On the Valorization of Arbutus unedo L. Pomace: Polyphenol Extraction and Development of Novel Functional Cookies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Arbutus unedo L. Pomace Processing
2.2. Chemicals
2.3. Polyphenols Extraction
2.3.1. Ultrasound-Assisted Extraction System
2.3.2. Ultrasound-Assisted Extraction System
2.3.3. Total Content of Polyphenols
2.3.4. Antioxidant Activity of Pomace Extracts
2.4. Identification of Polyphenols by UHPLC-PDA-QToF-MS-QDa
2.5. Development of Functional Cookies from Arbutus unedo L. Pomace
2.6. Data Analysis and Statistics
3. Results and Discussion
3.1. Box-Behnken Design
3.2. Influence of Extraction Time
3.3. Optimal Extraction Conditions
3.4. Validation of the Extraction Method
3.5. Development of Functional Cookies with A. unedo Pomace
3.5.1. Sensory Evaluation
3.5.2. Polyphenolic Content and Antioxidant Activity of the Cookies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Molina, M.; Pardo-de-Santayana, M.; Tardío, J. Natural production and cultivation of mediterranean wild edibles. In Mediterranean Wild Edible Plants: Ethnobotany and Food Composition Tables; Sánchez-Mata, M.d.C., Tardío, J., Eds.; Springer: New York, NY, USA, 2016; pp. 81–107. ISBN 978-1-4939-3329-7. [Google Scholar]
- Arnan, X.; Quevedo, L.; Rodrigo, A. Forest Fire Occurrence Increases the Distribution of a Scarce Forest Type in the Mediterranean Basin. Acta Oecol.-Int. J. Ecol. 2013, 46, 39–47. [Google Scholar] [CrossRef]
- Pallauf, K.; Rivas-Gonzalo, J.C.; del Castillo, M.D.; Cano, M.P.; de Pascual-Teresa, S. Characterization of the Antioxidant Composition of Strawberry Tree (Arbutus unedo L.) Fruits. J. Food Compos. Anal. 2008, 21, 273–281. [Google Scholar] [CrossRef]
- Oliveira, I.; Baptista, P.; Malheiro, R.; Casal, S.; Bento, A.; Pereira, J.A. Influence of Strawberry Tree (Arbutus unedo L.) Fruit Ripening Stage on Chemical Composition and Antioxidant Activity. Food Res. Int. 2011, 44, 1401–1407. [Google Scholar] [CrossRef]
- Ruiz-Rodríguez, B.-M.; Morales, P.; Fernández-Ruiz, V.; Sánchez-Mata, M.-C.; Cámara, M.; Díez-Marqués, C.; Pardo-de-Santayana, M.; Molina, M.; Tardío, J. Valorization of Wild Strawberry-Tree Fruits (Arbutus unedo L.) through Nutritional Assessment and Natural Production Data. Food Res. Int. 2011, 44, 1244–1253. [Google Scholar] [CrossRef]
- Mendes, L.; de Freitas, V.; Baptista, P.; Carvalho, M. Comparative Antihemolytic and Radical Scavenging Activities of Strawberry Tree (Arbutus unedo L.) Leaf and Fruit. Food Chem. Toxicol. 2011, 49, 2285–2291. [Google Scholar] [CrossRef]
- Morgado, S.; Morgado, M.; Plácido, A.I.; Roque, F.; Duarte, A.P. Arbutus unedo L.: From Traditional Medicine to Potential Uses in Modern Pharmacotherapy. J. Ethnopharmacol. 2018, 225, 90–102. [Google Scholar] [CrossRef]
