Dissipation Kinetics and Risk Assessment of Spirodiclofen and Tebufenpyrad in Aster scaber Thunb
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Chemicals and Reagents
2.2. Field Trial
2.3. Sample Preparation
2.4. Quality Assurance and Quality Control
2.5. Storage Stability and Residual Amount per Date
2.6. Calculation of Biological Half-Life and Tolerance Limit of Residue at the Production Stage
2.7. Risk Assessment
3. Results and Discussion
3.1. Temperature, Humidity, and Growth Characteristics within the Facility during Aster scaber Cultivation
3.2. Method Validation
3.3. Characteristics of Pesticide Residues in Aster scaber
3.4. Calculation of the PHRL of Aster scaber
3.5. Risk Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Pesticide | Spirodiclofen | Tebufenpyrad |
---|---|---|
Chemical structure | ||
Vapor pressure | <3.0 × 10−4 mPa (20 °C) | <1.0 × 10−2 mPa (25 °C) |
log Kow | 5.1 | 4.9 |
Water solubility | 0.19 mg/L (20 °C) | 2.61 mg/L (25 °C) |
Stability (DT50) | 52.1 day (hydrolysis) | Stable to hydrolysis |
Pesticides | Spirodiclofen | Tebufenpyrad | ||||
---|---|---|---|---|---|---|
Instrument | Shimadzu LC-MS 8045 (Shimadzu, Tokyo, Japan) | |||||
Column | Kinetex C18 (100 × 2.1 mm, 2.6 μm, Phenomenex) | |||||
Mobile phase | A: 0.1% formic acid in distilled water B: 0.1% formic acid in acetonitrile | |||||
Time (min) | A (%) | B (%) | Time (min) | A (%) | B (%) | |
0.5 | 60 | 40 | 3 | 20 | 80 | |
2 | 5 | 95 | 3.5 | 10 | 90 | |
5 | 5 | 95 | 5.5 | 10 | 90 | |
6 | 60 | 40 | 6 | 20 | 80 | |
7 | 60 | 40 | 7 | 20 | 80 | |
Flow rate | 0.2 mL/min | |||||
Injection volume | 2 μL | |||||
Retention time | 4.19 min | 1.47 min | ||||
Detector | Triple-quadruple system | |||||
Multiple reaction monitoring (MRM) parameters | Precursor ion > Product ion (collision energy voltage) | Precursor ion > Product ion (collision energy voltage) | ||||
Quantifier ion; 410.9 > 71.2 (−23.0) | Quantifier ion; 334.0 > 145.1 (−29.0) | |||||
Qualifier ion; 410.9 > 313.0 (−13.0) | Qualifier ion; 334.0 > 117.1 (−35.0) |
References
- Fenoll, J.; Hellin, P.; Camacho, M.D.; Lopez, J.; Gonzalez, A.; Lacasa, A.; Flores, P. Dissipation rates of procymidone and azoxystrobin in greenhouse grown lettuce and under cold storage conditions. Int. J. Environ. Anal. Chem. 2008, 88, 737–746. [Google Scholar] [CrossRef]
- Kim, J.-E.; Choi, T.-H. Behavior of Synthetic Pyrethroid Insecticide Bifenthrin in Soil Environment I) Degradation Pattern of Bifenthrin and Cyhalothrin in Soils and Aqueous Media. Korean J. Environ. Agric. 1992, 11, 116–124. [Google Scholar]
- Krol, W.J.; Arsenault, T.L.; Pylypiw, H.M., Jr.; Incorvia Mattina, M.J. Reduction of pesticide residues on produce by rinsing. J. Agric. Food Chem. 2000, 48, 4666–4670. [Google Scholar] [CrossRef] [PubMed]
- Abdel Ghani, S.B.; Abdallah, O.I. Method validation and dissipation dynamics of chlorfenapyr in squash and okra. Food Chem. 2016, 194, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.M.; Pico, Y.; Manes, J. Determination of pesticide residues in fruit and vegetables. J. Chromatogr. A 1996, 754, 301–331. [Google Scholar] [CrossRef]
- Lee, D.; Jo, H.; Jeong, D.; Goo, Y.; Hwang, M.; Kang, N.; Kang, K.; Kim, J. Residual characteristics of pesticides used for powdery mildew control on greenhouse strawberry. J. Agric. Life Sci. 2018, 52, 99–106. [Google Scholar] [CrossRef]
- Ouyang, Y.; Montez, G.H.; Liu, L.; Grafton-Cardwell, E.E. Spirodiclofen and spirotetramat bioassays for monitoring resistance in citrus red mite, Panonychus citri (Acari: Tetranychidae). Pest Manag. Sci. 2012, 68, 781–787. [Google Scholar] [CrossRef]
- Rauch, N.; Nauen, R. Spirodiclofen resistance risk assessment in Tetranychus urticae (Acari: Tetranychidae): A biochemical approach. Pestic. Biochem. Physiol. 2002, 74, 91–101. [Google Scholar] [CrossRef]
- Korea Crop Protection Association (KCPA). Crop Protection Guidelines. Korea Crop Protection Association, Seoul. 2020. Available online: https://www.koreacpa.org/ko/use-book/search/ (accessed on 3 March 2022).
