Acute Oral Toxicity and Genotoxicity Test and Evaluation of Cinnamomum camphora Seed Kernel Oil
Abstract
:1. Introduction
2. Materials
2.1. Tested Substance
2.2. Main Reagents
2.3. Animals and Housing Environment
2.4. Strains and Cell Line and Culturing
2.4.1. Strains for Bacterial Reverse Mutation Test (Ames Test)
2.4.2. Cell Line for In Vitro Mammalian Cell TK Gene Mutation Test
3. Methods
3.1. Determination of Chemical Composition, Thermal Behavior and Physicochemical Properties of CCSKO
3.2. Acute Oral Toxicology Test of CCSKO
3.2.1. Test Samples Processing
3.2.2. Animals Feeding and Test
3.3. Mammalian Erythrocyte Micronucleus Test of CCSKO
3.3.1. Test Samples Processing
3.3.2. Animals Feeding and Test
3.4. Bacterial Reverse Mutation Test (Ames Test) of CCSKO
3.4.1. Test Samples Processing
3.4.2. Strains Culturing and Test
3.5. In Vitro Mammalian Cell TK Gene Mutation Test of CCSKO
3.5.1. Test Samples Processing
3.5.2. Cell Lines Culturing and Test
3.5.3. PE0 (Plate Inoculation Efficiency at Day 0) Determination
3.5.4. PE2 (Plate Inoculation Efficiency at Day 2) Determination
3.5.5. TFT Resistance Mutation Frequency (tk-MF) Determination
3.5.6. Data Processing
- (1)
- Plate efficiency (PE0 and PE2)
- (2)
- Relative suspension growth (RSG)
- (3)
- Relative survival (RS)
- (4)
- TFT resistance mutation frequency (MF)
- (5)
- Relative total growth (RTG)RSn, relative survival of L5178Y cell in the second day (RS2).
- (6)
- Small colony mutation or slowly-growth colony mutation (SCM)S-MF is the mutation frequency of a small colony or slowly-growth colony; T-MF is the total mutation frequency.
3.6. Statistical Analysis
4. Results and Discussion
4.1. Chemical Composition and Physicochemical Properties of CCSKO
4.1.1. Fatty Acid Composition of CCSKO
4.1.2. Triglyceride Composition of CCSKO
4.1.3. Thermal Behavior of CCSKO
4.1.4. FTIR Spectrum of CCSKO
4.1.5. Physicochemical Properties of CCSKO
4.2. The Acute Oral Toxic Effects of CCSKO in SPF ICR Mouse
4.3. The Genotoxicity Effects of CCSKO in SPF ICR Mouse
4.3.1. Micronucleus Rate Change in Mammalian Erythrocyte Micronucleus Test of Mice
4.3.2. Change in the Number of CCSKO- Induced Reverse Mutation Colonies in Bacterial Reverse Mutation Test (Ames Test)
4.3.3. Change in the Spontaneous Mutation Frequencies of In Vitro Mammalian Cell TK Gene in In Vitro Mammalian Cell TK Gene Mutation Test
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ferreira, L.; Lisenko, K.; Barros, B.; Zangeronimo, M.; Pereira, L.; Sousa, R. Influence of medium-chain triglycerides on consumption and weight gain in rats: A systematic review. J. Anim. Physiol. Anim. Nutr. 2014, 98, 1–8. [Google Scholar] [CrossRef]
- Jenifer, H.G. Medium-chain oils. In Bailey’s Industrial Oil and Fat Products; Wiley: Hoboken, NJ, USA, 2020; pp. 1–14. [Google Scholar] [CrossRef]
