Microbial Decontamination of Red Wine by Pulsed Electric Fields (PEF) after Alcoholic and Malolactic Fermentation: Effect on Saccharomyces cerevisiae, Oenococcus oeni, and Oenological Parameters during Storage
Abstract
:1. Introduction
2. Material and Methods
2.1. Red Wine Samples
2.2. PEF Processing
2.3. Sulfite Addition
2.4. Microbial Analysis
2.5. Analysis of Oenological Parameters
2.6. Sensory Evaluation of PEF Treatments in a Commercial Wine
2.7. Statistical Analysis
3. Results and Discussion
3.1. PEF-Resistance of Saccharomyces cerevisiae and Oenococcus oeni
3.2. Inactivation of Saccharomyces cerevisiae and Oenococcus oeni by Combining Moderate PEF Treatments with SO2
3.3. Evolution of the Microbial Population in Wine Treated by PEF after Alcoholic and Malolactic Fermentation during 4 Months of Storage
3.4. Effect of PEF Treatments on the Oenological Parameters of Wine after 4 Months of Storage
3.5. Evaluation of the Effect of PEF Versus the Sterilizing Filtration Method on the Oenological and Sensory Properties of a Commercial Red Wine
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vaudano, E.; Costantini, A.; Garcia-Moruno, E. Microbial Ecology of Wine. In Quantitative Microbiology in Food Processing; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 547–559. ISBN 9781118823071. [Google Scholar]
- Jeon, S.H.; Kim, N.H.; Shim, M.B.; Jeon, Y.W.; Ahn, J.H.; Lee, S.H.; Hwang, I.G.; Rhee, M.S. Microbiological Diversity and Prevalence of Spoilage and Pathogenic Bacteria in Commercial Fermented Alcoholic Beverages (Beer, Fruit Wine, Refined Rice Wine, and Yakju). J. Food Prot. 2015, 78, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Campaniello, D.; Sinigaglia, M. Wine Spoiling Phenomena. In The Microbiological Quality of Food; Elsevier: Amsterdam, The Netherlands, 2017; pp. 237–255. ISBN 9780081005033. [Google Scholar]
- Tedesco, F.; Siesto, G.; Pietrafesa, R.; Romano, P.; Salvia, R.; Scieuzo, C.; Falabella, P.; Capece, A. Chemical Methods for Microbiological Control of Winemaking: An Overview of Current and Future Applications. Beverages 2022, 8, 58. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Dubourdie, D.; Donèche, B.; Lovaud, A.A.; Darriet, P.; Towey, J. The Use of Sulfur Dioxide in Must and Wine Treatment. In Handbook of Enolgy; John Wiley Sons, Ltd.: Hoboken, NJ, USA, 2006; ISBN 0-470-01034-7. [Google Scholar]
- Giacosa, S.; Río Segade, S.; Cagnasso, E.; Caudana, A.; Rolle, L.; Gerbi, V. SO2 in Wines. In Red Wine Technology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 309–321. ISBN 9780128144008. [Google Scholar]
- Lisanti, M.T.; Blaiotta, G.; Nioi, C.; Moio, L. Alternative Methods to SO2 for Microbiological Stabilization of Wine. Compr. Rev. Food Sci. Food Saf. 2019, 18, 455–479. [Google Scholar] [CrossRef] [Green Version]
- Girard, B.; Fukumoto, L.R.; Koseoglu, S.S. Membrane Processing of Fruit Juices and Beverages: A Review. Crit. Rev. Biotechnol. 2000, 20, 109–175. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Rico, M.; García-Ríos, E.; Barat, J.M.; Guillamón, J.M. Microbial stabilisation of white wine by filtration through silica microparticles functionalised with natural antimicrobials. LWT 2021, 149, 111783. [Google Scholar] [CrossRef]
- Timmermans, R.; Mastwijk, H.; Berendsen, L.; Nederhoff, A.; Matser, A.; Van Boekel, M.; Groot, M.N. Moderate intensity Pulsed Electric Fields (PEF) as alternative mild preservation technology for fruit juice. Int. J. Food Microbiol. 2019, 298, 63–73. [Google Scholar] [CrossRef]
