Neoteric Biofilms Applied to Enhance the Safety Characteristics of Ras Cheese during Ripening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials, Chemicals, and Microorganisms
2.2. Microbiological Analysis of Collected Cheese Samples
2.3. Fungal Isolation and Identification
2.4. Preparation of Cell-Free and Cell-Solution from the LAB Strains
2.5. Determination of the LAB Extracts’ Antifungal Effect
2.6. Determination of the Antimycotic and Antiaflatoxigenic Inhibitory Effect
2.7. Determination of Aflatoxin Reduction Effect
2.8. Preparation of Nanoemulsion for Ras Cheese Coating Film
2.9. Determination of Coating Film Characterization
- H0 represents the initial emulsion height;
- SR is the stability ratio for the formed emulsion.
2.10. Ras cheese Making
2.11. Experimental Design for the Bacterial Application in Cheese Safety Production
2.12. Analytical Methods of Ras Cheese Treatments
2.12.1. Chemical Composition
2.12.2. Ripening Indices
2.12.3. Texture Profile Analysis
2.12.4. Microbiological Changes during the Ripening Period
2.12.5. Sensory Properties of Ras Cheese Treatments
2.13. Statistical Analysis
3. Results
3.1. Evaluation of Current Contamination
3.2. Antifungal Effect of LAB Extracts
3.3. Mycelial Dry Weight
3.4. Aflatoxins Production
3.5. Characteristics of the Emulsions Used in the Coating Process
3.6. Evaluation of Formed Films in Ras Cheese Coating
3.6.1. Chemical Composition of Ras Cheese Treatments
3.6.2. Ripeni006Eg Indices of Ras Cheese
3.6.3. Rheology Properties of Ras Cheese
3.6.4. Microbiological Changes in Ras Cheese
3.6.5. Sensory Properties of Ras Cheese during Ripening
4. Discussion
4.1. Characteristic Amelioration of CFS-Coated Cheese
4.2. Ras Cheese Contamination Overcome by Coating
4.3. Bacterial Functionality and Cheese Safety
4.4. The LAB Application as Antimycotic and Antimycotoxigenic
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abou-Donia, S.A. Origin, history and manufacturing process of Egyptian dairy products: An overview. Alex. J. Food Sci. Technol. 2008, 5, 51–62. [Google Scholar] [CrossRef]
- Awad, S. Texture and flavor development in Ras cheese made from raw and pasteurised milk. Food Chem. 2006, 97, 394–400. [Google Scholar] [CrossRef]
- Ghibaudo, G.; Peano, A. Chronic monolateral otomycosis in a dog caused by Aspergillus ochraceus. Vet. Dermatol. 2010, 21, 522–526. [Google Scholar] [CrossRef]
- Delavenne, E.J.; Mounier, J.; Asmani, K.; Jany, J.-L.; Barbier, G.; Le Blay, G. Fungal diversity in cow, goat and ewe milk. Int. J. Food Microbiol. 2011, 151, 247–251. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed]
- Sarlak, Z.; Rouhi, M.; Mohammadi, R.; Khaksar, R.; Mortazavian, A.M.; Sohrabvandi, S.; Garavand, F. Probiotic biological strategies to decontaminate aflatoxin M1 in a traditional Iranian fermented milk drink (Doogh). Food Control. 2017, 71, 152–159. [Google Scholar] [CrossRef]
- El Darra, N.; Grimi, N.; Watson, I.A.; El Khoury, A. Editorial: Risk assessment of mycotoxins in food. Front. Nutr. 2023, 10, 1145998. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Mahato, D.K.; Kamle, M.; Mohanta, T.K.; Kang, S.G. Aflatoxins: A Global Concern for Food Safety, Human Health and Their Management. Front. Microbiol. 2017, 7, 2170. [Google Scholar] [CrossRef] [PubMed]
- Garnier, L.; Valence, F.; Mounier, J. Diversity and Control of Spoilage Fungi in Dairy Products: An Update. Microorganisms 2017, 5, 42. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, S.M.; El-Sayed, H.S.; Ibrahim, O.A.; Youssef, A.M. Rational design of chitosan/guar gum/zinc oxide bionanocomposites based on Roselle calyx extract for Ras cheese coating. Carbohydr. Polym. 2020, 239, 116234. [Google Scholar] [CrossRef]
- Tumbarski, Y.D.; Todorova, M.M.; Topuzova, M.G.; Georgieva, P.I.; Ganeva, Z.A.; Mihov, R.B.; Yanakieva, V.B. Antifungal Activity of Carboxymethyl Cellulose Edible Films Enriched with Propolis Extracts and Their Role in Improvement of the Storage Life of Kashkaval Cheese. Curr. Res. Nutr. Food Sci. 2021, 9, 487–499. [Google Scholar] [CrossRef]
- Cheong, E.Y.L.; Sandhu, A.; Jayabalan, J.; Le, T.T.K.; Nhiep, N.T.; Ho, H.T.M.; Zwielehner, J.; Bansal, N.; Turner, M.S. Isolation of lactic acid bacteria with antifungal activity against the common cheese spoilage mould Penicillium commune and their potential as biopreservatives in cheese. Food Control. 2014, 46, 91–97. [Google Scholar] [CrossRef]
- Settanni, L.; Moschetti, G. Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiol. 2010, 27, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Shehata, M.G.; Badr, A.N.; El Sohaimy, S.A. Novel antifungal bacteriocin from Lactobacillus paracasei KC39 with anti-mycotoxigenic properties. Biosci. Res. 2018, 15, 4171–4183. [Google Scholar]
- Fahim, K.M.; Badr, A.N.; Shehata, M.G.; Hassanen, E.I.; Ahmed, L.I. Innovative application of postbiotics, parabiotics and encapsulated Lactobacillus plantarum RM1 and Lactobacillus paracasei KC39 for detoxification of aflatoxin M1 in milk powder. J. Dairy Res. 2021, 88, 429–435. [Google Scholar] [CrossRef]
- Møller, C.O.d.A.; Freire, L.; Rosim, R.E.; Margalho, L.P.; Balthazar, C.F.; Franco, L.T.; Sant’Ana, A.D.S.; Corassin, C.H.; Rattray, F.P.; Oliveira, C.A.F.D. Effect of Lactic Acid Bacteria Strains on the Growth and Aflatoxin Production Potential of Aspergillus parasiticus, and Their Ability to Bind Aflatoxin B1, Ochratoxin A, and Zearalenone in vitro. Front. Microbiol. 2021, 12, 655386. [Google Scholar] [CrossRef]
- Ahlberg, S.H.; Joutsjoki, V.; Korhonen, H.J. Potential of lactic acid bacteria in aflatoxin risk mitigation. Int. J. Food Microbiol. 2015, 207, 87–102. [Google Scholar] [CrossRef]