- Rubin, M.; Moser, A.; Vaserberg, N.; Greig, F.; Levy, Y.; Spivak, H.; Ziv, Y.; Lelcuk, S. Structured triacylglycerol emusion, containing both medium- and long-chain fatty acids, in long-term home parenteral nutrition: A double-blind randomized cross-over study. Nutrition 2000, 16, 95–100. [Google Scholar] [CrossRef]
- Ashbrook, J.D.; Spector, A.A.; Fletcher, J.E. Medium chain fatty acid binding to human plasma albumin. J. Biol. Chem. 1972, 247, 7038–7042. [Google Scholar] [CrossRef] [PubMed]
- Schonfeld, P.; Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J. Lipid Res. 2016, 57, 943–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulz, H. Regulation of fatty acid oxidation in heart. J. Nutr. 1994, 124, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Ranaldo, P.; Matern, D.; Bennett, M.J. Fatty acid oxidation disorders. Annu. Rev. Physiol. 2002, 1, 477–502. [Google Scholar] [CrossRef] [PubMed]
- Longo, N.; Frigeni, M.; Pasquali, M. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta. Mol. Cell Res. 2016, 1863, 2422–2435. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Fu, J.; Li, L.; Gong, D.; Wen, X.; Yu, P.; Zeng, Z. Medium-chain fatty acid reduces lipid accumulation by regulating expression of lipid-sensing genes in human liver cells with steatosis. Int. J. Food Sci. Nutr. 2016, 67, 288–297. [Google Scholar] [CrossRef]
- Li, L.; Wang, B.; Yu, P.; Wen, X.; Gong, D.; Zeng, Z. Medium and long chain fatty acids differentially modulate apoptosis and release of inflammatory cytokines in human liver cells. J. Food Sci. 2016, 81, H1546–H1552. [Google Scholar] [CrossRef]
- Wang, B.; Li, L.; Fu, J.; Yu, P.; Gong, D.; Zeng, C.; Zeng, Z. Effects of long-chain and medium-chain fatty acids on apoptosis and oxidative stress in human liver cells with steatosis. J. Food Sci. 2016, 81, H794–H800. [Google Scholar] [CrossRef]
- Champan-Lopez, T.J.; Koh, Y. The effects of medium-chain triglyceride oil supplementation on endurance performance and substrate utilization in healthy populations: A systematic review. J. Obes. Metab. Syndr. 2022, 31, 217–229. [Google Scholar] [CrossRef]
- Clegg, M.E. Medium-chain triglycerides are advantageous in promoting weight loss although not beneficial to exercise performance. Int. J. Food Sci. Nutr. 2010, 61, 653–679. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Jones, P.J. Physiological effects of medium-chain triglycerides: Potential agents in the prevention of obesity. J. Nutr. 2002, 132, 329–332. [Google Scholar] [CrossRef] [Green Version]
- St-Onge, M.P.; Bosarge, A.; Goree, L.L.; Darnell, B. Medium chain triglyceride oil consumption as part of a weight loss diet does not lead to an adverse metabolic profile when compared to olive oil. J. Am. Coll. Nutr. 2008, 27, 547–552. [Google Scholar] [CrossRef] [Green Version]
- Hayasaka, K.; Numakura, C.; Yamakawa, M.; Mitsui, T.; Watanabe, H.; Haga, H.; Yazaki, M.; Ohira, H.; Ochiai, Y.; Tahara, T.; et al. Medium-chain triglycerides supplement therapy with a low-carbohydrate formula can supply energy and enhance ammonia detoxification in the hepatocytes of patients with adult-onset type II citrullinemia. J. Inherit. Metab. Dis. 2018, 41, 777–784. [Google Scholar] [CrossRef]