- Raso, J.; Álvarez, I. Pulsed Electric Field Processing: Cold Pasteurization. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; pp. 1–8. [Google Scholar]
- Toepfl, S.; Siemer, C.; Saldaña-Navarro, G.; Heinz, V. Overview of Pulsed Electric Fields Processing for Food. In Emerging Technologies for Food Processing; Elsevier: Amsterdam, The Netherlands, 2014; pp. 93–114. [Google Scholar]
- Timmermans, R.; Nierop Groot, M.; Matser, A. Liquid Food Pasteurization by Pulsed Electric Fields. In Pulsed Electric Fields Technology for the Food Industry; Raso, J., Heinz, V., Alvarez, I., Toepfl, S., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 299–323. ISBN 978-3-030-70586-2. [Google Scholar]
- Agcam, E.; Akyildiz, A.; Evrendilek, G.A. A comparative assessment of long-term storage stability and quality attributes of orange juice in response to pulsed electric fields and heat treatments. Food Bioprod. Process. 2016, 99, 90–98. [Google Scholar] [CrossRef]
- Katiyo, W.; Yang, R.; Zhao, W. Effects of combined pulsed electric fields and mild temperature pasteurization on microbial inactivation and physicochemical properties of cloudy red apple juice (Malus pumila Niedzwetzkyana (Dieck)). J. Food Saf. 2017, 37, e12369. [Google Scholar] [CrossRef]
- Marsellés-Fontanet, R.; Puig, A.; Olmos, P.; Mínguez-Sanz, S.; Martín-Belloso, O. Optimising the inactivation of grape juice spoilage organisms by pulse electric fields. Int. J. Food Microbiol. 2009, 130, 159–165. [Google Scholar] [CrossRef]
- Mosqueda-Melgar, J.; Raybaudi-Massilia, R.M.; Martín-Belloso, O. Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. Innov. Food Sci. Emerg. Technol. 2008, 9, 328–340. [Google Scholar] [CrossRef]
- Puértolas, E.; López, N.; Condón, S.; Raso, J.; Álvarez, I. Pulsed electric fields inactivation of wine spoilage yeast and bacteria. Int. J. Food Microbiol. 2009, 130, 49–55. [Google Scholar] [CrossRef] [PubMed]
- González-Arenzana, L.; Portu, J.; López, R.; López, N.; Santamaría, P.; Garde-Cerdán, T.; López-Alfaro, I. Inactivation of wine-associated microbiota by continuous pulsed electric field treatments. Innov. Food Sci. Emerg. Technol. 2015, 29, 187–192. [Google Scholar] [CrossRef]
- Delsart, C.; Grimi, N.; Boussetta, N.; Sertier, C.M.; Ghidossi, R.; Vorobiev, E.; Peuchot, M.M. Impact of pulsed-electric field and high-voltage electrical discharges on red wine microbial stabilization and quality characteristics. J. Appl. Microbiol. 2015, 120, 152–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Arenzana, L.; Portu, J.; López, N.; Santamaría, P.; Gutiérrez, A.R.; López, R.; López-Alfaro, I. Pulsed Electric Field treatment after malolactic fermentation of Tempranillo Rioja wines: Influence on microbial, physicochemical and sensorial quality. Innov. Food Sci. Emerg. Technol. 2019, 51, 57–63. [Google Scholar] [CrossRef]
- Maza, M.A.; Martínez, J.M.; Hernández-Orte, P.; Cebrián, G.; Sánchez-Gimeno, A.C.; Álvarez, I.; Raso, J. Influence of pulsed electric fields on aroma and polyphenolic compounds of Garnacha wine. Food Bioprod. Process. 2019, 116, 249–257. [Google Scholar] [CrossRef]
- ISO NORM 3591; Sensory Analysis—Apparatus—Wine-Tasting Glass. International Organization for Standarization (ISO): Geneva, Switzerland, 1977.
