Nutrition Value of Baked Meat Products Fortified with Lyophilized Dragon Fruit (Hylocereus undatus)
Abstract
:1. Introduction
2. Material and Methods
2.1. Preparation of Dragon Fruit Pulp and Extract
2.2. Determination of the Antioxidant Potential of Dragon Fruit Extract
2.2.1. Total Polyphenol Content (TPC) Determination
2.2.2. Antioxidant Activity Determination
Antiradical Activity
Reducing Power
2.3. Development of Baked Meat Products
2.4. Proximate Composition
2.5. Mineral Content
2.6. pH, Oxidation-Reduction Potential, and Water Activity of Baked Pork Meat Product
2.7. Thiobarbituric Acid Reactive Substances (TBARS) Values
2.8. Fatty Acids Profile
2.9. Antioxidant Activity of Pork Meat Product Extract
2.10. Statistical Analysis
3. Results
3.1. Evaluation of the Antioxidant Potential of Dragon Fruit Pulp Extracts
3.2. Pork Meat Product Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant extracts as natural antioxidants in meat and meat products. Meat Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Bellucci, E.R.B.; Bis-Souza, C.V.; Domínguez, R.; Bermúdez, R.; Barretto, A.C.D.S. Addition of natural extracts with antioxidant function to preserve the quality of meat products. Biomolecules 2022, 12, 1506. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, N.N.A.; Mohamad, A.Z.; Harith, Z.T.; Rahman, N.A. Antioxidant and antibacterial activities of red (Hylocereus polyrhizus) and white (Hylocereus undatus) dragon fruits. J. Trop. Resour. Sustain. Sci. 2022, 10, 9–14. [Google Scholar] [CrossRef]
- Le, N.L. Functional compounds in dragon fruit peels and their potential health benefits: A review. Int. J. Food Sci. Technol. 2022, 57, 2571–2580. [Google Scholar] [CrossRef]
- Nishikito, D.F.; Borges, A.C.A.; Laurindo, L.F.; Otoboni, A.M.B.; Direito, R.; Goulart, R.D.A.; Nicolau, C.C.T.; Fiorini, A.M.R.; Sinatora, R.V.; Barbalho, S.M. Anti-Inflammatory, Antioxidant, and Other Health Effects of Dragon Fruit and Potential Delivery Systems for Its Bioactive Compounds. Pharmaceutics 2023, 15, 159. [Google Scholar] [CrossRef]
- Choo, W.S.; Yong, W.K. Antioxidant properties of two species of Hylocereus fruits. Adv. Appl. Sci. Res. 2011, 2, 418–425. [Google Scholar]
- Pérez-Orozco, A.F.; Sosa, V. Comparative estimations of betalains and sugars in fruits of five species of Selenicereus (Cactaceae). Acta Bot. Mex. 2022, 129, 1–9. [Google Scholar] [CrossRef]
- Huang, Y.; Brennan, M.A.; Kasapis, S.; Richardson, S.J.; Brennan, C.S. Maturation process, nutritional profile, bioactivities and utilisation in food products of red pitaya fruits: A Review. Foods 2021, 10, 2862. [Google Scholar] [CrossRef]
- Nur, M.A.; Uddin, M.R.; Meghla, N.S.; Uddin, M.J.; Amin, M.Z. In vitro anti-oxidant, anti-inflammatory, anti-bacterial, and cytotoxic effects of extracted colorants from two species of dragon fruit (Hylocereus spp.). Food Chem. Adv. 2023, 2, 100318. [Google Scholar] [CrossRef]
- Tamagno, W.A.; Santini, W.; Santos, A.; Alves, C.; Bilibio, D.; Sutorillo, N.T.; Zamberlan, D.C.; Kaizer, R.R.; Gil Barcellos, L.J. Pitaya fruit extract ameliorates the healthspan on copper-induced toxicity of Caenorhabditis elegans. J. Food Biochem. 2022, 46, e13784. [Google Scholar] [CrossRef]
- Kumar, S.B.; Issac, R.; Prabha, M.L. Functional and health-promoting bioactivities of dragon fruit. Drug Invent. Today 2018, 10, 3307–3310. [Google Scholar]
- Susanti, S.; Legowo, A.M.; Mulyani, S.; Pratama, Y. Characteristics of Yogurt Ice Cream Fortified with Red Dragon Fruit Puree as Anti-Obesity Functional Food. J. Gizi Dan Pangan 2022, 17, 115–122. [Google Scholar] [CrossRef]
