Visual Monitoring of Fatty Acid Degradation during Green Tea Storage by Hyperspectral Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Collection of Tea Samples
2.2. Sensory Evaluation of Tea Samples
2.3. Acquisition and Processing of Hyperspectral Images
2.3.1. Hyperspectral Imaging Instrument
2.3.2. Image Correction and Data Extraction
2.4. Determination of Fatty Acid Profiles
2.5. Establishment and Validation of Quantitative Models
2.6. Visualization of Fatty Acid Profiles
3. Results and Discussion
3.1. Fatty acid Reduction during the Storage of Green Tea
3.2. Spectral Analysis during the Storage of Green Tea
3.3. Prediction of Fatty Acids Using All Spectral Signals
3.4. Prediction of Fatty Acids Using Characteristic Spectral Signals
3.5. Visualization of Fatty Acid Degradation during Green Tea Storage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sande, D.; de Oliveira, G.P.; e Moura, M.A.F.; Martins, B.D.A.; Lima, M.T.N.S.; Takahashi, J.A. Edible mushrooms as a ubiquitous source of essential fatty acids. Food Res. Int. 2019, 125, 108524. [Google Scholar] [CrossRef] [PubMed]
- Salman, H.; Copeland, L. Effect of storage on fat acidity and pasting characteristics of wheat flour. Cereal Chem. 2007, 84, 600–606. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, T.; He, P.; Ding, Y.; Chen, Q. Rapid measurement of fatty acid content during flour storage using a color-sensitive gas sensor array: Comparing the effects of swarm intelligence optimization algorithms on sensor features. Food Chem. 2021, 338, 127828. [Google Scholar] [CrossRef]
- Chiu, H.-H.; Kuo, C.-H. Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples. J. Food Drug Anal. 2020, 28, 60–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waktola, H.D.; Zeng, A.X.; Chin, S.-T.; Marriott, P.J. Advanced gas chromatography and mass spectrometry technologies for fatty acids and triacylglycerols analysis. TrAC Trends Anal. Chem. 2020, 129, 115957. [Google Scholar] [CrossRef]
- Vega-Castellote, M.; Pérez-Marín, D.; Torres, I.; Sánchez, M.-T. Non-destructive determination of fatty acid composition of in-shell and shelled almonds using handheld NIRS sensors. Postharvest Biol. Technol. 2021, 174, 111459. [Google Scholar] [CrossRef]
- Laroussi-Mezghani, S.; Vanloot, P.; Molinet, J.; Dupuy, N.; Hammami, M.; Grati-Kamoun, N.; Artaud, J. Authentication of Tunisian virgin olive oils by chemometric analysis of fatty acid compositions and NIR spectra. Comparison with Maghrebian and French virgin olive oils. Food Chem. 2015, 173, 122–132. [Google Scholar] [CrossRef]
- Özdoğan, G.; Lin, X.; Sun, D.-W. Rapid and noninvasive sensory analyses of food products by hyperspectral imaging: Recent application developments. Trends Food Sci. Technol. 2021, 111, 151–165. [Google Scholar] [CrossRef]
- Torres, I.; Pérez-Marín, D.; Vega-Castellote, M.; Sánchez, M.-T. Mapping of fatty acids composition in shelled almonds analysed in bulk using a Hyperspectral Imaging system. LWT 2021, 138, 110678. [Google Scholar] [CrossRef]
- Ma, J.; Sun, D.-W. Prediction of monounsaturated and polyunsaturated fatty acids of various processed pork meats using improved hyperspectral imaging technique. Food Chem. 2020, 321, 126695. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Chen, Y.; Cui, Q.; Li, L.; Ning, J.; Zhang, Z. Spatial distribution of total polyphenols in multi-type of tea using near-infrared hyperspectral imaging. LWT 2021, 148, 111737. [Google Scholar] [CrossRef]
- Wang, K.; Yin, X.-R.; Zhang, B.; Grierson, D.; Xu, C.-J.; Chen, K.-S. Transcriptomic and metabolic analyses provide new insights into chilling injury in peach fruit. Plant Cell Environ. 2017, 40, 1531–1551. [Google Scholar] [CrossRef] [PubMed]