- Roessler, E.B.; Warren, J.; Guymon, J.F. Significance in Triangular Taste Tests. J. Food Sci. 1948, 13, 503–505. [Google Scholar] [CrossRef]
- Coster, H.G.L.; Zimmermann, U. The mechanism of electrical breakdown in the membranes of Valonia utricularis. J. Membr. Biol. 1975, 22, 73–90. [Google Scholar] [CrossRef]
- Saldaña, G.; Monfort, S.; Condón, S.; Raso, J.; Álvarez, I. Effect of temperature, pH and presence of nisin on inactivation of Salmonella Typhimurium and Escherichia coli O157:H7 by pulsed electric fields. Food Res. Int. 2012, 45, 1080–1086. [Google Scholar] [CrossRef]
- Huang, K.; Yu, L.; Wang, W.; Gai, L.; Wang, J. Comparing the pulsed electric field resistance of the microorganisms in grape juice: Application of the Weibull model. Food Control 2014, 35, 241–251. [Google Scholar] [CrossRef]
- Heinz, V.; Alvarez, I.; Angersbach, A.; Knorr, D. Preservation of liquid foods by high intensity pulsed electric fields—basic concepts for process design. Trends Food Sci. Technol. 2001, 12, 103–111. [Google Scholar] [CrossRef]
- Álvarez, I. The influence of process parameters for the inactivation of Listeria monocytogenes by pulsed electric fields. Int. J. Food Microbiol. 2003, 87, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Hülsheger, H.; Potel, J.; Niemann, E.G. Killing of bacteria with electric pulses of high electric field strength. Radiat. Environ. Biophys. 1981, 20, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Sale, A.; Hamilton, W. Effects of high electric fields on microorganisms: I. Killing of bacteria and yeasts. Biochim. Biophys. Acta BBA Gen. Subj. 1967, 148, 781–788. [Google Scholar] [CrossRef]
- Wouters, P.C.; Alvarez, I.; Raso, J. Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends Food Sci. Technol. 2001, 12, 112–121. [Google Scholar] [CrossRef]
- Mannazzu, I.; Angelozzi, D.; Belviso, S.; Budroni, M.; Farris, G.A.; Goffrini, P.; Lodi, T.; Marzona, M.; Bardi, L. Behaviour of Saccharomyces cerevisiae wine strains during adaptation to unfavourable conditions of fermentation on synthetic medium: Cell lipid composition, membrane integrity, viability and fermentative activity. Int. J. Food Microbiol. 2008, 121, 84–91. [Google Scholar] [CrossRef]
- Aguilera, F.; Peinado, R.; Millán, C.; Ortega, J.; Mauricio, J. Relationship between ethanol tolerance, H+-ATPase activity and the lipid composition of the plasma membrane in different wine yeast strains. Int. J. Food Microbiol. 2006, 110, 34–42. [Google Scholar] [CrossRef]
- González-Arenzana, L.; López-Alfaro, I.; Garde-Cerdán, T.; Portu, J.; López, R.; Santamaría, P. Microbial inactivation and MLF performances of Tempranillo Rioja wines treated with PEF after alcoholic fermentation. Int. J. Food Microbiol. 2018, 269, 19–26. [Google Scholar] [CrossRef]
