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Abstract: Extracting ursolic acid (UA) from plant resources using organic solvents is incompatible
with food applications. To address this, in this study, 15 edible hydrophobic deep eutectic solvents
(HDESs) were prepared to extract UA from apple peel, the extraction conditions were optimized,
and the optimization strategies were compared. It was found that the solubility of UA in the
HDESs can be 9 times higher than the traditional solvent such as ethanol. The response surface
optimization concluded that temperature had the greatest effect on the extraction and the optimized
test conditions obtained as follows: temperature of 49 ◦C, time of 32 min, solid–liquid ratio of
1:16.5 g/mL, respectively. Comparing the response surface methodology (RSM) and artificial neural
networks (ANN), it was concluded that ANN has more accurate prediction ability than RSM. Overall,
the HDESs are more effective and environmentally friendly than conventional organic solvents to
extract UA. The results of this study will facilitate the further exploration of HDES in various food
and pharmaceutical applications.

Keywords: apple peel; ultrasonic-assisted extraction; response surface methodology; artificial neural network

1. Introduction

Pentacyclic triterpenes are based on 30 carbon skeletons, consisting of five six-membered
rings or four five-membered rings and one five-membered ring, and are formed by the
arrangement of epoxide squalene [1], which is one of the classes of triterpenes classified
according to carbon skeletons [2]. It can be used as an active ingredient in the treatment of
diabetes and its complications [3], as antibacterial agents, antibiofilm agents [4], is considered a
potential drug for cancer, viruses, bacteria or protozoan infections [1]. Pentacyclic triterpenoids
such as oleanolic acid, glycyrrhizic acid, glycyrrhetinic acid, ursolic acid (UA), betulin, and
lupeol show a variety of biological activities [3].

As a kind of lipophilic natural pentacyclic triterpenoids, UA has anti-inflammatory [5],
antibacterial, antioxidant [6], anti-fibrosis [7], and antiviral activities [8]. UA can induce
autophagy to treat acute kidney injury [9], reduce cholesterol activity, and play a beneficial
role in the regulation of intestinal microorganisms [10]. UA is present in many herbs,
leaves, flowers, vegetables [11], and fruits such as lingonberries, cranberries, olives, loquat
fruit, apples, etc. As far as we know, apple juice produces much unnecessary waste (apple
pomace) during the production process [12]. Apple peels, as a waste by-product, contain
phytochemicals such as UA [13]. For environmental considerations, it is, therefore, possible
to utilize this unwanted waste by extracting UA from apple peels.

Traditional extraction methods of triterpenoids include impregnation, Soxhlet extrac-
tion, and hot reflux extraction. The traditional solvents for extracting pentacyclic triterpenes
are mainly organic solvents, including methanol, ethanol, and hexane [11]. Kikowska et al.
extracted pentacyclic triterpenoids from papaya callus with methanol [14]. Lourenço et al.
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extracted pentacyclic triterpenoids from birch bark with n-hexane and triterpenes in eu-
calyptus globulus with dichloromethane [15]. Xia et al. extracted pentacyclic triterpenoid
UA and oleanolic acid from ligustrum lucidum fruit with 80% ethanol [16]. However, these
traditional solvents have the disadvantages of being volatile, flammable, explosive, and
non-environmental protection, so it is necessary to find a green, non-toxic, and low-volatile
solvents to replace these traditional solvents.

Deep eutectic solvent (DES) is a new type of solvent which is obtained by mixing
hydrogen donor (HBD) and hydrogen acceptor (HBA) in a certain molar ratio [17]. DES
has the advantages of environmental friendliness, low volatility, low cost, easy preparation,
sustainability, and biodegradability [18,19]. However, most early studies focused on hy-
drophilic DES, which limits the extraction of hydrophobic substances. In 2013, Abbott et al.
first proposed a hydrophobic deep eutectic solvent (HDES) composed of capric acid and
quaternary ammonium salts, which broadened the application of DES in extraction [20].
The extraction of bioactive substances with HDESs instead of traditional organic solvents
has recently become a new trend. Ma et al. prepared five HDESs and then screened
HDES for liquid-liquid microextraction of diphenylamine in fruits using n-Caprylic acid
as HBD and menthol (Men) as HBA [21]. Khare et al. prepared 28 HDESs for achieving
green extraction of mushroom ergosterol and obtained maximum extraction efficiency
using Men: pyruvic acid [22]. Zhu et al. prepared a variety of HDESs using liquid-liquid
microextraction combined with HPLC to determine eight synthetic pigments in beverage
samples [23]. Silva et al. used HDES based on Men and thymol (Thy) instead of traditional
organic solvents to extract pentacyclic triterpene from eucalyptus globulus bark. They
found higher extraction rates than those extracted with methylene chloride [24]. However,
the process optimization of this green extraction method is less systematically evaluated.