- Wardiman, B.; Dianasari, U.; Malaka, R.; Maruddin, F.; Muhlis, F.; Maryana, D. Total flavonoid and organoleptic quality of fermented milk with the addition of red dragon fruit (Hylocereus polyrhizus) peel. In AIP Conference Proceedings; AIP Publishing: Long Island, NY, USA, 2023; Volume 2628. [Google Scholar] [CrossRef]
- Dianasari, U.; Malaka, R.; Maruddin, F. Physicochemical quality of fermented milk with additional red dragon fruit (Hylocereus polyrhizus) skin. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2020; Volume 492, p. 012050. [Google Scholar] [CrossRef]
- Rahmah, L.; Choiriyah, N.A. Increasing levels of fibre and mineral (Fe, Ca, and K) in chicken meatballs added dragon fruit peel and oyster mushroom. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 951, p. 012093. [Google Scholar] [CrossRef]
- Madane, P.; Das, A.K.; Nanda, P.K.; Bandyopadhyay, S.; Jagtap, P.; Shewalkar, A.; Maity, B. Dragon fruit (Hylocereus undatus) peel as antioxidant dietary fibre on quality and lipid oxidation of chicken nuggets. J. Food Sci. Technol. 2020, 57, 1449–1461. [Google Scholar] [CrossRef] [PubMed]
- Lubis, N.; Agustiono, J.; Ismail, D.; Pradana, T.G. Effect of red dragon fruit peels (Hylocereus polyrhizus) as a natural dye and preservatives on chicken nuggets. Int. J. Res. Rev. 2020, 7, 168–174. [Google Scholar]
- Manihuruk, F.M.; Suryati, T.; Arief, I.I. Effectiveness of the red dragon fruit (Hylocereus polyrhizus) peel extract as the colorant, antioxidant, and antimicrobial on beef sausage. Media Peternak. 2017, 40, 47–54. [Google Scholar] [CrossRef]
- Cunha, L.C.M.; Monteiro, M.L.G.; da Costa-Lima, B.R.C.; Guedes-Oliveira, J.M.; Rodrigues, B.L.; Fortunato, A.R.; Baltar, J.D.; Tonon, R.V.; Koutchma, T.; Conte-Junior, C.A. Effect of microencapsulated extract of pitaya (Hylocereus costaricensis) peel on oxidative quality parameters of refrigerated ground pork patties subjected to UV-C radiation. J. Food Process Preserv. 2021, 45, e15272. [Google Scholar] [CrossRef]
- Cunha, L.C.; Monteiro, M.L.G.; Costa-Lima, B.R.; Guedes-Oliveira, J.M.; Alves, V.H.; Almeida, A.L.; Toton, L.V.; Rosenthal, A.; Conte-Junior, C.A. Effect of microencapsulated extract of pitaya (Hylocereus costaricensis) peel on color, texture and oxidative stability of refrigerated ground pork patties submitted to high pressure processing. Innov. Food Sci. Emerg. Technol. 2018, 49, 136–145. [Google Scholar] [CrossRef]
- Bellucci, E.R.B.; Munekata, P.E.; Pateiro, M.; Lorenzo, J.M.; da Silva Barretto, A.C. Red pitaya extract as natural antioxidant in pork patties with total replacement of animal fat. Meat Sci. 2021, 171, 108284. [Google Scholar] [CrossRef]
- Xin, K.Q.; Ji, X.Y.; Guo, Z.; Han, L.; Yu, Q.L.; Hu, B. Pitaya peel extract and lemon seed essential oil as effective sodium nitrite replacement in cured mutton. LWT 2022, 160, 113283. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rive-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Brand–Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on Products of Browning Reaction: Antioxidative Activities of Products of Browning Reaction Prepared from Glucosoamine. Nutr. Mag. 1986, 44, 307–315. [Google Scholar]
- PN-A-82109:2010; Mięso i Przetwory Mięsne—Oznaczanie Zawarto´sci Tłuszczu, Białka i Wody—Metoda Spektrometrii Transmisyjnej w Bliskiej Podczerwieni (NIT) z Wykorzystaniem Kalibracji na Sztucznych Sieciach Neuronowych (ANN). Polski Komitet Normalizacyjny: Warszawa, Polska, 2010. (In Polish)
- Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the Provision of Food Information to Consumers, Amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and Repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004 Text with EEA Relevance. Available online: https://eur-lex.europa.eu/eli/reg/2011/1169/oj?locale=pl (accessed on 10 July 2023).