- García, D.; Gómez, N.; Raso, J.; Pagán, R. Bacterial resistance after pulsed electric fields depending on the treatment medium pH. Innov. Food Sci. Emerg. Technol. 2005, 6, 388–395. [Google Scholar] [CrossRef]
- Saulis, G. Electroporation of Cell Membranes: The Fundamental Effects of Pulsed Electric Fields in Food Processing. Food Eng. Rev. 2010, 2, 52–73. [Google Scholar] [CrossRef]
- Delso, C.; Martínez, J.M.; Cebrián, G.; Álvarez, I.; Raso, J. Understanding the occurrence of tailing in survival curves of Salmonella Typhimurium treated by pulsed electric fields. Bioelectrochemistry 2020, 135, 107580. [Google Scholar] [CrossRef]
- Novickij, V.; Švedienė, J.; Paškevičius, A.; Markovskaja, S.; Girkontaitė, I.; Zinkevičienė, A.; Lastauskienė, E.; Novickij, J. Pulsed electric field-assisted sensitization of multidrug-resistant Candida albicans to antifungal drugs. Futur. Microbiol. 2018, 13, 535–546. [Google Scholar] [CrossRef]
- Somolinos, M.; García, D.; Condón, S.; Mañas, P.; Pagán, R. Relationship between Sublethal Injury and Inactivation of Yeast Cells by the Combination of Sorbic Acid and Pulsed Electric Fields. Appl. Environ. Microbiol. 2007, 73, 3814–3821. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.; Mittal, G.; Griffiths, M. Pasteurization of Milk Using Pulsed Electrical Field and Antimicrobials. J. Food Sci. 2002, 67, 2304–2308. [Google Scholar] [CrossRef]
- Wu, Y.; Mittal, G.; Griffiths, M. Effect of Pulsed Electric Field on the Inactivation of Microorganisms in Grape Juices with and without Antimicrobials. Biosyst. Eng. 2005, 90, 1–7. [Google Scholar] [CrossRef]
- García, D.; Gómez, N.; Mañas, P.; Condón, S.; Raso, J.; Pagán, R. Occurrence of sublethal injury after pulsed electric fields depending on the microorganism, the treatment medium pH and the intensity of the treatment investigated. J. Appl. Microbiol. 2005, 99, 94–104. [Google Scholar] [CrossRef]
- García, D.; Gómez, N.; Mañas, P.; Raso, J.; Pagán, R. Pulsed electric fields cause bacterial envelopes permeabilization depending on the treatment intensity, the treatment medium pH and the microorganism investigated. Int. J. Food Microbiol. 2007, 113, 219–227. [Google Scholar] [CrossRef]
- Loureiro, V.; Malfeito-Ferreira, M. Spoilage yeasts in the wine industry. Int. J. Food Microbiol. 2003, 86, 23–50. [Google Scholar] [CrossRef]
- Abca, E.E.; Evrendilek, G.A. Processing of Red Wine by Pulsed Electric Fields with Respect to Quality Parameters. J. Food Process. Preserv. 2014, 39, 758–767. [Google Scholar] [CrossRef]