- Salem, I.B.; Ouesleti, S.; Mabrouk, Y.; Landolsi, A.; Saidi, M.; Boulilla, A. Exploring the Nutraceutical Potential and Biological Activities of Arbutus unedo L. (Ericaceae) Fruits. Ind. Crop. Prod. 2018, 122, 726–731. [Google Scholar] [CrossRef]
- González, J.A.; García-Barriuso, M.; Amich, F. Ethnobotanical Study of Medicinal Plants Traditionally Used in the Arribes Del Duero, Western Spain. J. Ethnopharmacol. 2010, 131, 343–355. [Google Scholar] [CrossRef]
- Jurica, K.; Gobin, I.; Kremer, D.; Čepo, D.V.; Grubešić, R.J.; Karačonji, I.B.; Kosalec, I. Arbutin and Its Metabolite Hydroquinone as the Main Factors in the Antimicrobial Effect of Strawberry Tree (Arbutus unedo L.) Leaves. J. Herb. Med. 2017, 8, 17–23. [Google Scholar] [CrossRef]
- Moualek, I.; Iratni Aiche, G.; Mestar Guechaoui, N.; Lahcene, S.; Houali, K. Antioxidant and Anti-Inflammatory Activities of Arbutus unedo Aqueous Extract. Asian Pac. Trop. Biomed. 2016, 6, 937–944. [Google Scholar] [CrossRef]
- Mrabti, H.N.; El Abbes Faouzi, M.; Mayuk, F.M.; Makrane, H.; Limas-Nzouzi, N.; Dibong, S.D.; Cherrah, Y.; Elombo, F.K.; Gressier, B.; Desjeux, J.-F.; et al. Arbutus unedo L., (Ericaceae) Inhibits Intestinal Glucose Absorption and Improves Glucose Tolerance in Rodents. J. Ethnopharmacol. 2019, 235, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Mrabti, H.N.; Jaradat, N.; Kachmar, M.R.; Ed-Dra, A.; Ouahbi, A.; Cherrah, Y.; El Abbes Faouzi, M. Integrative Herbal Treatments of Diabetes in Beni Mellal Region of Morocco. J. Integr. Med.-JIM 2019, 17, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, A.M.R.C.; Serra, A.T.; Matias, A.A.; Duarte, C.M.M.; Bronze, M.R. Supercritical Fluid Extraction of Arbutus unedo Distillate Residues—Impact of Process Conditions on Antiproliferative Response of Extracts. J. CO2 Util. 2020, 37, 29–38. [Google Scholar] [CrossRef]
- Rodrigues, M.A.; Galego, L.; Da Silva, J.P. Flavonoid profiles of Arbutus unedo L. pomaces. In INCREaSE.; Mortal, A., Aníbal, J., Monteiro, J., Sequeira, C., Semião, J., Moreira da Silva, M., Oliveira, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 199–205. [Google Scholar]
- Sanwal, N.; Mishra, S.; Sahu, J.K.; Naik, S.N. Effect of Ultrasound-Assisted Extraction on Efficiency, Antioxidant Activity, and Physicochemical Properties of Sea Buckthorn (Hippophae salicipholia) Seed Oil. LWT 2022, 153, 112386. [Google Scholar] [CrossRef]
- Das, P.; Nayak, P.K.; Kesavan, R. krishnan Ultrasound Assisted Extraction of Food Colorants: Principle, Mechanism, Extraction Technique and Applications: A Review on Recent Progress. Food Chem. Adv. 2022, 1, 100144. [Google Scholar] [CrossRef]