Response surface methodology (RSM) is an optimization method that uses mathemati-
cal and statistical methods to construct an optimal condition for assessing the independent
variables’ significance and obtaining predicted response values [25]. Artificial neural net-
works (ANN) is a neural network inspired by the human brain capable of dealing with
nonlinear problems without exact relationships, creating a nonlinear modeling approach be-
tween the independent and dependent variables, a highly interconnected structure [26,27].
There is accumulating evidence indicating that, compared with RSM, ANN can obtain
more superior prediction results and optimization capabilities through its advantages,
and the predicted results are closer to the actual values of the test [28,29]. Therefore, it is
also necessary to systematically compare these two optimization methods in extracting
bioactive substances with HDESs as a new generation of green solvents.

This experiment aims to extract UA from apple peel using natural Men-based HDESs
and systematically compare the test effects of the two optimization methods. Firstly, the
type of HDESs with the highest solubility was screened by testing the solubility of UA.
Then the molar ratio of HBA and HBD of HDES was further screened to select the HDES
with the highest solubility of UA. A single-factor test determined the optimum temperature,
time, and solid–liquid ratio of HDES, and then the response surface optimization test was
used to obtain the optimum test conditions. This study also used ANN to calculate several
sets of data from response surface tests and compares the predictive power of these two
methods by comparing their adjust coefficients of determination (Radj

2) and root mean
square errors (RMSE).

2. Materials and Methods
2.1. Materials

The apples (Red Fuji, Yantai, China) were purchased from a local supermarket. UA
standard and decanoic acid (purity 99%) purchased from Shanghai Aladdin Biotechnology
Company. Menthol (purity 95%) and thymol (purity 99%) were purchased from Wuhan
Lanabai Pharmaceutical and Chemical Company. Methanol was purchased from China
Ferton Reagent Company (HPLC grade). Pyruvic acid (purity 98%), levulinic acid (purity
99%) and propionic acid (purity 99.5%) were purchased from Shanghai Macklin Biotechnol-
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ogy Co., Ltd. (Shanghai, China). Formic acid (purity 98%), acetic acid (analytical purity),
lactic acid (analytical purity), n-butanol (purity 99.5%), and anhydrous ethanol were pur-
chased from China Pharmaceutical Group Chemical Reagent Co., Ltd. (Shanghai, China).
Isopropanol (purity 99.7%) was purchased from Tianjin Institute of Chemical Reagents.
Phosphoric acid (purity 90%) was purchased from Tianjin Comiou Chemical Reagent Co.,
Ltd. (Tianjin, China).

2.2. Preparation of HDESs

Based on the method of Peng et al., the HBD and HBA were placed in a reagent bottle
and stirred at 80 ◦C for 30 min at 1 g with a collector thermostatic magnetic stirring bath, then
a homogeneous liquid was formed and placed in at dry room temperature and set aside [30].
Silva et al. proposed the extraction of triterpenoid acids with Men and Thy [24]. Cai et al.
proposed that DESs based on choline chloride and various hydrogen bond donors were chosen
to extract UA, and they found that using organic acids as HBD could improve the extraction
efficiency of UA [31]. The types of HBA and HBD in this study are shown in Table 1.

Table 1. The molar ratio and aspect of HDES.

Abbreviation HBA HBD Molar Ratio Aspect Reference

MT 1:1

Men

Thy 1:1 Transparent colorless liquid [24]
HDES 1 Formic acid 1:1 White emulsion [32]
HDES 2 Acetic acid 1:1 Transparent colorless liquid [22]
HDES 3 Propionic acid 1:1 Transparent colorless liquid [32]
HDES 4 Decanoic acid 1:1 Transparent colorless liquid [33]
HDES 5 Isopropanol 1:2 Transparent colorless liquid [34]
HDES 6 n-Butanol 1:1 Transparent colorless liquid [35]
HDES 7 Pyruvic acid 1:2 Transparent yellow liquid [22]
HDES 8 Lactic acid 1:1 Transparent colorless liquid [34]
HDES 9 Levulinic acid 1:1 Transparent yellow liquid [34]

2.3. Viscosity of HDESs

Referring to Alhadid et al., the viscosity of all HDESs was measured using a Kinexus
advanced rotational rheometer (Kinexus pro+, Malvern, UK) at room temperature 30 ◦C
and atmospheric pressure with a gap of 0.1 mm and a shear stress of 1 Pa [36]. The test
stopped after the shear viscosity was stabilized, and the data were averaged from the three
data after stabilization. The viscosity of HDES with the best solubility at 30 ◦C, 40 ◦C, 50 ◦C,
60 ◦C, and 70 ◦C was then tested.