- PN-ISO 936:2000; Mięso i Przetwory Mięsne. Oznaczenie Zawartości Popiołu. Polska Norma (Determination of Ash). Polish Standard. 2000. Available online: https://sklep.pkn.pl/pn-iso-936-2000p.html (accessed on 10 July 2023). (In Polish)
- Grdeń, A.S.; Sołowiej, B.G. Macronutrients, amino and fatty acid composition, elements, and toxins in high-protein powders of crickets, Arthrospira, single cell protein, potato, and rice as potential ingredients in fermented food products. Appl. Sci. 2022, 12, 12831. [Google Scholar] [CrossRef]
- Nam, K.C.; Ahn, D.U. Effects of irradiation on meat color. Food Sci. Biotechnol. 2003, 12, 198–205. [Google Scholar]
- Pikul, J.; Leszczyński, D.E.; Kummerow, F.A. Evalution of three modified TBA metods for measuring lipid oxidation in chicken meat. J. Agri Food Chem. 1989, 37, 1309–1313. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists [AOAC]. Official Methods of Analysis, 18th ed.; AOAC: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Folch, J.; Lees, M.; Sloane-Stanley, G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Kumar, Y.; Yadav, D.N.; Ahmad, T.; Narsaiah, K. Recent trends in the use of natural antioxidants for meat and meat products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 796–812. [Google Scholar] [CrossRef]
- Padmavathy, K.; Kanakarajan, S.; Karthika, S.; Selvaraj, R.; Kamalanathan, A. Phytochemical Profiling and Anticancer Activity of Dragon Fruit Hylocereus Undatus Extracts against Human Hepatocellular Carcinoma Cancer (Hepg-2) Cells. Int. J. Pharma Sci. Res. 2021, 12, 2770–2778. [Google Scholar] [CrossRef]
- Arivalagan, M.; Karunakaran, G.; Roy, T.K.; Dinsha, M.; Sindhu, B.C.; Shilpashree, V.M.; Satisha, G.C.; Shivashankara, K.S. Biochemical and nutritional characterization of dragon fruit (Hylocereus species). Food Chem. 2021, 353, 129426. [Google Scholar] [CrossRef]
- Karwowska, M.; Kononiuk, A.D.; Borrajo, P.; Lorenzo, J.M. Comparative studies on the fatty acid profile and volatile compounds of fallow deer and beef fermented sausages without nitrite produced with the addition of acid whey. Appl. Sci. 2021, 11, 1320. [Google Scholar] [CrossRef]