- Vignes, S.; Bellanger, J. Primary intestinal lymphangiectasia (Waldmann’s disease). Orphanet J. Rare. Dis. 2008, 3, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, S.; Zhang, Y.; Jiang, Y. Advances of medium- chain fatty acids application to cooking oil. Food Sci. Tech. 2011, 36, 205–208+212, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Daull, P.; Paterson, C.A.; Kuppermann, B.D.; Garrigue, J.S. A preliminary evaluation of dexamethasone palmitate emulsion: A novel intravitreal sustained delivery of corticosteroid for treatment of macular edema. J. Ocul. Pharmacol. Ther. 2013, 29, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Soler, V.J.; Laurent, C.; Sakr, F.; Regnier, A.; Tricoire, C.; Cases, O.; Kozyraki, R.; Douet, J.Y.; Pagot-Mathis, V. Preliminary study of the safety and efficacy of medium-chain triglycerides for use as an intraocular tamponading agent in minipigs. Graefes Arch. Clin. Exp. Ophthalmol. 2017, 255, 1593–1604. [Google Scholar] [CrossRef]
- Zhao, M.L.; Tang, L.; Zhu, X.M.; Hu, J.N.; Li, H.Y.; Luo, L.P.; Lei, L.; Deng, Z.Y. Enzymatic production of zero-trans plastic fat rich in α-linolenic acid and medium-chain fatty acids from highly hydrogenated soybean oil, Cinnamomum camphora seed oil, and perilla oil by lipozyme TL IM. J. Agric. Food Chem. 2013, 61, 1189–1195. [Google Scholar] [CrossRef]
- Zou, X.G.; Hu, J.N.; Zhao, M.L.; Zhu, X.M.; Li, H.Y.; Liu, X.R.; Deng, Z.Y. Lipozyme RM IM-catalyzed acidolysis of Cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids. J. Agric. Food Chem. 2014, 62, 10594–10603. [Google Scholar] [CrossRef] [PubMed]
- Roopashree, P.G.; Shetty, S.S.; Kumari, N. Effect of medium chain fatty acid in human health and disease. J. Funct. Foods 2021, 87, 104724. [Google Scholar] [CrossRef]
- Huang, L.; Gao, L.; Chen, C. Role of medium-chain fatty acids in healthy metabolism: A clinical perspective. Trends Endocrinol. Metab. 2021, 32, 351–366. [Google Scholar] [CrossRef]
- Tang, L.; Hu, J.N.; Zhu, X.M.; Luo, L.P.; Deng, Z.Y.; Lee, K.T. Enzymatic interesterification of palm stearin with Cinnamomum camphora seed oil to produce zero-trans medium-chain triacylglycerols-enriched plastic fat. J. Food Sci. 2012, 77, C454–C460. [Google Scholar] [CrossRef] [PubMed]
- Fu, J. Effects and Mechanisms of Cinnamomum camphora Seed Kernel Oil on Improving Lipid Metabolic Disorders in Obesity Rats. Doctoral Thesis, Nanchang University, Nanchang, China, 2016. (In Chinese with English abstract). [Google Scholar]
- Fu, J.; Wang, B.; Gong, D.; Zeng, C.; Jiang, Y.; Zeng, Z. Camphor tree seed kernel oil reduces body fat deposition and improves blood lipids in rats. J. Food Sci. 2015, 80, H1912–H1917. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zeng, C.; Zeng, Z.; Wang, B.; Gong, D. Cinnamomum camphora seed kernel oil ameliorates oxidative stress and inflammation in diet-induced obese rats. J. Food Sci. 2016, 81, H1295–H1300. [Google Scholar] [CrossRef]