- Nathanail, A.V.; Gibson, B.; Han, L.; Peltonen, K.; Ollilainen, V.; Jestoi, M.; Laitila, A. The lager yeast Saccharomyces pastorianus removes and transforms Fusarium trichothecene mycotoxins during fermentation of brewer’s wort. Food Chem. 2016, 203, 448–455. [Google Scholar] [CrossRef]
- Shehata, M.G.; Badr, A.N.; El-Aziz, N.M.A.; Abd-Rabou, H.S.; El-Sohaimy, S.A. Optimization, Partial Purification, and Characterization of Bioactive Peptides of Lactobacillus paracasei Isolated from Traditional Egyptian Cheese. Ssu-Jfqhc 2022, 9, 199–214. [Google Scholar] [CrossRef]
- Arrioja-Bretón, D.; Mani-López, E.; Palou, E.; López-Malo, A. Antimicrobial activity and storage stability of cell-free supernatants from lactic acid bacteria and their applications with fresh beef. Food Control. 2020, 115, 107286. [Google Scholar] [CrossRef]
- Mosallaie, F.; HJooyandeh; Hojjati, M.; Fazlara, A. Biological reduction of aflatoxin B1 in yogurt by probiotic strains of Lactobacillus acidophilus and Lactobacillus rhamnosus. Food Sci. Biotechnol. 2020, 29, 793–803. [Google Scholar] [CrossRef]
- Şengül, M. Microbiological characterization of Civil cheese, a traditional Turkish cheese: Microbiological quality, isolation and identification of its indigenous Lactobacilli. World J. Microbiol. Biotechnol. 2006, 22, 613–618. [Google Scholar] [CrossRef]
- Khayat, F.A.; Bruhn, J.C.; Richardson, G.H. A Survey of Coliforms and Staphylococcus aureus in Cheese Using Impedimetric and Plate Count Methods1. J. Food Prot. 1988, 51, 53–55. [Google Scholar] [CrossRef] [PubMed]
- Al-Gamal, M.S.; Ibrahim, G.A.; Sharaf, O.M.; Radwan, A.A.; Dabiza, N.M.; Youssef, A.M.; El-ssayad, M.F. The protective potential of selected lactic acid bacteria against the most common contaminants in various types of cheese in Egypt. Heliyon 2019, 5, e01362. [Google Scholar] [CrossRef]
- Funke, G.; Lucchini, G.M.; Pfyffer, G.E.; Marchiani, M.; von Graevenitz, A. Characteristics of CDC group 1 and group 1-like coryneform bacteria isolated from clinical specimens. J. Clin. Microbiol. 1993, 31, 2907–2912. [Google Scholar] [CrossRef] [PubMed]
- Tafinta, I.Y.; Shehu, K.; Abdulganiyyu, H.; Rabe, A.M.; Usman, A. Isolation and identification of fungi associated with the spoilage of sweet orange (Citrus sinensis) fruits in Sokoto State. Niger. J. Basic Appl. Sci. 2013, 21, 193–196. [Google Scholar] [CrossRef]
- Oyeleke, S.B.; Manga, S.B. Essentials of Laboratory Practicals in Microbiology; Tobest Publishers: Minna, Nigeria, 2008; pp. 36–75. [Google Scholar]
- Adebayo-Tayo, B.C.; Esen, C.U.; Okonko, I. Microorganisms Associated with Spoilage of Stored Vegetables in Uyo Metropolis, Akwa Ibom State, Nigeria. Nat. Sci. 2012, 10, 23–32. [Google Scholar]
- Shehata, M.G.; Badr, A.N.; El Sohaimy, S.A.; Asker, D.; Awad, T.S. Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Ann. Agric. Sci. 2019, 64, 71–78. [Google Scholar] [CrossRef]
- El-Nezami, H.; Kankaanpaa, P.; Salminen, S.; Ahokas, J. Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem. Toxicol. 1998, 36, 321–326. [Google Scholar] [CrossRef]
- El-Nezami, H.; Kankaanpää, P.; Salminen, S.; Ahokas, J. Physicochemical Alterations Enhance the Ability of Dairy Strains of Lactic Acid Bacteria to Remove Aflatoxin from Contaminated Media†. J. Food Prot. 1998, 61, 466–468. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef]
- Farouk, A.; Abdel-Razek, A.G.; Gromadzka, K.; Badr, A.N. Prevention of Aflatoxin Occurrence Using Nuts-Edible Coating of Ginger Oil Nanoemulsions and Investigate the Molecular Docking Strategy. Plants 2022, 11, 2228. [Google Scholar] [CrossRef] [PubMed]
- Keawchaoon, L.; Yoksan, R. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids Surf. B Biointerfaces 2011, 84, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Malik, R.; Al-Harbi, F.F.; Nawaz, A.; Amin, A.; Farid, A.; Mohaini, M.A.; Alsalman, A.J.; Hawaj, M.A.A.; Alhashem, Y.N. Formulation and Characterization of Chitosan-Decorated Multiple Nanoemulsion for Topical Delivery In Vitro and Ex Vivo. Molecules 2022, 27, 3183. [Google Scholar] [CrossRef] [PubMed]
- Carneiro, H.C.F.; Tonon, R.V.; Grosso, C.R.F.; Hubinger, M.D. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J. Food Eng. 2013, 115, 443–451. [Google Scholar] [CrossRef]
- Mohamed, S.A.A.; El-Sakhawy, M.; Nashy, E.H.A.; Othman, A.M. Novel natural composite films as packaging materials with enhanced properties. Int. J. Biol. Macromol. 2019, 136, 774–784. [Google Scholar] [CrossRef]
- Hofi, A.A.; Youssef, E.H.; Ghoneim, M.A.; Tawab, G.A. Ripening Changes in Cephalotyre “RAS” Cheese Manufactured from Raw and Pasteurized Milk with Special Reference to Flavor. J. Dairy Sci. 1970, 53, 1207–1211. [Google Scholar] [CrossRef]
- Bradley, R.L.; Arnold, J.; Barbano, D.M.; Semerad, R.G.; Smith, D.E.; Vines, B.K. Chemical and physical methods. In Standard Methods for The Examination of Dairy Products; Marshall, R.T., Ed.; American Public Health Association: Washington, DC, USA, 1992. [Google Scholar]
- Ling, E.R. Practical. In A Text Book of Dairy Chemistry; Chapman and Hall Ltd: London, UK, 1963; pp. 76–98. [Google Scholar]
- Kosikowski, F.V. Cheese and Fermented Milk Food; F.V. Kosikowski and Associates: Brocktondale, NY, USA, 1982. [Google Scholar]
- Vakaleris, D.G.; Price, W.V. A Rapid Spectrophotometric Method for Measuring Cheese Ripening1. J. Dairy Sci. 1959, 42, 264–276. [Google Scholar] [CrossRef]
- Laird, D.T.; Gambrel-Lenarz, S.A.; Scher, F.M.; Graham, T.E.; Reddy, R.; Maturin, L.J. Microbiological Count Methods. In Standard Methods for the Examination of Dairy Products; Maturin, L.J., Ed.; American Public Health Association: Washington, DC, USA, 2004. [Google Scholar] [CrossRef]
- IDF Standard (94A 1985); Milk and Milk Products. Detection and Enumeration of Yeasts and Moulds. International Dairy Federation Standard: Brussels, Belgium, 1985.