- Amaral, A.B.; Silva, M.V.D.; Lannes, S.C.D.S. Lipid oxidation in meat: Mechanisms and protective factors—A review. Food Sci. Technol. 2018, 38, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Holman, B.W.; Ponnampalam, E.N.; Kerr, M.G.; Bailes, K.L.; Kilgannon, A.K.; Collins, D.; Hopkins, D.L. Understanding beef flavour and overall liking traits using two different methods for determination of thiobarbituric acid reactive substance (TBARS). Meat Sci. 2019, 149, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Wichienchot, S.; Jatupornpipat, M.; Rastall, R.A. Oligosaccharides of pitaya (dragon fruit) flesh and their prebiotic properties. Food Chem. 2010, 120, 850–857. [Google Scholar] [CrossRef]
- Hossain, F.M.; Numan, S.M.N.; Akhtar, S. Cultivation, nutritional value, and health benefits of Dragon Fruit (Hylocereus spp.): A Review. Int. J. Hortic. Sci. Technol. 2021, 8, 259–269. [Google Scholar] [CrossRef]
- Tao, L. Oxidation of polyunsaturated fatty acids and its impact on food quality and human health. Adv. Food Technol. Nutr. Sci. 2015, 1, 135–142. [Google Scholar] [CrossRef]
- Djuricic, I.; Calder, P.C. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health: An update for 2021. Nutrients 2021, 13, 2421. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations Fat and Fatty Acid Requirements for Adults. Fats and Fatty Acids in Human Nutrition. In Report of an Expert Consultation FAO Food and Nutrition Paper, 91; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; Chapter 5,; pp. 55–62. [Google Scholar]
- Ariffin, A.A.; Bakar, J.; Tan, C.P.; Rahman, R.A.; Karim, R.; Loi, C.C. Essential fatty acids of pitaya (dragon fruit) seed oil. Food Chem. 2009, 114, 561–564. [Google Scholar] [CrossRef]
- Poli, A.; Agostoni, C.; Visioli, F. Dietary Fatty Acids and Inflammation: Focus on the n-6 Series. Int. J. Mol. Sci. 2023, 24, 4567. [Google Scholar] [CrossRef]
- Angonese, M.; Motta, G.E.; de Farias, N.S.; Molognoni, L.; Daguer, H.; Brugnerotto, P.; de Oliveira Costa, A.C.; Müller, C.M.O. Organic dragon fruits (Hylocereus undatus and Hylocereus polyrhizus) grown at the same edaphoclimatic conditions: Comparison of phenolic and organic acids profiles and antioxidant activities. LWT 2021, 149, 111924. [Google Scholar] [CrossRef]
- Tang, W.; Li, W.; Yang, Y.; Lin, X.; Wang, L.; Li, C.; Yang, R. Phenolic compounds profile and antioxidant capacity of pitahaya fruit peel from two red-skinned species (Hylocereus polyrhizus and Hylocereus undatus). Foods 2021, 10, 1183. [Google Scholar] [CrossRef] [PubMed]