- Fu, J.; Zeng, C.; Zeng, Z.; Wang, B.; Wen, X.; Yu, P.; Gong, D. Cinnamomum camphora seed kernel oil improves lipid metabolism and enhances β3-adrenergic receptor expression in diet-induced obese rats. Lipids 2016, 51, 693–702. [Google Scholar] [CrossRef]
- Siger, A.; Józefiak, M. The effects of roasting and seed moisture on the phenolic compound levels in cold-pressed and hot-pressed rapeseed oil. Eur. J. Lipid Sci. Technol. 2016, 118, 1952–1958. [Google Scholar] [CrossRef]
- Zeng, C.; Zhao, R.; Ma, M.; Zeng, Z.; Gong, D. Mutagenesis and chararcterization of a Bacillus amyloliquefaciens strain for Cinnamomum camphora seed kernel oil extraction by aqueous enzymatic method. AMB Expr. 2017, 7, 154. [Google Scholar] [CrossRef]
- National research council (US) committee for the update of the guide for the care and use of laboratory animals. Guide for the Care and Use of Laboratory Animals, 8th ed.; National Academies Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- EL-Hamdy, A.H.; Perkins, E.G. High performance reversed phase chromatography of natural triglyceride mixtures: Critical pair separation. J. Am. Oil Chem. Soc. 1981, 58, 867–872. [Google Scholar] [CrossRef]
- Holčapek, M.; Lísa, M.; Jandera, P.; Kabátová, N. Quantitation of triacylglycerols in plant oils using HPLC with APCI-MS, evaporative light-scattering, and UV detection. J. Sep. Sci. 2005, 28, 1315–1333. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, B.; Zhu, X.; Li, J.; Fan, Y.; Liu, R.; Tang, L.; Lee, K.; Deng, Z. Characterization of medium-chain triacylglycerol (MCT)- enriched seed oil from Cinnamomum camphora (Lauraceae) and its oxidative stability. J. Agric. Food Chem. 2011, 59, 4771–4778. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.P.; Khor, Y.P.; Lim, H.K.; Lai, O.M.; Wang, Y.; Wang, Y.; Nehdi, A.; Tan, C.P. In-depth characterization of palm-based diacylglycerol-virgin coconut oil blends with enhanced techno-functional properties. LWT 2021, 145, 111327. [Google Scholar] [CrossRef]
- Lerma-García, M.J.; Ramis-Ramos, G.; Herrero-Martínez, J.M.; Simó-Alfonso, E.F. Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem. 2010, 118, 78–83. [Google Scholar] [CrossRef]
- Ng, S.P.; Lai, O.M.; Abas, F.; Lim, H.K.; Beh, B.K.; Ling, T.C.; Tan, C.P. Compositional and thermal characteristics of palm olein-based diacylglycerol in blends with palm super olein. Food Res. Int. 2014, 55, 62–69. [Google Scholar] [CrossRef]
- Gandhi, K.; Sharma, R.; Seth, R.; Mann, B. Detection of coconut oil in ghee using ATR-FTIR and chemometrics. Appl. Food Res. 2022, 2, 100035. [Google Scholar] [CrossRef]
- Mueller, D.; Ferrão, M.F.; Marder, L.; Costa, A.B.; Schneider, R.C. Fourier transform infrared spectroscopy (FTIR) and multivariate analysis for identification of different vegetable oils used in biodiesel production. Sensors 2013, 13, 4258–4271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OECD. Test No. 423: Acute oral toxicity—Acute toxic class method. In OECD Guidelines for the Testing of Chemicals, Section 4; Organisation for Economic Cooperation and Development (OECD): Paris, France, 2002. [Google Scholar] [CrossRef]