- Arriagada-Carrazana, J.; Sáez-Navarrete, C.; Bordeu, E. Membrane filtration effects on aromatic and phenolic quality of Cabernet Sauvignon wines. J. Food Eng. 2005, 68, 363–368. [Google Scholar] [CrossRef]
- Buffon, P.; Heymann, H.; Block, D.E. Sensory and Chemical Effects of Cross-Flow Filtration on White and Red Wines. Am. J. Enol. Vitic. 2014, 65, 305–314. [Google Scholar] [CrossRef]
Alcoholic Fermented (AF) Red Wine | Malolactic Fermented (MLF) Red Wine | |
---|---|---|
pH | 3.80 ± 0.01 | 3.54 ± 0.01 |
Glucose-Fructose (g/L) | 0.94 ± 0.02 | 0.29 ± 0.02 |
% Ethanol (v/v) | 14.70 ± 0.04 | 14.35 ± 0.03 |
Total Acidity (g/L) a | 4.34 ± 0.32 | 5.17 ± 0.14 |
Volatile Acidity (g/L) b | 0.59 ± 0.03 | 0.45 ± 0.02 |
Free SO2 (ppm) c | 19.2 ± 3.2 | 10.0 ± 3.2 |
Total SO2 (ppm) c | 22.4 ± 3.2 | 16.0 ± 3.2 |
CI * (A.U.) | 20.48 ± 0.36 | 13.07 ± 0.41 |
TPI ** (A.U.) d | 67.3 ± 0.14 | 54.62 ± 0.52 |
TAC *** (mg/L) e | 982.09 ± 8.05 | 532.21 ± 7.39 |
0 Days | 1 Day | 7 Days | 15 Days | 1 Month | 4 Months | |
---|---|---|---|---|---|---|
Control | 6.46 ± 0.04 a | 6.47 ± 0.03 a | 6.21 ± 0.05 a | 6.28 ± 0.21 a | 5.93 ± 0.06 a | 3.69 ± 0.04 a |
Control 20 ppm SO2 | 6.40 ± 0.02 a | 6.46 ± 0.04 a | 6.20 ± 0.06 a | 6.18 ± 0.12 a | 5.97 ± 0.10 a | 3.93 ± 0.15 b |
PEF1 | 5.94 ± 0.04 b | 3.39 ± 0.01 b | 3.24 ± 0.10 b | 3.24 ± 0.04 b | 3.10 ± 0.01 b | n.d. c |
PEF1 20 ppm SO2 | 5.89 ± 0.01 b | 3.12 ± 0.03 c | 3.08 ± 0.02 c | 3.25 ± 0.11 b | 2.32 ± 0.76 bc | n.d. c |
PEF2 | 2.36 ± 0.04 c | 2.35 ± 0.04 d | 2.31 ± 0.01 d | 2.34 ± 0.08 c | 2.38 ± 0.04 bc | n.d. c |
PEF2 20 ppm SO2 | 2.79 ± 0.08 d | 3.03 ± 0.11 c | 2.96 ± 0.03 c | 2.39 ± 0.03 c | 2.19 ± 0.01 c | n.d. c |
0 Days | 1 Day | 15 Days | 1 Month | 4 Month | ||||||
---|---|---|---|---|---|---|---|---|---|---|
O. oeni | Yeast | O. oeni | Yeast | O. oeni | Yeast | O. oeni | Yeast | O. oeni | Yeast | |
Control | 5.14 ± 0.08 a | 5.97 ± 0.08 a | 4.98 ± 0.01 a | 5.94 ± 0.02 a | 4.64 ± 0.08 a | 3.43 ± 0.01 a | 4.42 ± 0.04 a | 2.79 ± 0.21 a | 4.31 ± 0.08 a | 1.51 ± 0.03 ab |
Control 20 ppm SO2 | 5.13 ± 0.04 a | 5.98 ±0.09 a | 4.52 ± 0.06 b | 4.55 ± 0.04 b | 4.04 ± 0.05 a | 3.10 ± 0.01 b | 4.43 ± 0.02 a | 1.99 ± 0.11 b | 3.95 ± 0.19 ab | 1.43 ± 0.07 a |
Control 30 ppm SO2 | 5.10 ± 0.06 a | 5.96 ± 0.08 a | 4.08 ± 0.01 c | 3.43 ± 0.04 c | 2.98 ± 0.14 b | 3.04 ± 0.27 b | 2.80 ± 0.20 b | 1.80 ± 0.01 b | 3.62 ± 0.06 bc | 1.75 ± 0.23 b |
PEF3 | 4.50 ± 0.01 b | 2.02 ± 0.03 b | 4.43 ± 0.01 b | 1.78 ± 0.11 d | 4.39 ± 0.54 a | 0.80 ± 0.14 c | 4.48 ± 0.06 a | n.d. c | 3.37 ± 0.06 c | n.d. c |
PEF3 30 ppm SO2 | 4.49 ± 0.01 b | 1.94 ± 0.13 b | 2.90 ± 0.07 d | <1.5 e | 2.35 ± 0.49 bc | n.d. d | 1.54 ± 0.22 c | n.d. c | 1.73 ± 0.31 d | n.d. c |