- Kim, E.H.; Shim, Y.Y.; Lee, H.I.; Lee, S.; Reaney, M.J.T.; Chung, M.J. Astragalin and Isoquercitrin Isolated from Aster scaber Suppress LPS-Induced Neuroinflammatory Responses in Microglia and Mice. Foods 2022, 11, 1505. [Google Scholar] [CrossRef]
- Kim, G.-M.; Hong, J.-Y.; Woo, S.-Y.; Lee, H.-S.; Choi, Y.-J.; Shin, S.-R. Antioxidant activities of ethanol extracts of Aster scaber grown in wild and culture field. Korean J. Food Preserv. 2015, 22, 567–576. [Google Scholar] [CrossRef]
- Tomlin, C.D. The Pesticide Manual: A World Compendium; British Crop Production Council: Farnham, UK, 2009. [Google Scholar]
- Chang, H.-R.; You, J.-S.; Ban, S.-W. Residue Dissipation Kinetics and Safety Evaluation of Insecticides on Strawberry for the Harvest Periods in Plastic-covered Greenhouse Conditions. Korean J. Environ. Agric. 2020, 39, 122–129. [Google Scholar] [CrossRef]
- Park, B.K.; Kwon, S.H.; Yeom, M.S.; Joo, K.S.; Heo, M.J. Detection of pesticide residues and risk assessment from the local fruits and vegetables in Incheon, Korea. Sci. Rep. 2022, 12, 9613. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.-H.; Lim, J.-S.; Lee, C.-R.; Han, K.-T.; Lee, Y.-R.; Lee, K.-S. Study of pesticide residue allowed standard of methoxyfenozide and novaluron on Aster scaber during cultivation stage. Korean J. Pestic. Sci. 2011, 15, 8–14. [Google Scholar]
- Lee, S.; Ko, R.; Lee, K.; Kim, J.; Kang, S.; Lee, J. Dissipation patterns of acrinathrin and metaflumizone in Aster scaber. Appl. Biol. Chem. 2022, 65, 14. [Google Scholar] [CrossRef]
- Ghadiri, H.; Rose, C.W.; Connell, D.W. Degradation of organochlorine pesticides in soils under controlled environment and outdoor conditions. J. Environ. Manag. 1995, 43, 141–151. [Google Scholar] [CrossRef]
- Kim, J.; Song, B.; Chun, J.; Im, G.; Im, Y. Effect of sprayable formulations on pesticide adhesion and persistence in several crops. Korean J. Pestic. Sci. 1997, 1, 35–40. [Google Scholar]
- Lee, H.-S.; Park, Y.-W. Antioxidant activity and antibacterial activities from different parts of broccoli extracts under high temperature. J. Korean Soc. Food Sci. Nutr. 2005, 34, 759–764. [Google Scholar]
- Poulsen, M.E.; Wenneker, M.; Withagen, J.; Christensen, H.B. Pesticide residues in individual versus composite samples of apples after fine or coarse spray quality application. Crop Prot. 2012, 35, 5–14. [Google Scholar] [CrossRef]
- Sun, D.; Zhu, Y.; Pang, J.; Zhou, Z.; Jiao, B. Residue level, persistence and safety of spirodiclofen-pyridaben mixture in citrus fruits. Food Chem. 2016, 194, 805–810. [Google Scholar] [CrossRef]
- Sun, H.; Liu, C.; Wang, S.; Liu, Y.; Liu, M. Dissipation, residues, and risk assessment of spirodiclofen in citrus. Environ. Monit. Assess. 2013, 185, 10473–10477. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, P.; Gao, X.; Sun, W.; Zhang, H. Determination of residual spirodiclofen in apple and soil. J. Anal. Sci. 2009, 25, 229–231. [Google Scholar]
- Peng-Jun, X.; Xiao-Sha, G.; Bu, T.; Hong-Yan, Z.; Shu-Ren, J. Determianion of Spirodiclofen Residue in Nine Fruits by Gas Chromatography-Quadrupole Mass Spectrometry with Dispersive Solid Phase Extraction. Chin. J. Anal. Chem. 2008, 36, 1515–1520. [Google Scholar]
- Park, B.K.; Jung, S.H.; Kwon, S.H.; Kim, S.H.; Yeo, E.Y.; Yeom, M.S.; Seo, S.J.; Joo, K.S.; Heo, M.J.; Hong, G.P. Health risk associated with pesticide residues in vegetables from Incheon region of Korea. Environ. Sci. Pollut. Res. 2022, 29, 65860–65872. [Google Scholar] [CrossRef] [PubMed]