- Luk, H.I. Quality control in the dairy industry. In Dairy Microbiology RKRs; Applied Sci. Publishers, Ltd.: London, UK, 1981; pp. 313–315. [Google Scholar]
- Duan, J.; Park, S.I.; Daeschel, M.A.; Zhao, Y. Antimicrobial Chitosan-Lysozyme (CL) Films and Coatings for Enhancing Microbial Safety of Mozzarella Cheese. J. Food Sci. 2007, 72, M355–M362. [Google Scholar] [CrossRef] [PubMed]
- Pappas, C.P.; Kondyli, E.; Voutsinas, L.P.; Mallatou, H. Effects of starter level, draining time and aging on the physicochemical, organoleptic and rheological properties of feta cheese. Int. J. Dairy Technol. 1996, 49, 73–78. [Google Scholar] [CrossRef]
- Alsulami, T.; Shehata, M.G.; Ali, H.S.; Alzahrani, A.A.; Fadol, M.A.; Badr, A.N. Prevalence of Aflatoxins in Camel Milk from the Arabian Peninsula and North Africa: A Reduction Approach Using Probiotic Strains. Foods 2023, 12, 1666. [Google Scholar] [CrossRef]
- Martin, J.G.P.; Cotter, P.D. Filamentous fungi in artisanal cheeses: A problem to be avoided or a market opportunity? Heliyon 2023, 9, e15110. [Google Scholar] [CrossRef]
- Coton, M.; Auffret, A.; Poirier, E.; Debaets, S.; Coton, E.; Dantigny, P. Production and migration of ochratoxin A and citrinin in Comté cheese by an isolate of Penicillium verrucosum selected among Penicillium spp. mycotoxin producers in YES medium. Food Microbiol. 2019, 82, 551–559. [Google Scholar] [CrossRef]
- Mousavi Khaneghah, A.; Moosavi, M.; Omar, S.S.; Oliveira, C.A.F.; Karimi-Dehkordi, M.; Fakhri, Y.; Huseyn, E.; Nematollahi, A.; Farahani, M.; Sant’Ana, A.S. The prevalence and concentration of aflatoxin M1 among different types of cheeses: A global systematic review, meta-analysis, and meta-regression. Food Control. 2021, 125, 107960. [Google Scholar] [CrossRef]
- Pachoud, C.; Delay, E.; Da Re, R.; Ramanzin, M.; Sturaro, E. A Relational Approach to Studying Collective Action in Dairy Cooperatives Producing Mountain Cheeses in the Alps: The Case of the Primiero Cooperative in the Eastern Italians Alps. Sustainability 2020, 12, 4596. [Google Scholar] [CrossRef]
- Sengun, I.; Yaman, D.B.; Gonul, S. Mycotoxins and mould contamination in cheese: A review. World Mycotoxin J. 2008, 1, 291–298. [Google Scholar] [CrossRef]
- Hayaloglu, A.A. Microbiology of Cheese. In Encyclopedia of Dairy Sciences, 3rd ed.; McSweeney, P.L.H., McNamara, J.P., Eds.; Academic Press: Oxford, UK, 2022; pp. 225–237. [Google Scholar] [CrossRef]
- Dobson, A.D.W. Chapter 23—Mycotoxins in Cheese. In Cheese, 4th ed.; McSweeney, P.L.H., Fox, P.F., Cotter, P.D., Everett, D.W., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 595–601. [Google Scholar] [CrossRef]
- Abu-Seif, F.A.; Badr, A.N. Anti-aflatoxigenic of Agave Extracts to Increase Their Food Safety Applications. Egypt. J. Chem. 2022, 65, 407–418. [Google Scholar] [CrossRef]
- Alharthi, S.S.; Badr, A.N.; Gromadzka, K.; Stuper-Szablewska, K.; Abdel-Razek, A.G.; Selim, K. Bioactive Molecules of Mandarin Seed Oils Diminish Mycotoxin and the Existence of Fungi. Molecules 2021, 26, 7130. [Google Scholar] [CrossRef]
- Badr, A.N.; Abdel-Salam, A.M.; Zaghloul, A.H.; Farrag, A.H. Fortified milk-beverage with amphora algae and its functionality for aflatoxin inactivation in rats. J. Food Meas. Charact. 2022, 17, 2340–2352. [Google Scholar] [CrossRef]
- Badr, A.N.; Fouda, K.; Mohamed, R.S.; Farag, A.H.; Zaghloul, A.H.; Abdel-Salam, A.M. Protective impact of encapsulated probiotics and Ziziphus spinachristi against liver oxidative stress and DNA damage induced by aflatoxin M1. J. Appl. Pharma. Sci. 2022, 12, 82–94. [Google Scholar] [CrossRef]
- Bangar, S.P.; Sharma, N.; Kumar, M.; Ozogul, F.; Purewal, S.S.; Trif, M. Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination. Food Biosci. 2021, 44, 101444. [Google Scholar] [CrossRef]