- Ahmad, T.; Butt, M.Z.; Aadil, R.M.; Inam-ur-Raheem, M.; Abdullah; Bekhit, A.E.-D.; Guimarães, J.T.; Balthazar, C.F.; Rocha, R.S.; Esmerino, E.A.; et al. Impact of Nonthermal Processing on Different Milk Enzymes. Int. J. Dairy Technol. 2019, 72, 481–495. [Google Scholar] [CrossRef]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Barea-Sepúlveda, M.; Espada-Bellido, E.; Ferreiro-González, M.; López-Castillo, J.G.; Palma, M.; Barbero, G.F.; Carrera, C. Ultrasound-Assisted Extraction of Total Phenolic Compounds and Antioxidant Activity in Mushrooms. Agronomy 2022, 12, 1812. [Google Scholar] [CrossRef]
- Aliaño González, M.J.; Carrera, C.; Barbero, G.F.; Palma, M. A Comparison Study between Ultrasound–Assisted and Enzyme–Assisted Extraction of Anthocyanins from Blackcurrant (Ribes nigrum L.). Food Chem. X 2022, 13, 100192. [Google Scholar] [CrossRef]
- Carrera, C.; Aliaño-González, M.J.; Valaityte, M.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. A Novel Ultrasound-Assisted Extraction Method for the Analysis of Anthocyanins in Potatoes (Solanum tuberosum L.). Antioxidants 2021, 10, 1375. [Google Scholar] [CrossRef]
- Yerena-Prieto, B.J.; Gonzalez-Gonzalez, M.; Vázquez-Espinosa, M.; González-De-Peredo, A.V.; García-Alvarado, M.; Palma, M.; Rodríguez-Jimenes, G.d.C.; Barbero, G.F. Optimization of an Ultrasound-Assisted Extraction Method Applied to the Extraction of Flavonoids from Moringa Leaves (Moringa oleífera Lam.). Agronomy 2022, 12, 261. [Google Scholar] [CrossRef]
- González-de-Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Barbero, G.F.; Palma, M. Development of Optimized Ultrasound-Assisted Extraction Methods for the Recovery of Total Phenolic Compounds and Anthocyanins from Onion Bulbs. Antioxidants 2021, 10, 1755. [Google Scholar] [CrossRef] [PubMed]
- Duarte, H.; Gomes, V.; Aliaño-González, M.J.; Faleiro, L.; Romano, A.; Medronho, B. Ultrasound-Assisted Extraction of Polyphenols from Maritime Pine Residues with Deep Eutectic Solvents. Foods 2022, 11, 3754. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, B.R.; Prieto, M.A.; Barreiro, M.F.; Rodrigues, A.; Curran, T.P.; Barros, L.; Ferreira, I.C.F.R. Catechin-Based Extract Optimization Obtained from Arbutus unedo L. Fruits Using Maceration/Microwave/Ultrasound Extraction Techniques. Ind. Crop. Prod. 2017, 95, 404–415. [Google Scholar] [CrossRef]
- Alavarsa-Cascales, D.; Aliaño-González, M.J.; Palma, M.; Barbero, G.F.; Carrera, C. Optimization of an Enzyme-Assisted Extraction Method for the Anthocyanins Present in Açai (Euterpe oleracea Mart.). Agronomy 2022, 12, 2327. [Google Scholar] [CrossRef]
- Khatib, I.; Chow, M.Y.T.; Ruan, J.; Cipolla, D.; Chan, H.-K. Modeling of a Spray Drying Method to Produce Ciprofloxacin Nanocrystals inside the Liposomes Utilizing a Response Surface Methodology: Box-Behnken Experimental Design. Int. J. Pharm. 2021, 597, 120277. [Google Scholar] [CrossRef]
- Ayyubi, S.N.; Purbasari, A. Kusmiyati The Effect of Composition on Mechanical Properties of Biodegradable Plastic Based on Chitosan/Cassava Starch/PVA/Crude Glycerol: Optimization of the Composition Using Box Behnken Design. Mater. Today 2022, 63, S78–S83. [Google Scholar] [CrossRef]