PEF4 | 3.57 ± 0.04 c | 1.89 ± 0.16 b | 2.15 ± 0.18 e | <1.5 e | 2.55 ± 0.10 b | n.d. d | 3.61 ± 0.17 d | n.d. c | 2.82 ± 0.25 e | n.d. c |
PEF4 20 ppm SO2 | 3.55 ± 0.05 c | 1.83 ± 0.06 b | <1.5 f | <1.5 e | 1.73 ± 0.02 c | n.d. d | 1.59 ± 0.16 c | n.d. c | 1.90 ±0.23 d | n.d. c |
Control | PEF1 | PEF2 | ||||
---|---|---|---|---|---|---|
SO2 | SO2 | SO2 | SO2 | SO2 | SO2 | |
0 ppm | 20 ppm | 0 ppm | 20 ppm | 0 ppm | 20 ppm | |
pH | 3.81 ± 0.02 | 3.80 ± 0.01 | 3.80 ± 0.00 | 3.82 ± 0.02 | 3.77 ± 0.02 | 3.80 ± 0.01 |
Glucose-Fructose (g/L) | 0.92 ± 0.01 | 0.96 ± 0.02 | 1.33 ± 0.03 | 1.41 ± 0.03 | 1.31 ± 0.02 | 1.35 ± 0.02 |
% Ethanol (v/v) | 14.74 ±0.15 | 14.71 ± 0.04 | 14.69 ± 0.07 | 14.70 ± 0.03 | 14.72 ± 0.03 | 14.70 ± 0.02 |
Total Acidity (g/L) a | 4.00 ± 0.22 | 4.40 ± 0.19 | 4.55 ± 0.10 | 4.40 ± 0.17 | 4.48 ± 0.22 | 4.48 ± 0.08 |
Volatile Acidity (g/L) b | 0.61 ± 0.03 | 0.56 ± 0.03 | 0.63 ± 0.01 | 0.57 ± 0.03 | 0.58 ± 0.06 | 0.56 ± 0.02 |
Free SO2 (ppm) c | 9.6 ± 3.2 | 12.8 ± 3.2 | 9.6 ± 3.2 | 12.8 ± 3.2 | 9.6 ± 3.2 | 12.8 ± 3.2 |
Total SO2 (ppm) c | 22.4 ± 3.2 a | 32 ± 3.2 b | 22.4 ± 3.2 a | 32 ± 3.2 b | 22.4 ± 3.2 a | 32 ± 3.2 b |
CI * (A.U.) | 16.17 ± 0.23 | 16.45 ± 1.18 | 17.77 ± 0.62 | 16.59 ± 0.49 | 17.33 ± 0.00 | 18.22 ± 1.00 |
TPI ** (A.U.) d | 60.75 ± 1.48 | 61.10 ± 0.42 | 61.10 ± 0.85 | 60.65 ± 0.49 | 60.05 ± 0.07 | 60.60 ± 0.14 |
TAC *** (mg/L) e | 645.25 ± 11.27 a | 691.81 ± 9.18 b | 633.87 ± 1.61 a | 683.28 ± 11.36 b | 636.14 ± 1.61 a | 691.80 ± 10.68 b |
Control | PEF3 | PEF4 | |||||
---|---|---|---|---|---|---|---|
SO2 | SO2 | SO2 | SO2 | SO2 | SO2 | SO2 | |
0 ppm | 20 ppm | 30 ppm | 0 ppm | 30 ppm | 0 ppm | 20 ppm | |
pH | 3.54 ± 0.01 | 3.54 ± 0.01 | 3.54 ± 0.01 | 3.53 ± 0.00 | 3.52 ± 0.01 | 3.51 ± 0.01 | 3.52 ± 0.01 |
Glucose-Fructose (g/L) | 0.27 ± 0.02 | 0.29 ± 0.02 | 0.30 ± 0.02 | 0.27 ± 0.03 | 0.30 ± 0.02 | 0.27 ± 0.02 | 0.29 ± 0.02 |
% Ethanol (v/v) | 14.39 ± 0.05 | 14.35 ± 0.03 | 14.33 ± 0.04 | 14.37 ± 0.01 | 14.30 ± 0.04 | 14.32 ± 0.02 | 14.29 ± 0.04 |
Total Acidity (g/L) a | 5.37 ± 0.14 | 5.15 ± 0.12 | 5.07 ± 0.14 | 5.22 ± 0.09 | 5.07 ± 0.07 | 5.15 ± 0.05 | 5.15 ± 0.00 |
Volatile Acidity (g/L) b | 0.53 ± 0.02 | 0.44 ± 0.02 | 0.42 ± 0.04 | 0.48 ± 0.04 | 0.42 ± 0.02 | 0.48 ± 0.05 | 0.42 ± 0.02 |
Free SO2 (ppm) c | 6.4 ± 3.2 | 12.8 ± 3.2 | 12.8 ± 3.2 | 9.6 ± 3.2 | 12.8 ± 3.2 | 6.4 ± 3.2 | 12.8 ± 3.2 |
Total SO2 (ppm) c | 16 ± 3.2 a | 22.4 ± 3.2 ab | 25.6 ± 3.2 b | 19.2 ± 3.2 ab | 25.6 ± 3.2 b | 16 ± 3.2 a | 22.4 ± 3.2 ab |
CI * (A.U.) | 12.80 ± 0.12 | 12.16 ± 0.03 | 12.35 ± 0.18 | 13.51 ± 1.19 | 13.24 ± 0.28 | 13.40 ± 0.47 | 13.87 ± 0.22 |
TPI ** (A.U.) d | 50.07 ± 2.11 | 50.25 ± 1.07 | 49.92 ± 0.80 | 50.89 ± 3.84 | 50.00 ± 0.40 | 49.63 ± 1.43 | 49.08 ± 0.03 |