- Mileriene, J.; Serniene, L.; Henriques, M.; Gomes, D.; Pereira, C.; Kondrotiene, K.; Kasetiene, N.; Lauciene, L.; Sekmokiene, D.; Malakauskas, M. Effect of liquid whey protein concentrate–based edible coating enriched with cinnamon carbon dioxide extract on the quality and shelf life of Eastern European curd cheese. J. Dairy Sci. 2021, 104, 1504–1517. [Google Scholar] [CrossRef]
- Mohamed, S.Y.; All, A.A.A.; Ahmed, L.I.; Mohamed, N.S. Microbiological quality of Some dairy products with special reference to the incidence of some biological hazards. Int. J. Dairy Sci. 2020, 15, 28–37. [Google Scholar] [CrossRef]
- Salama, H.A.; Badr, A.N.; Elkhadragy, M.F.; Hussein, A.M.; Shaban, I.A.; Yehia, H.M. New Antifungal Microbial Pigment Applied to Improve Safety and Quality of Processed Meat-Products. Microorganisms 2021, 9, 989. [Google Scholar] [CrossRef] [PubMed]
- González-Forte, L.d.S.; Amalvy, J.I.; Bertola, N. Corn starch-based coating enriched with natamycin as an active compound to control mold contamination on semi-hard cheese during ripening. Heliyon 2019, 5, e01957. [Google Scholar] [CrossRef] [PubMed]
- Siriwardana, J.; Wijesekara, I. Analysis of the Effectiveness of an Antimicrobial Edible Coating Prepared from Sweet Whey Base to Improve the Physicochemical, Microbiological, and Sensory Attributes of Swiss Cheese. Adv. Agric. 2021, 2021, 5096574. [Google Scholar] [CrossRef]
- Abbas, K.A.; Agamy, A.A.; Metry, W.A. Evaluation of Changes of the Chemical, Rheological and Organoleptic Characteristics of Ras Cheese during Ripening. J. Food Dairy Sci. 2017, 8, 391–394. [Google Scholar] [CrossRef]
- Abolila, S.H.; Metwally, A.I.; Awad, R.A.; El-Batawy, O.I. Evaluation of edible film based on milk protein for ras cheese coating. Environ. Sci. 2017, 12, 19–46. [Google Scholar]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Cheese: Structure, Rheology and Texture. In Fundamentals of Cheese Science; Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H., Eds.; Springer: Boston, MA, USA, 2017; pp. 475–532. [Google Scholar] [CrossRef]
- Villegas, J.M.; Brown, L.; de Giori, G.S.; Hebert, E.M. Characterization of the mature cell surface proteinase of Lactobacillus delbrueckii subsp. lactis CRL 581. Appl. Microbiol. Biotechnol. 2015, 99, 4277–4286. [Google Scholar] [CrossRef]
- Savijoki, K.; Ingmer, H.; Varmanen, P. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol. 2006, 71, 394–406. [Google Scholar] [CrossRef]
- Moslehishad, M.; Mirdamadi, S.; Ehsani, M.R.; Ezzatpanah, H.; Moosavi-Movahedi, A.A. The proteolytic activity of selected lactic acid bacteria in fermenting cow’s and camel’s milk and the resultant sensory characteristics of the products. Int. J. Dairy Technol. 2013, 66, 279–285. [Google Scholar] [CrossRef]
- Osman, M.M.; El-Kholy, A.M.; Aly, H.A.; Bakry, A.M. The use of Brevibacterium linens to accelerate the ripening and favour development of low fat Ras cheese. Egypt. J. Dairy Sci. 2011, 39, 263–274. [Google Scholar]
- Sgarbi, E.; Lazzi, C.; Iacopino, L.; Bottesini, C.; Lambertini, F.; Sforza, S.; Gatti, M. Microbial origin of non proteolytic aminoacyl derivatives in long ripened cheeses. Food Microbiol. 2013, 35, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elmonem, M.A.; Tammam, A.A.; El-Desoki, W.I.; Zohri, A.-N.A.; Moneeb, A.H.M. Improving the Properties of The Egyptian Hard Cheese (Ras Type) with Adding Some Probiotic Lactobacillus spp. as Adjunct Cultures. Assiut J. Agric. Sci. 2022, 53, 12–30. [Google Scholar] [CrossRef]
- Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT Food Sci. Technol. 2010, 43, 837–842. [Google Scholar] [CrossRef]