- Garces, R.; Mancha, M. One-step lipid extraction and fatty acid methyl esters preparation from fresh plant tissues. Anal. Biochem. 1993, 211, 139–143. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Wang, Y.-J.; Li, T.-H.; Li, L.-Q.; Ning, J.-M.; Zhang, Z.-Z. Evaluating taste-related attributes of black tea by micro-NIRS. J. Food Eng. 2021, 290, 110181. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Liu, Y.; Cui, Q.; Ning, J.; Zhang, Z. Enhanced quality monitoring during black tea processing by the fusion of NIRS and computer vision. J. Food Eng. 2021, 304, 110599. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef]
- Lee, M.-S.; Hwang, Y.-S.; Lee, J.; Choung, M.-G. The characterization of caffeine and nine individual catechins in the leaves of green tea (Camellia sinensis L.) by near-infrared reflectance spectroscopy. Food Chem. 2014, 158, 351–357. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, M.; Liu, Y.; Wu, J.; Wang, X.; Ouyang, Q.; Chen, X. Application of FT-NIR spectroscopy for simultaneous estimation of taste quality and taste-related compounds content of black tea. J. Food Sci. Technol. 2018, 55, 4363–4368. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.E. Chemical principles of near infrared technology. In Near Infrared Technology in the Agricultural and Food Industries; Williams, P., Norris, K., Eds.; American Association of Cereal Chemists Inc.: Minnesota, MN, USA, 2001; pp. 19–37. [Google Scholar]
- Shenk, J.S.; Workman, J.J.; Westerhaus, M.O. Application of NIR spectroscopy to agricultural products. Pract. Spectrosc. Ser. 2001, 27, 419–474. [Google Scholar]
- Williams, P. The RPD statistic: A tutorial note. NIR News 2010, 25, 22–26. [Google Scholar] [CrossRef]
Component. | Model | NV | LV | Calibration Set | Prediction Set | |||
---|---|---|---|---|---|---|---|---|
Rc | RMSEC | Rp | RMSEP | RPD | ||||
Palmitic acid | PLS | 508 | 5 | 0.8561 | 0.0700 | 0.7755 | 0.0848 | 1.58 |
CARS-PLS | 22 | 6 | 0.9112 | 0.0556 | 0.9283 | 0.0492 | 2.73 | |
Stearic acid | PLS | 508 | 5 | 0.6245 | 0.0276 | 0.5546 | 0.0309 | 1.14 |
CARS-PLS | 13 | 4 | 0.7178 | 0.0245 | 0.5914 | 0.0302 | 1.17 | |
Arachidic acid | PLS | 508 | 5 | 0.8120 | 0.0070 | 0.4263 | 0.0010 | 0.98 |
CARS-PLS | 6 | 3 | 0.8231 | 0.0005 | 0.5336 | 0.0010 | 1.13 | |
Saturated fatty acids | PLS | 508 | 5 | 0.8310 | 0.0910 | 0.7519 | 0.1070 | 1.49 |
CARS-PLS | 48 | 7 | 0.9011 | 0.0710 | 0.8961 | 0.0708 | 2.26 | |
9-hexadecenoic acid | PLS | 508 | 6 | 0.8732 | 0.0007 | 0.7524 | 0.0009 | 1.49 |
CARS-PLS | 34 | 12 | 0.9140 | 0.0006 | 0.8653 | 0.0007 | 1.98 | |
Oleic acid | PLS | 508 | 6 | 0.8829 | 0.0030 | 0.8493 | 0.0034 | 1.91 |
CARS-PLS | 25 | 9 | 0.9230 | 0.0024 | 0.9468 | 0.0021 | 3.14 | |
Linoleic acid | PLS | 508 | 6 | 0.8624 | 0.0839 | 0.8346 | 0.0944 | 1.84 |
CARS-PLS | 43 | 8 | 0.9078 | 0.0695 | 0.9094 | 0.0716 | 2.43 | |
Linolenic acid | PLS | 508 | 6 | 0.8643 | 0.1370 | 0.8561 | 0.1390 | 1.96 |
CARS-PLS | 43 | 7 | 0.9121 | 0.1110 | 0.9421 | 0.0906 | 3.01 | |
cis-11-Eicosenoicacid | PLS | 508 | 6 | 0.8189 | 0.0012 | 0.7949 | 0.0013 | 1.60 |
CARS-PLS | 13 | 12 | 0.8189 | 0.0012 | 0.8081 | 0.0013 | 1.61 | |
Unsaturated fatty acids | PLS | 508 | 6 | 0.8653 | 0.2210 | 0.8509 | 0.2310 | 1.93 |
CARS-PLS | 43 | 8 | 0.9193 | 0.1720 | 0.9307 | 0.1610 | 2.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Huang, L.; Deng, G.; Wang, Y. Visual Monitoring of Fatty Acid Degradation during Green Tea Storage by Hyperspectral Imaging. Foods 2023, 12, 282. https://doi.org/10.3390/foods12020282
Zhang Y, Huang L, Deng G, Wang Y. Visual Monitoring of Fatty Acid Degradation during Green Tea Storage by Hyperspectral Imaging. Foods. 2023; 12(2):282. https://doi.org/10.3390/foods12020282
Chicago/Turabian StyleZhang, Yiyi, Lunfang Huang, Guojian Deng, and Yujie Wang. 2023. "Visual Monitoring of Fatty Acid Degradation during Green Tea Storage by Hyperspectral Imaging" Foods 12, no. 2: 282. https://doi.org/10.3390/foods12020282
APA StyleZhang, Y., Huang, L., Deng, G., & Wang, Y. (2023). Visual Monitoring of Fatty Acid Degradation during Green Tea Storage by Hyperspectral Imaging. Foods, 12(2), 282. https://doi.org/10.3390/foods12020282