K | P4 | P2.5 | P1.5 | P0.5 | |
---|---|---|---|---|---|
Pork shoulder [g] | 1000 | 1000 | 1000 | 1000 | 1000 |
Curing salt [%, w/w] | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 |
Salt [%, w/w] | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
Pepper [%, w/w] | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Garlic [%, w/w] | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
Water [%, w/w] | 4.0 | 4.0 | 4.0 | 4.0 | 4.0 |
Lyophilized dragon fruit pulp [%, w/w] | - | 0.5 | 1.5 | 2.5 | 4.0 |
W | W:A | A | |
---|---|---|---|
TPC [mg gallic acid/mL] | 0.104 ± 0.02 a | 0.203 ± 0.04 b | 0.292 ± 0.07 c |
ABTS [%] | 89.47 ± 2.53 a | 2.70 ± 1.09 b | 17.55 ± 7.06 c |
DPPH [%] | 14.83 ± 3.52 a | 60.08 ± 6.50 b | 28.04 ± 6.46 c |
RP [A = 700] | 0.142 ± 0.01 a | 0.138 ± 0.006 a | 0.142 ± 0.01 a |
K | P4 | P2.5 | P1.5 | P0.5 | |
---|---|---|---|---|---|
Fat [%] | 9.42 ± 0.82 a | 12.08 ± 1.04 b | 11.79 ± 1.01 a | 11.01 ± 0.94 a | 11.79 ± 0.88 a |
Protein [%] | 21.11 ± 0.50 a | 20.07 ± 0.49 a | 19.72 ± 0.47 b | 19.64 ± 0.44 b | 21.45 ± 0.50 a |
Water [%] | 68.29 ± 2.77 a | 63.54 ± 2.65 a | 64.89 ± 2.63 a | 65.74 ± 2.65 a | 64.08 ± 2.59 a |
Carbohydrates [%] | 1.19 ± 0.31 a | 4.31 ± 1.35 b | 3.6 ± 0.91 a | 3.28 ± 1.24 a | 2.68 ± 0.72 a |
kcal | 173.94 ± 6.84 a | 206.24 ± 3.54 c | 199.39 ± 3.51 b | 192.09 ± 4.02 b | 202.63 ± 3.84 b |
Ash [%] | 2.50 ± 0.37 a | 2.35 ± 0.34 a | 2.43 ± 0.36 a | 2.47 ± 0.36 a | 2.50 ± 0.37 a |
Phosphorus [g/kg] | 1.90 ± 0.01 a | 1.76 ± 0.01 b | 1.78 ± 0.01 b | 1.79 ± 0.01 c | 1.78 ± 0.01b c |
Calcium [mg/kg] | 82.3 ± 2.72 a | 188.33 ± 6.51 b | 141.33 ± 6.51 c | 112.00 ± 3.00 d | 108.67 ± 5.51 d |
Magnesium [mg/kg] | 154.67 ± 7.51 a | 247.33 ± 8.50 b | 235.67 ± 1.15 b | 249.33 ± 1.45 c | 220.33 ± 0.58 d |
Potassium [mg/kg] | 3023.33 ± 15.28 a | 3033.33 ± 35.12 a | 3213.33 ± 35.12 b | 3156.67 ± 5.7 c | 3000.00 ± 30.00 a |
Iron [mg/kg] | 34.33 ± 0.65 a | 48.43 ± 1.78 b | 17.23 ± 0.35 c | 20.27 ± 0.50 d | 19.47 ± 0.15 c d |
Parameter | Time [day] | K | P4 | P2.5 | P1.5 | P0.5 |
---|---|---|---|---|---|---|
pH | 1 | 6.26 ± 0.024 aA | 6.12 ± 0.010 bAC | 6.26 ± 0.053 aA | 6.16 ± 0.010 bA | 6.15 ± 0.003 bA |
7 | 6.25 ± 0.013 aA | 6.09 ± 0.013cAB | 6.15 ± 0.002 bB | 6.12 ± 0.009 bcB | 6.14 ± 0.043 bcA | |