- Miliauskas, G.; Venskutonis, P.R.; van Beek, T.A. Screening of Radical Scavenging Activity of Some Medicinal and Aromatic Plant Extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- González-de-Peredo, A.V.; Vázquez-Espinosa, M.; Carrera, C.; Espada-Bellido, E.; Ferreiro-González, M.; Barbero, G.F.; Palma, M. Development of a Rapid UHPLC-PDA Method for the Simultaneous Quantification of Flavonol Contents in Onions (Allium cepa L.). Pharmaceuticals 2021, 14, 310. [Google Scholar] [CrossRef]
- El Gharras, H. Polyphenols: Food Sources, Properties and Applications—A Review. Int. J. Food Sci. Technol. 2009, 44, 2512–2518. [Google Scholar] [CrossRef]
- Diaconeasa, Z. Time-Dependent Degradation of Polyphenols from Thermally-Processed Berries and Their In Vitro Antiproliferative Effects against Melanoma. Molecules 2018, 23, 2534. [Google Scholar] [CrossRef] [PubMed]
- Verbeyst, L.; Oey, I.; Van der Plancken, I.; Hendrickx, M.; Van Loey, A. Kinetic Study on the Thermal and Pressure Degradation of Anthocyanins in Strawberries. Food Chem. 2010, 123, 269–274. [Google Scholar] [CrossRef]
- López, C.J.; Caleja, C.; Prieto, M.A.; Barreiro, M.F.; Barros, L.; Ferreira, I.C.F.R. Optimization and Comparison of Heat and Ultrasound Assisted Extraction Techniques to Obtain Anthocyanin Compounds from Arbutus unedo L. Fruits. Food Chem. 2018, 264, 81–91. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Prieto, M.A.; Vazquez, J.A.; Barreiro, M.F.; Barros, L.; Ferreira, I.C.F.R. Recovery of Bioactive Compounds from Arbutus unedo L. Fruits: Comparative Optimization Study of Maceration/Microwave/Ultrasound Extraction Techniques. Food Res. Int. 2018, 109, 455–471. [Google Scholar] [CrossRef]
- El Cadi, H.; El Cadi, A.; Kounnoun, A.; Oulad El Majdoub, Y.; Palma Lovillo, M.; Brigui, J.; Dugo, P.; Mondello, L.; Cacciola, F. Wild Strawberry (Arbutus unedo): Phytochemical Screening and Antioxidant Properties of Fruits Collected in Northern Morocco. Arab. J. Chem. 2020, 13, 6299–6311. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Coelho, M.S.; Salas-Mellado, M.d.l.M. Chapter 7—Bioactive compounds as ingredients of functional foods: Polyphenols, carotenoids, peptides from animal and plant sources new. In Bioactive Compounds; Campos, M.R.S., Ed.; Woodhead Publishing: Cambridge, UK, 2019; pp. 129–142. ISBN 978-0-12-814774-0. [Google Scholar]
- Honold, P.J.; Jacobsen, C.; Jónsdóttir, R.; Kristinsson, H.G.; Hermund, D.B. Potential Seaweed-Based Food Ingredients to Inhibit Lipid Oxidation in Fish-Oil-Enriched Mayonnaise. Eur. Food Res. Technol. 2016, 242, 571–584. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; O’Callaghan, Y.C.; O’Grady, M.N.; Waldron, D.S.; Smyth, T.J.; O’Brien, N.M.; Kerry, J.P. An Examination of the Potential of Seaweed Extracts as Functional Ingredients in Milk. Int. J. Dairy Technol. 2014, 67, 182–193. [Google Scholar] [CrossRef]