2.4. Solubility of UA
2.4.1. Screening Different Types of HDESs

The solubility of UA in 17 HDESs was determined according to the method proposed
by Silva et al., with slight modifications [24]. The excess UA and HDES were swirled
in a constant temperature magnetic stirrer at a speed of 1 g and a temperature of 60 ◦C
for 30 min (at least three independent samples were prepared for the determination of
solubility values and standard deviations). After the supersaturated undissolved UA and
the supernatant were separated, 50 µL supernatant sample was taken. The sample was
diluted with 495 µL methanol and permeated 0.22 µm through the membrane. The Agilent
1100 liquid chromatography system was used for HPLC determination. The system has a
four-component solvent delivery system, an automatic sampler and a diode array detector
(DAD). The detection wavelength is 210 nm. The separation is performed on a YMC-Pack
ODS-A (250 × 4.60 mm) column with a column box and an automatic sampler maintained
at 30 ◦C. The mobile phase was chromatographic grade methanol, and 0.1% phosphoric
acid (92.5%:7.5%, v/v), and the flow rate was 1 mL/min. UA standard solutions of 20,
40, 80, 160, 320, and 640 µg/mL were prepared, and then, the standard curve was plotted
with UA concentration as the horizontal coordinate and peak area (Y, mv/s) as the vertical
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coordinate (X, µg/mL). Then, the regression equation was established (Equation (1)), and
the coefficient of determination R2 is 0.9997.

Y = 0.8248X− 33.913 (1)

The solubility was calculated by the following equation:

Solubility (mg/mL) =
Csol ×D

1000
(2)

where Csol represents the concentration of UA of the tested HDES solubility, D is the
dilution multiple of the sample, and 1000 represents the unit conversion.

The HDES with the highest UA solubility was selected by solubility test, and then, the
ratio of HBA and HBD of the best HDES were screened.

2.4.2. Screening the Ration of HBA and HBD of HDESs

The HDES with the highest UA solubility among the tested HDESs were further
selected to test the UA solubility in HDES under different HBA and HBD molar ratios.
The molar ratios of the selected HDESs are shown in Table 2. Except for the HDES of MT
4:1, which formed a clear colorless solid at room temperature, all other HDESs formed a
uniform and stable clear colorless liquid, indicating that different ratios of HDESs were
successfully prepared.

Table 2. Molar ratio of HBA and HBD.

Abbreviation HBA HBD Molar Ratio Aspect

MT 4:1 4:1 Transparent colorless solid
MT 3:1

Men Thy

3:1 Transparent colorless liquid
MT 2:1 2:1 Transparent colorless liquid
MT 1:1 1:1 Transparent colorless liquid
MT 1:2 1:2 Transparent colorless liquid
MT 1:4 1:4 Transparent colorless liquid
MT 1:6 1:6 Transparent colorless liquid
MT 1:8 1:8 Transparent colorless liquid

2.5. HDES Extracts UA from Apple Peels

The apple peels were placed in an oven and baked at 60 ◦C for 24 h to constant weight.
The dried product was crushed and passed through a 60 mesh sieve. After passing through
the sieve, the apple powder was baked at 60 ◦C for 1 h to prevent water reabsorption
during the sieving. The 1 g sample was accurately weighed and added into 10 mL HDES
solution and extracted with ultrasonic cleaner (KS3200DE, Kunshan Jielimei Ultrasonic
Instrument Co., Ltd.) (Kunshan, China) at a power of 100 W and temperature of 50 ◦C
for 30 min. The extract was placed in a high-speed centrifuge at 5550× g for 10 min, take
0.2 mL of supernatant with 1.8 mL of methanol for dilution, passed through a 0.22 µm
membrane and then measured by HPLC to calculate the extraction yield (EY) of UA with
the following formula.

EY =
Mass o f ursolic acid
Mass o f apple peel

× 100% (3)

2.6. Single-Factor Test for UA Extraction by HDES

According to the screening of Section 2.5, HDES with the highest solubility were
selected to extract UA from apple peels. The optimal extraction time was obtained by
changing the ultrasonic extraction time (15, 30, 45, 60, and 75 min) at the controlled
temperature of 50 ◦C and the solid–liquid ratio of 1:14 g/mL. Then, the effect of extraction
temperature (30, 40, 50, 60, and 70 ◦C) on extraction efficiency was explored when the
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solid–liquid ratio was 1:14 g/mL, and the extraction time was 30 min. Finally, the influence
of different solid–liquid ratios (1:14, 1:16, 1:18, and 1:20 g/mL) on the extraction efficiency
was explored at the time of 30 min and temperature of 50 ◦C. The most appropriate
single factor conditions were determined, which provided conditions for response surface
optimization experiment.