- Matulka, R.A.; Noguchi, O.; Nosaka, N. Safety evaluation of a medium- and long-chain triacylglycerol oil produced from medium-chain triacylglycerols and edible vegetable oil. Food Chem. Toxicol. 2006, 44, 1530–1538. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Obara, S.; Maru, J.; Endoh, S. Genotoxicity assessment of cellulose nanofibrils using a standard battery of in vitro and in vivo assays. Toxicol. Rep. 2022, 9, 68–77. [Google Scholar] [CrossRef]
- Sun, B.; Huang, B.; Sica, V.P.; Baker, T.R.; Pfuhler, S. A genotoxicity assessment approach for botanical materials demonstrated with Poria cocos. Food Chem. Toxicol. 2021, 156, 112521. [Google Scholar] [CrossRef]
- Traul, K.A.; Driedger, A.; Ingle, D.L.; Nakhasi, D. Review of the toxicologic properties of medium-chain triglycerides. Food Chem. Toxicol. 2000, 38, 79–98. [Google Scholar] [CrossRef]
- HHS Food and Drug Administration. International conference on harmonisation; guidance on S2(R1) genotoxicity testing and data interpretation for pharmaceuticals intended for human use; availability. Fed. Regist. 2012, 77, 33748–33749. [Google Scholar]
- OECD. Test No. 474: Mammalian erythrocyte micronucleus test. In OECD Guidelines for the Testing of Chemicals, Section 4; Organisation for Economic Cooperation and Development (OECD): Paris, France, 2016. [Google Scholar] [CrossRef] [Green Version]
- Eastmond, D.A.; Hartwig, A.; Anderson, D.; Anwar, W.A.; Cimino, M.C.; Dobrev, I.; Douglas, G.R.; Nohmi, T.; Phillips, D.H.; Vickers, C. Mutagenicity testing for chemical risk assessment: Update of the WHO/IPCS Harmonized Scheme. Mutagenesis 2009, 24, 341–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heddle, J.A. A rapid in vivo test for chromosomal damage. Mutat. Res. 1973, 18, 187–190. [Google Scholar] [CrossRef]
- Igl, B.W.; Bitsch, A.; Bringezu, F.; Chang, S.; Dammann, M.; Frötschl, R.; Harm, V.; Kellner, R.; Krzykalla, V.; Lott, J.; et al. The rat bone marrow micronucleus test: Statistical considerations on historical negative control data. Regul. Toxicol. Pharmacol. 2019, 102, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Tice, R.R.; MacGregor, J.T.; Anderson, D.; Blakey, D.H.; Kirsh-Volders, M.; Jr, F.B.O.; Pacchierotti, F.; Romagna, F.; Shimada, H.; et al. In vivo rodent erythrocyte micronucleus assay. Mutat. Res. 1994, 312, 293–304. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 471: Bacterial reverse mutation test. In OECD Guidelines for the Testing of Chemicals, Section 4; Organisation for Economic Cooperation and Development (OECD): Paris, France, 2020. [Google Scholar] [CrossRef]
- Ma, M.; Zhao, J.; Zeng, Z.; Wan, D.; Yu, P.; Cheng, D.; Gong, D.; Deng, S. Antibacterial activity and membrane-disrupting mechanism of monocaprin against Escherichia coli and its application in apple and carrot juices. LWT 2020, 131, 109794. [Google Scholar] [CrossRef]