14 | 6.21 ± 0.043 aA | 6.06 ± 0.022 bB | 6.07 ± 0.013 bC | 6.06 ± 0.015 bC | 6.05 ± 0.010 bB | |
21 | 6.23 ± 0.034 aA | 6.15 ± 0.030 bC | 6.12 ± 0.022 bBC | 5.83 ± 0.012 cD | 6.03 ± 0.010 dB | |
aw | 1 | 0.988 ± 0.002 aA | 0.992 ± 0.002 aA | 0.992 ± 0.04 aA | 0.993 ± 0.0006 aA | 0.991 ± 0.001 aA |
7 | 0.984 ± 0.002 aB | 0.991 ± 0.002 aB | 0.971 ± 0.040 aA | 0.988 ± 0.002 aB | 0.987 ± 0.002 aB | |
14 | 0.984 ± 0.003 acB | 0.990 ± 0.004 bB | 0.989 ± 0.002 abA | 0.984 ± 0.001 abC | 0.982 ± 0.002 cC | |
21 | 0.966 ± 0.003 acC | 0.972 ± 0.004 bC | 0.971 ± 0.002 abA | 0.956 ± 0.001 abD | 0.964 ± 0.001 cD | |
ORP | 1 | 322.63 ± 11.60 aA | 321.03 ± 10.15 aA | 324.00 ± 11.20 aAB | 338.40 ± 10.05 aA | 320.63 ± 2.61 aA |
7 | 334.08 ± 6.56 aA | 343.80 ± 7.70 aB | 328.98 ± 3.03 abA | 322.53 ±22.28 abA | 312.36 ± 2.71 bA | |
14 | 301.13 ± 4.43 acB | 330.03 ± 6.40 bAB | 314.78 ±2.18 abB | 288 ± 14.26 cB | 313.25 ± 6.45 abA | |
21 | 336.13 ± 4.73 aA | 337.88 ± 3.17 aB | 336.38 ± 2.50 aA | 299.85 ± 5.14 bB | 274.50 ± 7.23 cB | |
TBARS | 1 | 1.00 ± 0.03 aA | 1.30 ± 0.04 bA | 1.26 ± 0.04 bcA | 1.33 ± 0.06 bA | 1.13 ± 0.10 acA |
7 | 1.06 ± 0.22 aA | 1.84 ± 0.27 bB | 1.50 ± 0.07 bB | 1.15 ± 0.03 aA | 1.02 ± 0.04 aA | |
14 | 0.48 ± 0.01 aB | 0.62 ± 0.06 bC | 0.57 ± 0.02 bC | 0.53 ± 0.12 bB | 0.48 ± 0.24 aB | |
21 | 0.46 ± 0.05 aB | 0.83 ± 0.09 bC | 0.84 ± 0.14 bD | 0.36 ± 0.05 aB | 0.33 ± 0.04 aB |
Parameter | K | P4 | P2.5 | P1.5 | P0.5 |
---|---|---|---|---|---|
C6:0 | 0.002 ± 0.000 a | ND | 0.002 ± 0.000 a | 0.002 ± 0.000 a | 0.003 ± 0.000 b |
C8:0 | 0.003 ± 0.000 a | 0.008 ± 0.001 b | 0.003 ± 0.001 a | 0.002 ± 0.000 a | 0.002 ± 0.000 a |
C10:0 | 0.011 ± 0.000 a | 0.013 ± 0.001 a | 0.011 ± 0.000 a | 0.013 ± 0.001 a | 0.012 ± 0.001 a |
C12:0 | 0.010 ± 0.001 a | 0.011 ± 0.001 a | 0.010 ± 0.001 a | 0.011 ± 0.001 a | 0.010 ± 0.000 a |
C14:0 | 0.147 ± 0.001 a | 0.178 ± 0.000 c | 0.155 ± 0.000 b | 0.152 ± 0.003 b | 0.144 ± 0.003 a |
C14:1n5 | 0.002 ± 0.000 a | 0.002 ± 0.000 a | 0.002 ± 0.000 a | 0.002 ± 0.000 a | 0.002 ± 0.000 a |
C15:0 | 0.006 ± 0.001 a | 0.005 ± 0.000 a | 0.005 ± 0.000 a | 0.005 ± 0.000 a | 0.006 ± 0.001 a |
C16:0 | 2.525 ± 0.001 a | 2.987 ± 0.010 d | 2.588 ± 0.013 c | 2.581 ± 0.003 c | 2.428 ± 0.023 b |
C16:1n7 | 0.253 ± 0.001 a | 0.302 ± 0.001 d | 0.259 ± 0.001 ac | 0.262 ± 0.001 c | 0.244 ± 0.003 b |