- Yangılar, F. Chitosan/whey Protein (CWP) Edible Films Efficiency for Controlling Mould Growth and on Microbiological, Chemical and Sensory Properties During Storage of Göbek Kashar Cheese. Korean J. Food Sci. Anim. Resour. 2015, 35, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Leceta, I.; Guerrero, P.; de la Caba, K. Functional properties of chitosan-based films. Carbohydr. Polym. 2013, 93, 339–346. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L.H. Microbiology of Cheese Ripening. In Fundamentals of Cheese Science; Fox, P.F., Guinee, T.P., Cogan, T.M., McSweeney, P.L.H., Eds.; Springer: Boston, MA, USA, 2017; pp. 333–390. [Google Scholar] [CrossRef]
- Bhatt, N.; Prasad, R.K.; Singh, K.; Panpalia, G.M. Stability study of O/W emulsions using zeta potential. J. Chem. Pharm. Res. 2010, 2, 512–527. [Google Scholar]
- Sharifi, F.; Jahangiri, M.; Nazir, I.; Asim, M.H.; Ebrahimnejad, P.; Hupfauf, A.; Gust, R.; Bernkop-Schnürch, A. Zeta potential changing nanoemulsions based on a simple zwitterion. Journal of Colloid and Interface Science 2021, 585, 126–137. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Hassan, Z. Screening of lactic acid bacteria for antifungal activity against Aspergillus oryzae. Am. J. Appl. Sci. 2011, 8, 447–451. [Google Scholar] [CrossRef]
- Laitila, A.; Alakomi, H.L.; Raaska, L.; Mattila-Sandholm, T.; Haikara, A. Antifungal activities of two Lactobacillus plantarum strains against Fusarium moulds in vitro and in malting of barley. J. Appl. Microbiol. 2002, 93, 566–576. [Google Scholar] [CrossRef]
- Ström, K.; Sjögren, J.; Broberg, A.; Schnürer, J. Lactobacillus plantarum MiLAB 393 Produces the Antifungal Cyclic Dipeptides Cyclo(l-Phe-l-Pro) and Cyclo(l-Phe-trans-4-OH-l-Pro) and 3-Phenyllactic Acid. Appl. Environ. Microbiol. 2002, 68, 4322–4327. [Google Scholar] [CrossRef] [PubMed]
- Šarić, G.K.; Rapčan, I.; Potočnik, I.; Sarajlić, A.; Majić, I. Potential of lactic acid bacteria in biocontrol of Aspergillus niger, Penicillium chrysogenum and Fusarium graminearum in culture media and natural substrate. Zemdirb. Agric. 2021, 108, 153–158. [Google Scholar] [CrossRef]
- Azeem, N.; Nawaz, M.; Anjum, A.A.; Saeed, S.; Sana, S.; Mustafa, A.; Yousuf, M.R. Activity and Anti-Aflatoxigenic Effect of Indigenously Characterized Probiotic Lactobacilli against Aspergillus flavus—A common poultry feed contaminant. Animals 2019, 9, 166. [Google Scholar] [CrossRef]
- Chang, I.; Kim, J.-D. Inhibition of Aflatoxin Production of Aspergillus flavus by Lactobacillus casei. Mycobiology 2007, 35, 76–81. [Google Scholar] [CrossRef]
- Mani-López, E.; Arrioja-Bretón, D.; López-Malo, A. The impacts of antimicrobial and antifungal activity of cell-free supernatants from lactic acid bacteria in vitro and foods. Compr. Rev. Food Sci. Food Saf. 2022, 21, 604–641. [Google Scholar] [CrossRef] [PubMed]
- Gerez, C.L.; Torino, M.I.; Rollán, G.; de Valdez, G.F. Prevention of bread mould spoilage by using lactic acid bacteria with antifungal properties. Food Control. 2009, 20, 144–148. [Google Scholar] [CrossRef]
- Rather, A.I.; Seo, B.J.; Kumar, V.J.R.; Choi, U.H.; Choi, K.H.; Lim, J.H.; Park, Y.H. Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML007 and its application as a food preservative. Lett. Appl. Microbiol. 2013, 57, 69–76. [Google Scholar] [CrossRef]
- Ryu, E.H.; Yang, E.J.; Woo, E.R.; Chang, H.C. Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi. Food Microbiol. 2014, 41, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Alrabadi, N.I.; Al-Jubury, E.M.; Thalij, K.M.; Hajeej, J.M. Lactobacillus rhamnosus ability of aflatoxin detoxification. Jordan J. Biol. Sci. 2018, 11, 87–91. [Google Scholar]