- OECD. Test No. 490: In vitro mammalian cell gene. In OECD Guidelines for the Testing of Chemicals, Section 4; Organisation for Economic Cooperation and Development (OECD): Paris, France, 2016. [Google Scholar] [CrossRef]
Type of Fatty Acid | Fatty Acid Composition (%) | |||||
---|---|---|---|---|---|---|
HP | AEE | |||||
Total | sn-2 | sn-1,3 | Total | sn-2 | sn-1,3 | |
C8:0 | 0.43 ± 0.03 a | 0.50 ± 0.02 a | 0.39 ± 0.01 a | 0.44 ± 0.03 a | 0.47 ± 0.03 a | 0.43 ± 0.02 b |
C10:0 | 61.18 ± 0.94 a | 58.68 ± 0.79 a | 62.43 ± 0.55 a | 58.09 ± 0.95 b | 57.96 ± 0.80 a | 58.16 ± 0.56 b |
C12:0 | 35.94 ± 0.73 a | 37.21 ± 0.59 a | 35.31 ± 0.36 a | 37.80 ± 0.74 b | 38.01 ± 0.60 a | 37.7 ± 0.37 b |
C14:0 | 0.99 ± 0.03 a | 1.02 ± 0.03 a | 0.65 ± 0.02 a | 0.99 ± 0.03 a | 1.03 ± 0.04 a | 0.97 ± 0.03 b |
C16:0 | 0.18 ± 0.00 a | 0.14 ± 0.01 a | 0.20 ± 0.01 a | 0.27 ± 0.01 a | 0.16 ± 0.02 a | 0.33 ± 0.02 b |
C18:0 | ND | ND | ND | 0.12 ± 0.01 a | 0.09 ± 0.01 a | 0.14 ± 0.01 a |
C18:1 | 1.18 ± 0.03 a | 1.81 ± 0.28 a | 0.86 ± 0.19 a | 1.81 ± 0.04 b | 1.78 ± 0.29 a | 1.83 ± 0.20 b |
C18:2 | 0.32 ± 0.00 a | 0.64 ± 0.04 a | 0.16 ± 0.02 a | 0.39 ± 0.01 b | 0.42 ± 0.05 b | 0.38 ± 0.03 b |
C18:3n-3 | ND | ND | ND | 0.09 ± 0.01 a | 0.08 ± 0.01 a | 0.10 ± 0.01 a |
∑SFA | 98.5 ± 0.14 a | 97.55 ± 0.17 a | 98.98 ± 0.25 a | 97.71 ± 0.15 b | 97.72 ± 0.18 a | 97.71 ± 0.26 b |
∑USFA | 1.5 ± 0.01 a | 2.45 ± 0.03 a | 1.02 ± 0.01 a | 2.29 ± 0.02 b | 2.28 ± 0.04 b | 2.30 ± 0.02 b |
∑MCFA | 97.55 ± 0.22 a | 96.39 ± 0.31 a | 98.13 ± 0.19 a | 96.33 ± 0.21 b | 96.44 ± 0.32 a | 96.28 ± 0.20 b |
∑LCFA | 2.45 ± 0.01 a | 3.61 ± 0.02 a | 1.87 ± 0.02 a | 3.67 ± 0.02 b | 3.56 ± 0.03 a | 3.73 ± 0.03 b |
(A) Quantitative Analysis of Triglyceride Composition of CCSKO. | |||
Type of Triglyceride | C-C-C (ECN = 30) | C-C-La (ECN = 32) | C-La-La (ECN = 34) |
AEE triglyceride composition (%) | 5.40 ± 0.09 a | 84.78 ± 3.12 a | 9.82 ± 0.30 a |
HP triglyceride composition (%) | 5.38 ± 0.09 a | 84.81 ± 3.59 a | 9.71 ± 0.33 a |
(B) Qualitative Analysis of Triglyceride Composition of CCSKO. | |||
Peaks | [M + NH4]+ | [M + H − RCOOH]+ | Identified Triglyceride Structure |
1 | 572.4 | 383.3 | C-C-C |
2 | 600.5 | 383.3, 411.3 | C-C-La |
3 | 628.5 | 383.3, 411.3, 439.3 | C-La-La |
Test Items | Results | |
---|---|---|
HP | AEE | |
Relative density | 0.9285 (20 °C/20 °C) | 0.9315 (20 °C/20 °C) |
Refractive index | 1.4491 (20 °C) | 1.4532 (20 °C) |
Moisture and volatile matter | 0.17% | 0.13% |
Insoluble impurity | 0.0059% | 0.0063% |
Residual solvent content | ND | ND |
Acid value | 0.88 mg KOH/g | 0.40 mg KOH/g |
Unsaponifiable matter | 0.34% | 0.35% |
Saponification value | 279 mg KOH/g | 283 mg KOH/g |
Iodine value | 4.7 g I2/100 g | 3.9 g I2/100 g |
Peroxide value | 0.02 mmol/kg | ND |
Arsenic | ND | ND |
Plumbum | ND | ND |
Benzopyrene (α) | ND | ND |
Aflatoxins B1 | ND | ND |