C17:0 | 0.030 ± 0.001 a | 0.029 ± 0.000 ab | 0.025 ± 0.000 c | 0.029 ± 0.000 ab | 0.028 ± 0.001 b |
C17:1n7 | 0.025 ± 0.000 a | 0.023 ± 0.001 a | 0.018 ± 0.000 b | 0.026 ± 0.001 a | 0.025 ± 0.001 a |
C18:0 | 1.441 ± 0.001 a | 1.597 ± 0.007 d | 1.392 ± 0.006 b | 1.469 ± 0.013 a | 1.365 ± 0.002 b |
C18:1n9C + C18:1n9t | 3.776 ± 0.01 ac | 4.298 ± 0.080 d | 3.684 ± 0.015 bc | 3.922 ± 0.023 a | 3.605 ± 0.002 b |
C18:2n6C + C18:2n6t | 0.464 ± 0.001 a | 0.619 ± 0.001 e | 0.453 ± 0.001 d | 0.559 ± 0.001 c | 0.424 ± 0.000 b |
C18:3n3 (alpha) | 0.016 ± 0.000 a | 0.029 ± 0.000 e | 0.018 ± 0.000 d | 0.022 ± 0.000 c | 0.014 ± 0.001 b |
C20:0 | 0.017 ± 0.001 a | 0.026 ± 0.001 b | 0.023 ± 0.001 b | 0.018 ± 0.001 a | 0.017 ± 0.001 a |
C20:1n15 | 0.051 ± 0.001 a | 0.076 ± 0.001 e | 0.047 ± 0.001 d | 0.057 ± 0.005 c | 0.044 ± 0.001 b |
C20:1n9 | 0.021 ± 0.000 a | 0.028 ± 0.000 d | 0.020 ± 0.001 ab | 0.024 ± 0.000 c | 0.019 ± 0.000 b |
C20:2n6 | 0.003 ± 0.000 ab | 0.003 ± 0.000 ab | 0.002 ± 0.000 b | 0.004 ± 0.000 a | 0.003 ± 0.001 ab |
C21:0 | 0.007 ± 0.001 a | 0.008 ± 0.001 a | 0.004 ± 0.000 b | 0.009 ± 0.001 a | 0.004 ± 0.000 b |
C20:4n6 | 0.003 ± 0.000 a | 0.004 ± 0.000 a | 0.003 ± 0.000 a | 0.004 ± 0.001 a | 0.003 ± 0.000 a |
C20:5n3 | ND | 0.003 ± 0.001 a | 0.005 ± 0.000 c | 0.003 ± 0.000 b | 0.004 ± 0.000 abc |
C22:0 | 0.010 ± 0.000 a | 0.010 ± 0.000 a | 0.013 ± 0.000 b | 0.011 ± 0.001 ab | 0.011 ± 0.001 ab |
C22:1n9 | 0.004 ± 0.00 a | 0.007 ± 0.002 a | 0.006 ± 0.000 a | 0.005 ± 0.001 a | 0.005 ± 0.001 a |
C22:6n3 | 0.026 ± 0.020 a | 0.012 ± 0.001 b | ND | ND | 0.012 ± 0.000 b |
K | P4 | P2.5 | P1.5 | P0.5 | |
---|---|---|---|---|---|
SFA | 4.206 ± 0.002 a | 4.782 ± 0.016 d | 4.236 ± 0.028 ac | 4.299 ± 0.006 c | 4.033 ± 0.032 b |
MUFA | 4.131 ± 0.013 a | 4.783 ± 0.011 e | 4.033 ± 0.011 d | 3.942 ± 0.002 c | 3.942 ± 0.002 b |
PUFA | 0.498 ± 0.003 a | 0.670 ± 0.004 b | 0.486 ± 0.011 a | 0.601 ± 0.001 c | 0.453 ± 0.009 d |
OMEGA 3 | 0.029± 0.001 a | 0.043 ± 0.004 b | 0.029 ± 0.010 ab | 0.034 ± 0.000 b | 0.023 ± 0.007 a |
OMEGA 6 | 0.470 ± 0.002 a | 0.626 ± 0.004 e | 0.457 ± 0.000 d | 0.567 ± 0.000 c | 0.430 ± 0.002 b |
OMEGA 9 | 3.801 ± 0.012 a | 4.382 ± 0.011 e | 3.710 ± 0.013 d | 3.951 ± 0.021 c | 3.628 ± 0.001 b |
OMEGA 6/3 | 16.21 ± 0.72 a | 14.77 ± 1.15 a | 14.49 ± 2.54 a | 16.66 ± 0.02 a | 18.69 ± 4.91 a |
