Nicole C. Roy, and Warren C. McNabb. 2023. "Effect of Heat Treatment on Protein Self-Digestion in Ruminants’ Milk" Foods 12, no. 18: 3511. https://doi.org/10.3390/foods12183511
APA StyleLeite, J. A. S., Montoya, C. A., Maes, E., Hefer, C., Cruz, R. A. P. A., Roy, N. C., & McNabb, W. C. (2023). Effect of Heat Treatment on Protein Self-Digestion in Ruminants’ Milk. Foods, 12(18), 3511. https://doi.org/10.3390/foods12183511