- Fochesato, A.S.; Cuello, D.; Poloni, V.; Galvagno, M.A.; Dogi, C.A.; Cavaglieri, L.R. Aflatoxin B1 adsorption/desorption dynamics in the presence of Lactobacillus rhamnosus RC007 in a gastrointestinal tract-simulated model. J. Appl. Microbiol. 2019, 126, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Petrova, P.; Arsov, A.; Tsvetanova, F.; Parvanova-Mancheva, T.; Vasileva, E.; Tsigoriyna, L.; Petrov, K. the Complex Role of Lactic Acid Bacteria in Food Detoxification. Nutrients 2022, 14, 2038. [Google Scholar] [CrossRef] [PubMed]
- Dalié, D.K.D.; Deschamps, A.M.; Richard-Forget, F. Lactic acid bacteria—Potential for control of mould growth and mycotoxins: A review. Food Control. 2010, 21, 370–380. [Google Scholar] [CrossRef]
- Muhialdin, B.J.; Saari, N.; Hussin, A.S.M. Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Foods Supply. Molecules 2020, 25, 2655. [Google Scholar] [CrossRef] [PubMed]
Sample | PSS (nm) | ZPV (mV) | PDI | ES (%) |
---|---|---|---|---|
F1 | 102.84 ± 4.18 | 8.21 ± 1.56 | 0.37 ± 0.11 | 91.51 ± 1.02 |
F2 | 127.37 ± 5.41 | 11.34 ± 1.02 | 0.42 ± 0.05 | 88.26 ± 0.87 |
F3 | 197.66 ± 7.21 | 9.66 ± 2.05 | 0.49 ± 0.04 | 85.61 ± 1.37 |
F4 | 218.37 ± 5.73 | 12.48 ± 1.18 | 0.44 ± 0.05 | 89.34 ± 1.41 |
Sample | RP (Days) | Moisture | Fat | F/DM | Protein | Salt | Acidity | pH |
---|---|---|---|---|---|---|---|---|
C | zero | 46.53 ± 1.70 | 24.00 ± 0.79 | 44.88 ± 1.39 | 17.47 ± 0.56 | 1.87 ± 0.16 | 1.98 ± 0.26 | 5.34 ± 0.06 |
30 | 41.32 ± 2.00 | 29.00 ± 0.68 | 49.42 ± 1.71 | 21.85 ± 0.75 | 2.22 ± 0.15 | 1.98 ± 0.18 | 5.26 ± 0.08 | |
60 | 37.36 ± 1.94 | 32.00 ± 0.64 | 51.09 ± 1.39 | 23.93 ± 0.94 | 3.25 ± 0.14 | 2.01 ± 0.16 | 5.28 ± 0.06 | |
90 | 33.92 ± 1.45 | 33.45 ± 0.85 | 50.62 ± 1.00 | 25.15 ± 1.43 | 3.75 ± 0.15 | 2.02 ± 0.26 | 5.19 ± 0.07 | |
120 | 30.32 ± 2.34 | 34.00 ± 0.73 | 48.79 ± 0.39 | 26.87 ± 0.79 | 4.91 ± 0.17 | 2.20 ± 0.31 | 5.18 ± 0.05 | |
T1 | zero | 45.90 ± 3.48 | 24.50 ± 0.77 | 45.29 ± 1.30 | 17.67 ± 0.68 | 1.88 ± 0.23 | 1.86 ± 0.25 | 5.47 ± 0.11 |
30 | 41.70 ± 2.25 | 28.80 ± 0.52 | 49.40 ± 1.94 | 21.44 ± 0.50 | 2.30 ± 0.21 | 1.88 ± 0.32 | 5.38 ± 0.08 | |
60 | 37.52 ± 2.29 | 32.30 ± 0.73 | 51.70 ± 1.89 | 23.95 ± 0.75 | 3.23 ± 0.10 | 1.89 ± 0.17 | 5.39 ± 0.05 | |
90 | 36.80 ± 2.36 | 33.10 ± 0.65 | 52.37 ± 1.44 | 24.33 ± 0.90 | 3.55 ± 0.21 | 2.00 ± 0.28 | 5.14 ± 0.06 | |
120 | 34.20 ± 1.66 | 35.00 ± 0.84 | 53.19 ± 2.54 | 26.04 ± 0.15 | 4.20 ± 0.19 | 2.10 ± 0.29 | 5.16 ± 0.06 | |
T2 | zero | 46.57 ± 3.17 | 24.70 ± 0.78 | 51.84 ± 1.24 | 17.47 ± 0.80 | 1.84 ± 0.06 | 1.86 ± 0.15 | 5.44 ± 0.04 |
30 | 41.00 ± 1.54 | 29.00 ± 1.02 | 49.15 ± 2.07 | 19.43 ± 0.60 | 2.27 ± 0.12 | 1.87 ± 0.21 | 5.38 ± 0.07 | |
60 | 38.99 ± 1.70 | 30.10 ± 0.55 | 49.34 ± 2.77 | 20.01 ± 0.75 | 3.25 ± 0.15 | 1.99 ± 0.25 | 5.16 ± 0.07 | |
90 | 35.97 ± 1.97 | 32.20 ± 0.55 | 50.29 ± 1.96 | 23.15 ± 0.61 | 4.20 ± 0.11 | 2.00 ± 0.26 | 5.16 ± 0.02 | |
120 | 32.30 ± 2.31 | 35.50 ± 1.07 | 52.43 ± 0.83 | 25.40 ± 0.84 | 4.65 ± 0.18 | 2.3 ± 0.17 | 5.13 ± 0.08 | |
T3 | zero | 46.75 ± 1.79 | 24.40 ± 0.68 | 45.82 ± 1.42 | 17.42 ± 1.18 | 1.85 ± 0.23 | 1.87 ± 0.23 | 5.34 ± 0.11 |
30 | 41.32 ± 1.62 | 28.60 ± 0.86 | 48.74 ± 1.60 | 21.80 ± 1.33 | 2.21 ± 0.28 | 2.00 ± 0.30 | 5.28 ± 0.14 | |
60 | 39.50 ± 2.77 | 30.60 ± 0.81 | 50.58 ± 1.68 | 22.99 ± 0.74 | 3.81 ± 0.15 | 2.01 ± 0.24 | 5.28 ± 0.07 | |
90 | 36.20 ± 2.29 | 31.90 ± 0.67 | 50.00 ± 0.79 | 24.53 ± 0.90 | 3.99 ± 0.18 | 2.01 ± 0.25 | 5.17 ± 0.02 | |
120 | 34.51 ± 1.85 | 36.40 ± 0.83 | 55.58 ± 1.43 | 25.49 ± 1.37 | 4.50 ± 0.19 | 2.12 ± 0.26 | 5.14 ± 0.04 | |
T4 | zero | 46.69 ± 2.28 | 24.60 ± 0.85 | 46.15 ± 1.18 | 17.46 ± 0.83 | 1.84 ± 0.22 | 1.88 ± 0.27 | 5.51 ± 0.04 |
30 | 41.30 ± 3.47 | 29.90 ± 1.04 | 50.94 ± 1.96 | 21.80 ± 0.62 | 2.21 ± 0.17 | 1.99 ± 0.22 | 5.36 ± 0.08 | |