Antioxidant Test | Time [day] | K | P4 | P2.5 | P1.5 | P0.5 |
---|---|---|---|---|---|---|
ABTS [%] | 1 | 33.84 ± 2.88 aA | 43.75 ± 1.62 bAC | 43.53 ± 0.94 bAC | 29.85 ± 2.94 aA | 31.22 ± 0.91 aA |
7 | 38.00 ± 2.60 aA | 44.73 ± 2.17 bA | 46.56 ± 2.20 bA | 34.17 ± 1.30 cB | 32.55 ± 1.53 cB | |
14 | 41.68 ± 3.66 aB | 53.15 ± 1.30 bB | 55.80 ± 2.74 bB | 38.49 ± 1.15 aC | 39.17 ± 0.82 aC | |
21 | 34.10 ± 3.34 aA | 41.14 ± 0.99 bC | 40.28 ± 2.74 bC | 26.15 ± 1.58 cA | 23.62 ± 1.75 cD | |
DPPH [%] | 1 | 23.16 ± 1.46 aA | 28.08 ± 1.45 bcA | 31.31 ± 2.63 cA | 25.50 ± 1.62 abA | 23.88 ± 1.40 aA |
7 | 23.85 ± 1.49 aA | 33.22 ± 2.50 bB | 32.39 ± 1.15 bAB | 26.54 ± 1.15 aAB | 24.46 ± 1.28 aA | |
14 | 38.00 ± 2.32 aB | 39.99 ± 2.04 aC | 35.86 ± 1.83 aB | 28.43 ± 1.50 bB | 28.03 ± 1.89 bB | |
21 | 28.03 ± 1.81 aA | 28.72 ± 1.14 bA | 22.41 ± 0.96 acC | 21.37 ± 0.41 acC | 20.57 ± 1.36 cC | |
RP [A700] | 1 | 0.404 ± 0.012 aA | 0.789 ± 0.012 bA | 0.653 ± 0.002 cA | 0.514 ± 0.008 dA | 0.404 ± 0.012 aA |
7 | 0.668 ± 0.025 aB | 1.212 ± 0.010 bB | 1.190 ± 0.028 bB | 1.079 ± 0.048 bB | 1.026 ± 0.009 bB | |
14 | 0.490 ± 0.014 aC | 0.612 ± 0.017 bC | 0.473 ± 0.038 aC | 0.853 ± 0.010 cC | 0.705 ± 0.016 dC | |
21 | 0.499 ± 0.002 aC | 0.512 ± 0.017 aD | 0.473 ± 0.040 aC | 0.853 ± 0.010 bD | 0.611 ± 0.011 cD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kęska, P.; Gazda, P.; Siłka, Ł.; Mazurek, K.; Stadnik, J. Nutrition Value of Baked Meat Products Fortified with Lyophilized Dragon Fruit (Hylocereus undatus). Foods 2023, 12, 3550. https://doi.org/10.3390/foods12193550
Kęska P, Gazda P, Siłka Ł, Mazurek K, Stadnik J. Nutrition Value of Baked Meat Products Fortified with Lyophilized Dragon Fruit (Hylocereus undatus). Foods. 2023; 12(19):3550. https://doi.org/10.3390/foods12193550
Chicago/Turabian StyleKęska, Paulina, Patrycja Gazda, Łukasz Siłka, Katarzyna Mazurek, and Joanna Stadnik. 2023. "Nutrition Value of Baked Meat Products Fortified with Lyophilized Dragon Fruit (Hylocereus undatus)" Foods 12, no. 19: 3550. https://doi.org/10.3390/foods12193550
APA StyleKęska, P., Gazda, P., Siłka, Ł., Mazurek, K., & Stadnik, J. (2023). Nutrition Value of Baked Meat Products Fortified with Lyophilized Dragon Fruit (Hylocereus undatus). Foods, 12(19), 3550. https://doi.org/10.3390/foods12193550