- Törrönen, R.; McDougall, G.J.; Dobson, G.; Stewart, D.; Hellström, J.; Mattila, P.; Pihlava, J.-M.; Koskela, A.; Karjalainen, R. Fortification of Blackcurrant Juice with Crowberry: Impact on Polyphenol Composition, Urinary Phenolic Metabolites, and Postprandial Glycemic Response in Healthy Subjects. J. Funct. Food. 2012, 4, 746–756. [Google Scholar] [CrossRef]
- Mildner-Szkudlarz, S.; Bajerska, J.; Zawirska-Wojtasiak, R.; Górecka, D. White Grape Pomace as a Source of Dietary Fibre and Polyphenols and Its Effect on Physical and Nutraceutical Characteristics of Wheat Biscuits. J. Sci. Food Agric. 2013, 93, 389–395. [Google Scholar] [CrossRef]
- Wang, R.; Zhou, W. Stability of Tea Catechins in the Breadmaking Process. J. Agric. Food Chem. 2004, 52, 8224–8229. [Google Scholar] [CrossRef]
- Bajerska, J.; Mildner-Szkudlarz, S.; Jeszka, J.; Szwengiel, A. Catechin Stability, Antioxidant Properties and Sensory Profiles of Rye Breads Fortified with Green Tea Extracts. J. Food Nutr. Res. 2010, 49, 104–111. [Google Scholar]
- López-López, I.; Cofrades, S.; Jiménez-Colmenero, F. Low-Fat Frankfurters Enriched with n-3 PUFA and Edible Seaweed: Effects of Olive Oil and Chilled Storage on Physicochemical, Sensory and Microbial Characteristics. Meat Sci. 2009, 83, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Ayo, J.; Carballo, J.; Serrano, J.; Olmedilla-Alonso, B.; Ruiz-Capillas, C.; Jiménez-Colmenero, F. Effect of Total Replacement of Pork Backfat with Walnut on the Nutritional Profile of Frankfurters. Meat Sci. 2007, 77, 173–181. [Google Scholar] [CrossRef]
Total Polyphenols (mg/g dw) | Antioxidant Activity (mg TE/g dw) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Experiment | Ratio (0.5 g/mL Solvent) | %MeOH | pH | Temperature (°C) | Observed | Adjusted | Error (%) | Observed | Adjusted | Error (%) |
1 | 20 | 25 | 4.5 | 50 | 35.41 ± 2.56 | 31.92 | 9.85 | 10.09 ± 0.37 | 9.48 | 6.05 |
2 | 15 | 75 | 4.5 | 30 | 35.93 ± 1.45 | 35.48 | 1.24 | 17.19 ± 6.70 | 16.76 | 2.50 |
3 | 15 | 75 | 2 | 50 | 35.30 ± 6.12 | 36.75 | 4.10 | 20.62 ± 5.26 | 20.17 | 2.15 |
4 | 20 | 50 | 4.5 | 30 | 34.94 ± 2.20 | 36.18 | 3.55 | 25.35 ± 3.35 | 27.63 | 8.98 |
5 | 20 | 50 | 7 | 50 | 33.18 ± 3.03 | 34.38 | 3.60 | 16.67 ± 1.49 | 15.80 | 5.20 |
6 | 15 | 25 | 4.5 | 70 | 42.72 ± 0.93 | 36.84 | 13.78 | 6.04 ± 2.47 | 6.64 | 9.90 |
7 | 20 | 50 | 4.5 | 70 | 46.25 ± 6.43 | 53.59 | 15.87 | 18.04 ± 8.19 | 19.87 | 10.16 |
8 | 10 | 25 | 4.5 | 50 | 24.66 ± 1.12 | 25.23 | 2.33 | 17.41 ± 2.23 | 17.32 | 0.49 |
9 | 15 | 50 | 2 | 70 | 37.70 ± 2.27 | 36.08 | 4.31 | 20.88 ± 9.68 | 24.29 | 16.34 |
10 | 15 | 50 | 7 | 70 | 48.65 ± 0.42 | 47.63 | 2.09 | 26.14 ± 4.47 | 23.06 | 11.78 |