60 | 39.70 ± 2.16 | 30.50 ± 0.98 | 50.58 ± 2.03 | 22.95 ± 0.64 | 3.24 ± 0.12 | 2.00 ± 0.21 | 5.34 ± 0.02 | |
90 | 35.90 ± 2.83 | 31.70 ± 1.02 | 49.45 ± 2.08 | 24.40 ± 0.67 | 3.97 ± 0.12 | 2.01 ± 0.27 | 5.31 ± 0.02 | |
120 | 35.65 ± 2.84 | 33.20 ± 0.69 | 51.59 ± 0.81 | 25.44 ± 0.64 | 4.41 ± 0.11 | 2.17 ± 0.20 | 5.15 ± 0.01 |
Sample | RP (Days) | SN (%) | TVFA | Tryptophan [mg/100 g] | Tyrosine [mg/100 g] |
---|---|---|---|---|---|
C | zero | 0.23 ± 0.06 | 8.20 ± 0.68 | 3.17 ± 1.78 | 7.50 ± 2.19 |
30 | 0.35 ± 0.08 | 24.70 ± 0.40 | 14.75 ± 1.25 | 34.10 ± 1.98 | |
60 | 0.52 ± 0.06 | 29.00 ± 0.71 | 22.10 ± 1.15 | 52.30 ± 1.90 | |
90 | 0.63 ± 0.07 | 38.00 ± 1.19 | 49.56 ± 1.46 | 92.23 ± 1.45 | |
120 | 0.74 ± 0.05 | 63.50 ± 0.70 | 68.10 ± 0.71 | 123.60 ± 2.50 | |
T1 | zero | 0.22 ± 0.11 | 8.00 ± 0.82 | 3.40 ± 1.07 | 7.10 ± 3.83 |
30 | 0.33 ± 0.08 | 19.10 ± 0.64 | 14.98 ± 1.63 | 33.89 ± 3.13 | |
60 | 0.41 ± 0.05 | 31.00 ± 0.94 | 22.45 ± 2.21 | 53.45 ± 3.22 | |
90 | 0.47 ± 0.06 | 38.80 ± 1.05 | 35.28 ± 1.15 | 80.66 ± 2.84 | |
120 | 0.57 ± 0.06 | 54.60 ± 0.25 | 57.55 ± 2.89 | 109.97 ± 3.20 | |
T2 | zero | 0.26 ± 0.04 | 7.80 ± 0.98 | 3.35 ± 1.07 | 7.37 ± 3.54 |
30 | 0.37 ± 0.07 | 26.90 ± 0.66 | 14.85 ± 1.75 | 34.47 ± 1.91 | |
60 | 0.44 ± 0.07 | 35.50 ± 0.87 | 23.84 ± 2.46 | 53.94 ± 3.47 | |
90 | 0.60 ± 0.02 | 42.60 ± 0.31 | 46.12 ± 1.68 | 88.81 ± 2.09 | |
120 | 0.72 ± 0.08 | 67.80 ± 0.72 | 68.09 ± 1.56 | 120.36 ± 2.28 | |
T3 | zero | 0.26 ± 0.11 | 8.10 ± 1.32 | 3.26 ± 1.73 | 7.80 ± 2.32 |
30 | 0.34 ± 0.14 | 24.10 ± 1.35 | 15.00 ± 2.00 | 35.04 ± 1.70 | |
60 | 0.44 ± 0.07 | 30.2 ± 0.84 | 22.99 ± 2.07 | 54.88 ± 3.44 | |
90 | 0.49 ± 0.02 | 40.42 ± 0.81 | 40.75 ± 1.13 | 84.96 ± 2.29 | |
120 | 0.55 ± 0.04 | 62.20 ± 1.22 | 60.72 ± 1.84 | 114.52 ± 1.84 | |
T4 | zero | 0.25 ± 0.04 | 7.90 ± 0.75 | 3.06 ± 1.89 | 7.95 ± 3.36 |
30 | 0.34 ± 0.08 | 32.90 ± 0.76 | 14.56 ± 2.73 | 36.52 ± 2.70 | |
60 | 0.46 ± 0.02 | 39.60 ± 0.64 | 24.56 ± 1.70 | 55.12 ± 2.23 | |
90 | 0.52 ± 0.02 | 46.00 ± 0.81 | 44.66 ± 1.75 | 86.12 ± 3.80 | |
120 | 0.68 ± 0.01 | 69.60 ± 0.76 | 65.50 ± 1.19 | 117.20 ± 2.87 |
Treatment | RP (Days) | Hardness (N) | Adhesiveness (mj) | Cohesiveness (Ratio) | Springiness (mm) | Gumminess (N) | Chewiness (mj) |
---|---|---|---|---|---|---|---|
Fresh | 25 ± 0.26 | 0.494 ± 0.20 | 0.22 ± 0.25 | 3.23 ± 0.52 | 13.29 ± 0.20 | 74.34 ± 3.22 | |
Control | 30 | 41.8 ± 0.18 | 0.280 ± 0.22 | 0.57 ± 0.20 | 4.72 ± 0.24 | 15.75 ± 0.48 | 98.12 ± 4.08 |
60 | 60.4 ± 0.21 | 0.256 ± 0.22 | 0.60 ± 0.17 | 5.23 ± 0.52 | 28.84 ± 0.42 | 291.02 ± 3.90 | |
90 | 73.5 ± 0.26 | 0.170 ± 0.19 | 0.63 ± 0.26 | 6.76 ± 0.45 | 44.2 ± 0.46 | 344.77 ± 5.41 | |
120 | 91.8 ± 0.31 | 0.148 ± 0.20 | 0.69 ± 0.32 | 7.40 ± 0.49 | 52.3 ± 0.28 | 420.92 ± 1.61 | |
T1 | Fresh | 21.4 ± 0.25 | 0.500 ± 0.32 | 0.22 ± 0.29 | 3.23 ± 0.15 | 12.00 ± 0.28 | 34.27 ± 3.26 |
30 | 34.3 ± 0.32 | 0.466 ± 0.26 | 0.36 ± 0.28 | 4.45 ± 0.23 | 13.78 ± 0.21 | 90.31 ± 4.67 | |
60 | 59.2 ± 0.27 | 0.240 ± 0.49 | 0.46 ± 0.47 | 5.66 ±0.03 | 25.32 ± 0.21 | 172.64 ± 3.30 | |
90 | 70.12 ± 0.28 | 0.169 ± 0.15 | 0.52 ± 0.15 | 6.59 ± 0.17 | 41.00 ± 0.28 | 270.24 ± 4.68 | |
120 | 87.2 ± 0.29 | 0.126 ± 0.40 | 0.60 ± 0.14 | 6.67 ± 0.23 | 49.90 ± 0.15 | 298.62 ± 4.76 | |
T2 | Fresh | 22.6 ± 0.15 | 0.522 ± 0.08 | 0.23 ± 0.28 | 3.44 ± 0.40 | 12.00 ± 0.53 | 33.12 ± 2.88 |
30 | 33.2 ± 0.21 | 0.298 ± 0.86 | 0.33 ± 0.24 | 4.32 ± 0.52 | 11.81 ± 0.12 | 85.76 ± 5.35 | |
60 | 59.7 ± 0.25 | 0.256 ± 0.20 | 0.42 ± 0.25 | 5.36 ± 0.06 | 21.59 ± 0.20 | 150.37 ± 4.69 | |
90 | 71.56 ± 0.26 | 0.171 ± 0.24 | 0.46 ± 0.24 | 6.44 ± 0.52 | 38.00 ± 0.44 | 233.28 ± 3.81 | |
120 | 83.45 ± 0.17 | 0.116 ± 0.12 | 0.57 ± 0.19 | 6.28 ± 0.40 | 43.65 ± 0.23 | 260.96 ± 4.29 | |