Gender | Dose Group (g/kg BW) | Number of Mice | Number of Dead Mice | Initial Weight (g) | Final Weight (g) | LD50 (g/kg BW) |
---|---|---|---|---|---|---|
Male | 21.5 | 5 | 0 | 18.08 ± 0.13 a | 32.36 ± 1.08 A | ≥21.5 |
10.0 | 5 | 0 | 18.16 ± 0.21 a | 35.52 ± 2.45 A | ||
4.64 | 5 | 0 | 18.08 ± 0.08 ab | 34.68 ± 2.50 AB | ||
2.15 | 5 | 0 | 18.18 ± 0.20 a | 36.06 ± 1.02 AB | ||
(SO) | 21.5 | 5 | 0 | 18.17 ± 0.29 a | 36.35 ± 1.65 C | |
Female | 21.5 | 5 | 0 | 18.08 ± 0.08 ab | 28.28 ± 1.41 B | ≥21.5 |
10.0 | 5 | 0 | 18.80 ± 0.89 a | 31.06 ± 1.58 AB | ||
4.64 | 5 | 0 | 18.14 ± 0.13 a | 27.72 ± 0.91 B | ||
2.15 | 5 | 0 | 18.06 ± 0.09 ab | 30.70 ± 1.94 B | ||
(SO) | 21.5 | 5 | 0 | 18.10 ± 0.26 a | 30.96 ± 1.43 B |
Gender | Dose (g/kg BW) | Amount | PCE Observed | PCE with Micronucleus | Rate of Micronucleus (‰) | PCE/NCE |
---|---|---|---|---|---|---|
Male | 3.44 | 5 | 10,035 | 12 | 1.20 ± 0.45 a | 1.20 ± 0.01 a |
1.72 | 5 | 10,029 | 14 | 1.40 ± 0.96 a | 1.18 ± 0.02 a | |
0.86 | 5 | 10,043 | 14 | 1.39 ± 0.42 a | 1.18 ± 0.01 a | |
0 | 5 | 10,012 | 12 | 1.20 ± 0.27 a | 1.20 ± 0.03 a | |
40 mg/kg BW | (CP) | 5 | 10,288 | 97 | 9.43 ± 1.22 b | 1.11 ± 0.03 b |
Female | 3.44 | 5 | 10,042 | 15 | 1.49 ± 0.61 a | 1.19 ± 0.02 a |
1.72 | 5 | 10,041 | 19 | 1.89 ± 0.41 a | 1.19 ± 0.01 a | |
0.86 | 5 | 10,043 | 16 | 1.59 ± 0.32 a | 1.16 ± 0.03 a | |
0 | 5 | 10,019 | 11 | 1.10 ± 0.42 a | 1.17 ± 0.02 a | |
40 mg/kg BW | (CP) | 5 | 10,072 | 121 | 12.01 ± 2.56 b | 1.12 ± 0.01 b |
(A) Results of the samples, unprocessed control and menstruum groups in preliminary bacteria reverse mutation test. | |||||||||||
Dose (μg/dish) | TA97 | TA98 | TA100 | TA102 | TA1535 | ||||||
−S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | ||
Sample | 5000 | 111 ± 8 a | 110 ± 19 A | 28 ± 2 a | 37 ± 8 A | 120 ± 4 a | 176 ± 16 A | 269 ± 35 a | 314 ± 34 A | 17 ± 2 a | 19 ± 1 A |
1582 | 123 ± 9 a | 113 ± 14 A | 30 ± 3 a | 31 ± 3 A | 121 ± 11 a | 168 ± 18 A | 252 ± 7 a | 319 ± 18 A | 15 ± 4 a | 17 ± 3 A | |
501 | 92 ± 12 ab | 113 ± 29 A | 29 ± 4 a | 41 ± 5 AB | 149 ± 15 b | 153 ± 16 A | 270 ± 20 a | 303 ± 25 A | 14 ± 3 a | 14 ± 2 AB | |
158.5 | 106 ± 13 a | 115 ± 19 A | 30 ± 4 a | 41 ± 5 A | 132 ± 14 a | 143 ± 3 AB | 270 ± 8 a | 285 ± 36 A | 16 ± 2 a | 11 ± 0 C | |
50.2 | 109 ± 25 a | 119 ± 27 A | 30 ± 4 a | 38 ± 4 A | 144 ± 28 a | 174 ± 11 A | 254 ± 26 a | 288 ± 14 A | 13 ± 1 ab | 15 ± 4 A | |
Unprocessed control | 131 ± 5 ab | 126 ± 15 A | 30 ± 4 a | 43 ± 2 AB | 143 ± 20 a | 158 ± 9 A | 285 ± 13 a | 277 ± 51 A | 16 ± 3 a | 16 ± 3 A | |
Menstruum control | 117 ± 20 a | 133 ± 29 A | 33 ± 2 b | 32 ± 2 A | 149 ± 17 ab | 164 ± 23 A | 273 ± 38 a | 340 ± 12 A | 15 ± 2 a | 16 ± 3 A | |
(B) Results of the positive groups in preliminary bacteria reverse mutation test. | |||||||||||
Positive Control | Dose (μg/dish) | TA97 | TA98 | TA100 | TA102 | TA1535 | |||||
−S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | ||
NaN3 | 1.5 | 1321 ± 148 c | 986 ± 162 c | ||||||||