2.7. Response Surface Optimization of Extraction Process

Based on the results obtained from the single-factor test in Section 2.6., the optimal
extraction conditions were selected, and a three-factor, three-level Box–Behnken design
(BBD) response surface test was designed. The response surface optimization data were
processed with design expert 13 to optimize the extraction conditions in Section 2.6. further,
and the response surface optimization table (Table 3) was shown as follows:

Table 3. Factors and levels of response surface analysis.

Levels
Independent Variables

A (Time, min) B (Temperature, ◦C) C (Solvent to-Solid Ratio, g/mL)

−1 15 40 14
0 30 50 16
1 45 60 18

2.8. ANN Modeling of Extraction Process

ANN comprises four parts: input, hidden layer, output layer, and output. The input
layer of this experiment was composed of time, temperature, and solid–liquid ratio, and
the output layer was the extraction yield of UA. The structure of ANN is shown in Figure 1.
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In order to obtain better-predicted values and prevent model overfitting, the data is
normalized, and the normalized formula is as follows.

xnormalized value =
yactual value − yminimum value

ymaximum value − yminimum value
(4)

All the data involved in the training of ANN are derived from 17 sets of data from the
RSM optimization experiment, in which the training set accounts for 70%, the validation
set, and the test set account for 15%, respectively. The number of hidden layer neurons is
calculated as follows:

h =
√

n + l+a (5)

where h is the number of neurons in the hidden layer, n is the number of network nodes in
the input layer, l is the number of network nodes in the output layer, and a is a constant
of 0~10.
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2.9. Comparison of Predictive Capability of RSM and ANN

The accuracy of performance was evaluated by comparing Radj
2 and RMSE between

RSM and ANN. The calculation formula of Radj
2 is as follows:

Radj
2= 1− ∑n

1 (Y cal − YExp
)2

∑n
1 (Y Avg − YExp

)2 (6)

The calculation formula of RMSE is as follows:

RMSE =

√
∑n

1 (Y cal − YExp
)2

n
(7)

where Ycal is the calculated value of RSM or ANN, YExp is the true value of the experiment,
YAvg is the average value of the experiment, and n is the number of experiments for 17.

2.10. Statistical Analysis

All experiments were conducted in triplicate. RSM design of experiments and model
fit was performed in Design Expert 13 (Stat-ease, Inc., Minneapolis, MN, USA), ANN
modeling was performed in MATLAB (R2018a, The MathWorks, Inc., Massachusetts, MA,
USA), and the other statistical analysis was performed using GraphPad Prism 9 (GraphPad
Software, San Diego, CA, USA). One-way analysis of variance (ANOVA) with Tukey’s
test was used to determine the significant differences (p < 0.05) between the means was
performed using IBM SPSS statistic 26.0 (International Business Machines Corporation,
Armonk, NY, USA) software. All values are expressed as means ± standard deviations
(S.D) unless stated otherwise.

3. Results and Discussion
3.1. Physical Properties of HDESs

This study determined the viscosity of 16 types of HDESs and the viscosity of the
HDES with the most appropriate solubility at 30–70 ◦C to provide a reference for the
solubility screening process. For most of the DES, their viscosity at room temperature is
generally above 0.1 Pa [37]. High viscosity will affect the mass transfer during extraction
and reduce the extraction efficiency, so the viscosity of HDES needs to be one of the
reference factors when screening solvents. It can be seen from Figure 1a that increasing the
chain length of fatty acids will increase the viscosity. From Men: formic acid, Men: acetic
acid, Men: propionic acid, Men: capric acid, the viscosity of these fatty acids increases
with the increase of chain length. This phenomenon also appeared in Men: isopropanol
and Men: n-butanol. With the increase in carbon chain length, the viscosity also increased.
The viscosity of binary eutectic is determined by hydrogen bond, van der Waals force,
and electrostatic interaction [37]. Men: lactic acid has the highest viscosity, which may
be enhanced by force formed between Men and lactic acid. Men: isopropanol has the
lowest viscosity, probably isopropanol, as an organic alcohol, has a low viscosity of its
own. Secondly, HDES composed of isopropanol and Men may have a low viscosity due
to the low interaction force. The other viscosity of HDES are Men: levulinic acid > Men:
pyruvic acid.