TAC *** (mg/L) e | 327.69 ± 10.41 | 345.12 ± 19.97 | 345.46 ± 11.41 | 309.72 ± 11.88 | 306.33 ± 22.89 | 314.95 ± 7.76 | 323.52 ± 8.16 |
Untreated | PEFA 84.5 kJ/kg; 40 °C | PEFB 155.6 kJ/kg; 60 °C | Sterilizing Filtration | |
---|---|---|---|---|
pH | 3.54 ± 0.05 | 3.53 ± 0.02 | 3.53 ± 0.04 | 3.53 ± 0.02 |
% Ethanol (v/v) | 13.73 ± 0.12 | 13.75 ± 0.20 | 13.76 ± 0.14 | 13.70 ± 0.12 |
Total Acidity (g/L) a | 4.85 ± 0.19 | 4.70 ± 0.22 | 4.70 ± 0.18 | 4.80 ± 0.22 |
Volatile Acidity (g/L) b | 0.49 ± 0.02 | 0.49 ± 0.01 | 0.49 ± 0.01 | 0.49 ± 0.02 |
Malic Acid (g/L) | 0.07 ± 0.01 | 0.08 ± 0.01 | 0.08 ± 0.02 | 0.07 ± 0.03 |
Free SO2 (ppm) c | 32.0 ± 3.2 | 32.0 ± 4.2 | 35.2 ± 5.3 | 36.0 ± 3.2 |
Total SO2 (ppm) c | 80.0 ± 7.2 | 80.0 ± 3.2 | 80.0 ± 5.24 | 80.0 ± 3.1 |
CI * (A.U.) | 11.6 ± 1.4 a | 11.3 ± 0.2 a | 12.9 ± 0.8 a | 8.0 ± 1.2 b |
TPI ** (A.U.) d | 59.3 ± 1.4 | 59.8 ± 1.2 | 60.2 ± 1.0 | 57.9 ± 1.2 |
TAC *** (mg/L) e | 291.4 ± 5.1 | 282.3 ± 10.1 | 282.9 ± 12.4 | 284.8 ± 14.1 |
Triangle Test (Percentage of Correct Responses) | |
---|---|
PEFA/PEFB | 50.0% |
PEFA/Sterilizing Filtration | 22.2% |
PEFB/PEFB | 33.3% |
PEFB/Sterilizing Filtration | 38.9% |
Sterilizing Filtration/PEFA | 50.0% |
Sterilizing Filtration/PEFB | 44.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delso, C.; Berzosa, A.; Sanz, J.; Álvarez, I.; Raso, J. Microbial Decontamination of Red Wine by Pulsed Electric Fields (PEF) after Alcoholic and Malolactic Fermentation: Effect on Saccharomyces cerevisiae, Oenococcus oeni, and Oenological Parameters during Storage. Foods 2023, 12, 278. https://doi.org/10.3390/foods12020278
Delso C, Berzosa A, Sanz J, Álvarez I, Raso J. Microbial Decontamination of Red Wine by Pulsed Electric Fields (PEF) after Alcoholic and Malolactic Fermentation: Effect on Saccharomyces cerevisiae, Oenococcus oeni, and Oenological Parameters during Storage. Foods. 2023; 12(2):278. https://doi.org/10.3390/foods12020278
Chicago/Turabian StyleDelso, Carlota, Alejandro Berzosa, Jorge Sanz, Ignacio Álvarez, and Javier Raso. 2023. "Microbial Decontamination of Red Wine by Pulsed Electric Fields (PEF) after Alcoholic and Malolactic Fermentation: Effect on Saccharomyces cerevisiae, Oenococcus oeni, and Oenological Parameters during Storage" Foods 12, no. 2: 278. https://doi.org/10.3390/foods12020278
APA StyleDelso, C., Berzosa, A., Sanz, J., Álvarez, I., & Raso, J. (2023). Microbial Decontamination of Red Wine by Pulsed Electric Fields (PEF) after Alcoholic and Malolactic Fermentation: Effect on Saccharomyces cerevisiae, Oenococcus oeni, and Oenological Parameters during Storage. Foods, 12(2), 278. https://doi.org/10.3390/foods12020278