2-AF | 10.0 | 929 ± 93 B | 1345 ± 115 C | 1387 ± 129 C | |||||||
Dexon | 50.0 | 2229 ± 227 c | 1049 ± 191 c | 1606 ± 161 b | |||||||
1,8-DHAQ | 50.0 | 861 ± 111 B | |||||||||
CP | 200 | 266 ± 43 D | |||||||||
(C) Results of the samples, unprocessed control and menstruum groups in main bacteria reverse mutation test. | |||||||||||
Dose (μg/dish) | TA97 | TA98 | TA100 | TA102 | TA1535 | ||||||
−S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | ||
Sample | 5000 | 107 ± 18 a | 123 ± 21 A | 29 ± 3 a | 35 ± 1 A | 152 ± 8 a | 150 ± 9 A | 269 ± 10 a | 333 ± 8 A | 15 ± 1 a | 19 ± 1 A |
1000 | 124 ± 8 a | 121 ± 11 A | 27 ± 1 a | 38 ± 7 A | 153 ± 7 a | 177 ± 21 A | 277 ± 3 a | 280 ± 4 B | 17 ± 2 a | 17 ± 3 A | |
200 | 121 ± 21 a | 129 ± 16 A | 29 ± 2 a | 41 ± 5 A | 139 ± 27 a | 163 ± 10 A | 295 ± 16 a | 321 ± 23 A | 17 ± 5 a | 18 ± 3 A | |
40 | 111 ± 20 a | 106 ± 7 AB | 30 ± 2 a | 37 ± 4 A | 145 ± 17 a | 175 ± 26 A | 254 ± 8 b | 296 ± 42 A | 15 ± 4 a | 17 ± 3 A | |
8 | 99 ± 11 a | 115 ± 3 A | 33 ± 4 a | 32 ± 5 A | 130 ± 9 ab | 138 ± 15 A | 258 ± 24 a | 305 ± 20 A | 15 ± 4 a | 17 ± 3 A | |
Unprocessed control | 95 ± 12 a | 105 ± 12 A | 32 ± 4 a | 43 ± 2 B | 156 ± 23 a | 148 ± 31 A | 284 ± 16 a | 285 ± 55 A | 12 ± 1 ab | 17 ± 4 A | |
Menstruum control | 114 ± 7 a | 105 ± 12 A | 29 ± 3 a | 38 ± 5 A | 130 ± 8 ab | 131 ± 12 A | 275 ± 24 a | 281 ± 30 AB | 16 ± 3 a | 14 ± 2 AB | |
(D) Results of the positive groups in main bacteria reverse mutation test. | |||||||||||
Positive Control | Dose (μg/dish) | TA97 | TA98 | TA100 | TA102 | TA1535 | |||||
−S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | −S9 | +S9 | ||
NaN3 | 1.5 | 1117 ± 131 c | 906 ± 112 c | ||||||||
2-AF | 10.0 | 947 ± 80 B | 1336 ± 177 C | 1178 ± 82 B | |||||||
Dexon | 50.0 | 2191 ± 258 b | 1090 ± 190 b | 1401 ± 151 b | |||||||
1,8-DHAQ | 50.0 | 834 ± 79 C | |||||||||
CP | 200 | 312 ± 46 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Wan, D.; Peng, T.; Yang, Y.; Wen, X.; Yan, X.; Xia, J.; Zhu, Q.; Yu, P.; Gong, D.; et al. Acute Oral Toxicity and Genotoxicity Test and Evaluation of Cinnamomum camphora Seed Kernel Oil. Foods 2023, 12, 293. https://doi.org/10.3390/foods12020293
Wang P, Wan D, Peng T, Yang Y, Wen X, Yan X, Xia J, Zhu Q, Yu P, Gong D, et al. Acute Oral Toxicity and Genotoxicity Test and Evaluation of Cinnamomum camphora Seed Kernel Oil. Foods. 2023; 12(2):293. https://doi.org/10.3390/foods12020293
Chicago/Turabian StyleWang, Pengbo, Dongman Wan, Ting Peng, Yujing Yang, Xuefang Wen, Xianghui Yan, Jiaheng Xia, Qingwen Zhu, Ping Yu, Deming Gong, and et al. 2023. "Acute Oral Toxicity and Genotoxicity Test and Evaluation of Cinnamomum camphora Seed Kernel Oil" Foods 12, no. 2: 293. https://doi.org/10.3390/foods12020293
APA StyleWang, P., Wan, D., Peng, T., Yang, Y., Wen, X., Yan, X., Xia, J., Zhu, Q., Yu, P., Gong, D., & Zeng, Z. (2023). Acute Oral Toxicity and Genotoxicity Test and Evaluation of Cinnamomum camphora Seed Kernel Oil. Foods, 12(2), 293. https://doi.org/10.3390/foods12020293