T3 | Fresh | 26.6 ± 0.23 | 0.533 ± 0.16 | 0.25 ± 0.35 | 3.34 ± 0.23 | 13.92 ± 0.26 | 36.69 ± 3.30 |
30 | 39.8 ± 0.30 | 0.398 ± 0.35 | 0.48 ± 0.17 | 4.44 ± 0.17 | 14.10 ± 0.14 | 89.81 ± 5.40 | |
60 | 62.44 ± 0.24 | 0.238 ± 0.56 | 0.49 ± 0.32 | 5.65 ± 0.15 | 24.22 ± 0.17 | 164.71 ± 4.57 | |
90 | 73.58 ± 0.25 | 0.190 ± 0.34 | 0.57 ± 0.36 | 6.60 ± 0.23 | 40.11 ± 0.21 | 245.78 ± 2.76 | |
120 | 87.80 ± 0.26 | 0.125 ± 1.11 | 0.65 ± 0.20 | 6.69 ± 0.32 | 45.51 ± 0.32 | 357.18 ± 6.15 | |
T4 | Fresh | 23.2 ± 0.27 | 0.512 ± 0.13 | 0.25 ± 0.36 | 3.22 ± 0.48 | 13.00 ± 0.20 | 35.62 ± 1.64 |
30 | 32.02 ± 0.22 | 0.284 ± 0.34 | 0.34 ± 0.42 | 4.30 ± 0.45 | 11.59 ± 0.27 | 85.11 ± 2.52 | |
60 | 68.20 ± 0.21 | 0.216 ± 0.56 | 0.45 ± 0.25 | 5.29 ± 0.52 | 20.92 ± 0.12 | 148.07 ± 3.83 | |
90 | 72.15 ± 0.27 | 0.168 ± 0.50 | 0.54 ± 0.35 | 6.49 ± 0.49 | 38.93 ± 0.23 | 230.26 ± 3.35 | |
120 | 84.70 ± 0.20 | 0.105 ± 0.22 | 0.62 ± 0.27 | 6.35 ± 0.14 | 42.82 ± 0.20 | 255.64 ± 4.29 |
Sample | RP (Days) | TBC | Y and M | Lipolytic Bacteria | Proteolytic Bacteria |
---|---|---|---|---|---|
C | zero | 7.217 ± 1.25 | - | 4.332 ± 1.78 | 4.191 ± 1.26 |
30 | 7.832 ± 1.13 | 2.144 ± 0.40 | 4.522 ± 1.25 | 4.361 ± 1.18 | |
60 | 8.251 ± 0.67 | 3.786 ± 0.71 | 4.230 ± 1.15 | 4.491 ± 1.16 | |
90 | 7.564 ± 1.30 | 4.701 ± 1.19 | 4.079 ± 1.46 | 4.681 ± 1.26 | |
120 | 6.380 ± 0.79 | 5.698 ± 0.70 | 3.698 ± 0.71 | 3.602 ± 1.31 | |
T1 | zero | 7.200 ± 0.77 | - | 4.321 ± 1.07 | 4.195 ± 1.25 |
30 | 7.869 ± 0.70 | - | 4.518 ± 1.63 | 4.493 ± 1.32 | |
60 | 8.361 ± 1.11 | 3.903 ± 0.94 | 4.361 ± 2.21 | 4.579 ± 1.17 | |
90 | 7.702 ± 0.70 | 4.677 ± 1.05 | 4.114 ± 1.15 | 4.613 ± 1.28 | |
120 | 6.490 ± 1.27 | 4.402 ± 0.25 | 3.845 ± 2.89 | 3.602 ± 1.29 | |
T2 | zero | 7.209 ± 0.77 | - | 4.361 ± 1.07 | 4.255 ± 1.15 |
30 | 7.948 ± 0.95 | - | 4.556 ± 1.75 | 4.447 ± 1.21 | |
60 | 8.505 ± 0.69 | 3.301 ± 0.87 | 4.342 ± 2.46 | 4.518 ± 1.25 | |
90 | 7.839 ± 0.70 | 3.954 ± 0.31 | 4.154 ± 1.68 | 4.690 ± 1.26 | |
120 | 6.541 ± 1.46 | 4.177 ± 0.72 | 3.898 ± 1.56 | 3.698 ± 1.17 | |
T3 | zero | 7.206 ± 1.13 | - | 4.322 ± 1.73 | 4.114 ± 1.08 |
30 | 7.890 ± 1.30 | - | 4.477 ± 2.00 | 4.447 ± 0.96 | |
60 | 8.414 ± 1.26 | - | 4.342 ± 2.07 | 4.491 ± 1.24 | |
90 | 7.770 ± 1.12 | 4.278 ± 0.81 | 4.079 ± 1.13 | 4.653 ± 1.06 | |
120 | 6.514 ± 1.27 | 4.407 ± 1.22 | 3.745 ± 1.84 | 3.954 ± 1.06 | |
T4 | zero | 7.201 ± 0.82 | - | 4.325 ± 1.89 | 4.276 ± 1.27 |
30 | 7.960 ± 0.96 | - | 4.579 ± 2.73 | 4.397 ± 1.22 | |
60 | 8.520 ± 0.91 | - | 4.462 ± 1.70 | 4.577 ± 1.21 | |
90 | 7.780 ± 0.98 | - | 4.146 ± 1.75 | 4.716 ± 0.83 | |
120 | 6.549 ± 1.14 | 3.477 ± 0.76 | 3.903 ± 1.19 | 3.778 ± 1.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, R.A.; Abd El-Salam, B.A.; Alsulami, T.; Ali, H.S.; Hoppe, K.; Badr, A.N. Neoteric Biofilms Applied to Enhance the Safety Characteristics of Ras Cheese during Ripening. Foods 2023, 12, 3548. https://doi.org/10.3390/foods12193548
Ibrahim RA, Abd El-Salam BA, Alsulami T, Ali HS, Hoppe K, Badr AN. Neoteric Biofilms Applied to Enhance the Safety Characteristics of Ras Cheese during Ripening. Foods. 2023; 12(19):3548. https://doi.org/10.3390/foods12193548
Chicago/Turabian StyleIbrahim, Rasha A., Baraka A. Abd El-Salam, Tawfiq Alsulami, Hatem S. Ali, Karolina Hoppe, and Ahmed Noah Badr. 2023. "Neoteric Biofilms Applied to Enhance the Safety Characteristics of Ras Cheese during Ripening" Foods 12, no. 19: 3548. https://doi.org/10.3390/foods12193548
APA StyleIbrahim, R. A., Abd El-Salam, B. A., Alsulami, T., Ali, H. S., Hoppe, K., & Badr, A. N. (2023). Neoteric Biofilms Applied to Enhance the Safety Characteristics of Ras Cheese during Ripening. Foods, 12(19), 3548. https://doi.org/10.3390/foods12193548