Pesticide | Formulation | Application | PHI c (Days) | MRL d (mg/kg) | ||||
---|---|---|---|---|---|---|---|---|
Type | AI a | Dilution Rate | Spray No. | Interval (Days) | TSA b | |||
Spirodiclofen | WP e | 36 | 4000 | 2 | 7 | 0.9 | 7 | 20.0 |
Tebufenpyrad | EC f | 10 | 2000 | 2 | 7 | 0.5 | 7 | 1.5 |
Pesticides | Spiking Levels (mg/kg) | Recovery (%) | CV (%) | MLOQ (mg/kg) | ||||
---|---|---|---|---|---|---|---|---|
Replicates | (Mean ± SD) | |||||||
1 | 2 | 3 | ||||||
Spirodiclofen | RCV | 0.1 | 101.4 | 96.1 | 103.1 | 100.2 ± 3.7 | 3.6 | 0.01 |
1.0 | 98.0 | 115.9 | 98.4 | 104.1 ± 10.2 | 9.8 | |||
STR | 1.0 | 101.8 | 103.6 | 100.0 | 101.8 ± 1.8 | 1.8 | ||
Tebufenpyrad | RCV | 0.1 | 82.0 | 98.1 | 87.1 | 89.1 ± 8.2 | 9.2 | 0.01 |
1.0 | 106.0 | 102.0 | 101.8 | 103.3 ± 2.4 | 2.3 | |||
STR | 1.0 | 101.4 | 109.8 | 101.3 | 104.2 ± 4.9 | 4.7 |
Pesticides | Fields | Harvest Time (Days after Spraying the Pesticides) | |||||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 5 | 7 | 10 | Half- Lives | ||
Spirodiclofen | 1 | 15.8 a | 13.6 | 8.4 | 4.9 | 4.0 | 3.8 | 3.3 | 4.4 |
2 | 9.9 | 6.3 | 3.7 | 3.1 | 2.8 | 2.4 | 1.7 | 4.5 | |
Tebufenpyrad | 1 | 9.8 | 8.0 | 6.6 | 5.6 | 3.2 | 2.6 | 1.6 | 3.8 |
2 | 4.0 | 3.2 | 2.0 | 1.2 | 1.2 | 1.0 | 0.8 | 4.2 |
Pesticide | Recommended PHRLs (mg/kg) | MRLs (mg/kg) | ||||
---|---|---|---|---|---|---|
10 Days Before Harvesting | 7 Days Before Harvesting | 5 Days Before Harvesting | 3 Days Before Harvesting | |||
Spirodiclofen | Field 1 | 37.6 | 31.1 | 27.4 | 24.2 | 20.0 |
Field 2 | 41.2 | 33.2 | 28.7 | 24.8 | ||
Tebufenpyrad | Field 1 | 7.2 | 4.5 | 3.3 | 2.4 | 1.5 |
Field 2 | 3.6 | 2.7 | 2.3 | 2.0 |
Pesticide | Residue Value (mg/kg) | ADI a (mg/kg bw/Day) | EDI b (mg/kg bw/Day) | HQ c (%) | ||
---|---|---|---|---|---|---|
Spirodiclofen | Day 0 | Field 1 | 14.2 | 0.01 | 0.18 | 178.9 |
Field 2 | 8.9 | 0.01 | 0.11 | 112.1 | ||
Day 7 day | Field 1 | 3.4 | 0.01 | 0.004 | 42.8 | |
Field 2 | 2.2 | 0.01 | 0.003 | 27.7 | ||
Tebufenpyrad | Day 0 | Field 1 | 4.9 | 0.01 | 0.006 | 61.7 |
Field 2 | 2.0 | 0.01 | 0.003 | 25.2 | ||
Day 7 | Field 1 | 1.3 | 0.01 | 0.002 | 16.4 | |
Field 2 | 0.5 | 0.01 | 0.001 | 6.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saini, R.K.; Shin, Y.; Ko, R.; Kim, J.; Lee, K.; An, D.; Chang, H.-R.; Lee, J.-H. Dissipation Kinetics and Risk Assessment of Spirodiclofen and Tebufenpyrad in Aster scaber Thunb. Foods 2023, 12, 242. https://doi.org/10.3390/foods12020242
Saini RK, Shin Y, Ko R, Kim J, Lee K, An D, Chang H-R, Lee J-H. Dissipation Kinetics and Risk Assessment of Spirodiclofen and Tebufenpyrad in Aster scaber Thunb. Foods. 2023; 12(2):242. https://doi.org/10.3390/foods12020242
Chicago/Turabian StyleSaini, Ramesh Kumar, Yongho Shin, Rakdo Ko, Jinchan Kim, Kwanghun Lee, Dai An, Hee-Ra Chang, and Ji-Ho Lee. 2023. "Dissipation Kinetics and Risk Assessment of Spirodiclofen and Tebufenpyrad in Aster scaber Thunb" Foods 12, no. 2: 242. https://doi.org/10.3390/foods12020242
APA StyleSaini, R. K., Shin, Y., Ko, R., Kim, J., Lee, K., An, D., Chang, H. -R., & Lee, J. -H. (2023). Dissipation Kinetics and Risk Assessment of Spirodiclofen and Tebufenpyrad in Aster scaber Thunb. Foods, 12(2), 242. https://doi.org/10.3390/foods12020242