11 | 10 | 50 | 7 | 50 | 30.92 ± 0.96 | 29.34 | 5.11 | 15.64 ± 2.20 | 14.68 | 6.18 |
12 | 10 | 75 | 4.5 | 50 | 24.97 ± 0.97 | 21.49 | 13.94 | 5.28 ± 2.23 | 5.48 | 3.70 |
13 | 15 | 50 | 2 | 30 | 36.07 ± 0.45 | 40.12 | 11.24 | 22.98 ± 3.72 | 20.20 | 12.10 |
14 | 10 | 50 | 4.5 | 30 | 45.52 ± 4.73 | 41.48 | 8.87 | 25.09 ± 0.74 | 27.94 | 11.38 |
15 | 15 | 25 | 2 | 50 | 33.19 ± 1.22 | 31.59 | 4.81 | 24.04 ± 3.72 | 27.68 | 15.15 |
16 | 15 | 50 | 4.5 | 50 | 44.47 ± 4.73 | 39.07 | 12.13 | 18.93 ± 3.21 | 17.46 | 7.79 |
17 | 15 | 50 | 4.5 | 50 | 37.53 ± 0.95 | 39.07 | 4.10 | 17.09 ± 3.70 | 17.46 | 2.14 |
18 | 15 | 75 | 4.5 | 70 | 71.33 ± 5.52 | 60.46 | 15.24 | 37.19 ± 7.09 | 32.03 | 13.89 |
19 | 20 | 50 | 2 | 50 | 38.69 ± 3.15 | 33.94 | 12.27 | 25.61 ± 6.70 | 23.74 | 7.30 |
20 | 10 | 50 | 2 | 50 | 35.32 ± 4.02 | 37.79 | 6.99 | 18.77 ± 1.49 | 16.81 | 10.46 |
21 | 15 | 25 | 7 | 50 | 30.72 ± 0.06 | 32.58 | 6.05 | 12.98 ± 0.00 | 12.11 | 6.74 |
22 | 15 | 50 | 7 | 30 | 45.90 ± 1.70 | 40.55 | 11.64 | 20.62 ± 5.30 | 21.36 | 3.59 |
23 | 15 | 75 | 7 | 50 | 32.84 ± 1.03 | 37.74 | 14.91 | 15.62 ± 4.09 | 15.67 | 0.31 |
24 | 10 | 50 | 4.5 | 70 | 35.04 ± 3.37 | 37.10 | 5.88 | 25.09 ± 0.74 | 21.50 | 14.32 |
25 | 15 | 50 | 4.5 | 50 | 35.22 ± 4.01 | 39.07 | 10.93 | 15.35 ± 1.33 | 17.46 | 13.71 |
26 | 20 | 75 | 4.5 | 50 | 41.53 ± 2.76 | 39.99 | 3.71 | 26.14 ± 0.74 | 24.38 | 6.75 |
27 | 15 | 25 | 4.5 | 30 | 44.26 ± 2.92 | 48.79 | 10.25 | 28.77 ± 1.49 | 31.10 | 8.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duarte, H.; Carrera, C.; Aliaño-González, M.J.; Gutiérrez-Escobar, R.; Jiménez-Hierro, M.J.; Palma, M.; Galego, L.; Romano, A.; Medronho, B. On the Valorization of Arbutus unedo L. Pomace: Polyphenol Extraction and Development of Novel Functional Cookies. Foods 2023, 12, 3707. https://doi.org/10.3390/foods12193707
Duarte H, Carrera C, Aliaño-González MJ, Gutiérrez-Escobar R, Jiménez-Hierro MJ, Palma M, Galego L, Romano A, Medronho B. On the Valorization of Arbutus unedo L. Pomace: Polyphenol Extraction and Development of Novel Functional Cookies. Foods. 2023; 12(19):3707. https://doi.org/10.3390/foods12193707
Chicago/Turabian StyleDuarte, Hugo, Ceferino Carrera, María José Aliaño-González, Rocío Gutiérrez-Escobar, María Jesús Jiménez-Hierro, Miguel Palma, Ludovina Galego, Anabela Romano, and Bruno Medronho. 2023. "On the Valorization of Arbutus unedo L. Pomace: Polyphenol Extraction and Development of Novel Functional Cookies" Foods 12, no. 19: 3707. https://doi.org/10.3390/foods12193707
APA StyleDuarte, H., Carrera, C., Aliaño-González, M. J., Gutiérrez-Escobar, R., Jiménez-Hierro, M. J., Palma, M., Galego, L., Romano, A., & Medronho, B. (2023). On the Valorization of Arbutus unedo L. Pomace: Polyphenol Extraction and Development of Novel Functional Cookies. Foods, 12(19), 3707. https://doi.org/10.3390/foods12193707