On the one hand, the physical properties of HDES can be changed by changing the size
of the molar ratio between HBA and HBD, where the viscosity has different variations [38].
On the other hand, the viscosity of HDES is influenced by the size of cations, stacking and
intermolecular interactions [39]. As can be seen from Figure 2a, HDES composed of Men
and Thy, with this process of molar ratio from 2:1 to 1:6, the viscosity of HDES gradually
increased with the increase of the molar proportion of HBD. However, at 1:8 molar ratio
the viscosity of HDES shows an increasing trend.
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Figure 2. The viscosity of different HDESs at 30 ◦C (a) and the viscosity of MT1:6 at 30~70 ◦C (b).

The viscosity of DES decreases with increasing temperature [40]. As shown in Figure 2b,
the viscosity became lower while increasing the temperature of HDES with MT 1:6 from 30 ◦C
to 70 ◦C.

In summary, although the viscosity of HDES prepared in this experiment is higher than
that of traditional organic solvents, the viscosity of hydrophobic DES is lower than DES. In
general, the extraction process is carried out at temperatures above room temperature, so
the viscosity of HDES decreases with temperature increase. Therefore, to selecting such
HDES as an alternative to traditional organic reagents is feasible.

3.2. Solubility of UA

In this study, 16 kinds of Men-based HDESs were prepared to determine the solubility
of UA, where the composition of HBA and HBD and the molar ratio of HBA and HBD are
shown in Tables 1 and 2. In order to select HDES with the highest UA solubility, solubility
tests were performed on the 16 solvents, and all solubility tests were done at 60 ◦C. As
can be seen from Figure 3a, MT 1:1 has the highest solubility among all HDESs, probably
because Men and Thy have more similar polarity to UA, making UA better soluble in
this HDES.
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Among these solvents from HDES 1 to HDES 4, except Men: formic acid, the solubility
of UA decreases as the alkyl chain increases. It is probably because as the alkyl chain
increases, the steric effects of HDES composed of alkyl and Men increases. Moreover, it is
known from Section 3.1. that the viscosity of HDES increases as the alkyl chain increases,
and the high viscosity affects the mass transfer, thereby reducing the solubility of UA. The
solubility of HDES 5 and HDES 6 also shows a tendency to decrease with the increase of
carbon chains. The effect of branched chains on solubility is negligible when comparing
the length of carbon chains. HDES 7, which is composed of Men: pyruvate, has the lowest
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solubility, probably because pyruvate contains a carbonyl group, which leads to its lower
solubility. Men: lactate and Men: levulinic acid also showed higher solubility, but MT 1:1
had higher solubility than all other HDESs.

After preliminary solubility screening, it was determined that MT1:1 had the highest
solubility, and then the molar ratio of HBA and HBD was further screened. As can be
seen from Figure 3b, UA solubility increases with the increase of the molar ratio of HBD,
reaching a peak at MT 1:6. Then, a decreasing trend started at MT 1:8. This is closely
related to the viscosity of HDESs; as the proportion of HBD increases, the viscosity of HDES
decreases. The low viscosity can accelerate the mass transfer between UA and HDES, thus
increasing the solubility of UA.

In general, the solubility of the above HDESs prepared was more than nine times
higher than that of traditional solvents such as ethanol. Compared with the traditional
organic reagent, the solubility of HDESs is more considerable. Therefore, HDES with the
highest solubility of MT 1:6 was selected for the following extraction experiments.

3.3. Single Factor Experiment

According to the results in Section 3.2, HDES of MT1:6 was used as the solvent for
extracting UA from apple peels. Figure 4a shows the effect of time on the extraction yield.
The results showed that with the increase of time, the extraction yield of UA increased
gradually and reached the highest extraction yield in 30 min, then decreased with the further
increase of extraction time. The change in UA extraction yield may be that increasing the
time can increase the leaching of the extracted extract within a certain period. However,
with the increase of ultrasonic time, the extraction temperature will rise, resulting in the
destruction of UA after a long exposure to ultrasonic irradiation, causing the yields to
decrease [41].
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Figure 4. The effects of different time (a), temperature (b), and solid–liquid ratio (c) on the extraction
yield of UA.

Figure 4b shows that the extraction yield reached the highest UA extraction yield at
50 ◦C, and then with the increase in temperature, the extraction yield showed a downward
trend. On the one hand, viscosity decreases with increasing temperature. As mentioned in
Section 3.2, increasing the temperature can reduce the viscosity of MT 1:6 HDES, and low
viscosity can make UA more fully in contact with HDES, making the yield higher. On the
other hand, at a temperature of 60 ◦C or 70 ◦C, as mentioned above, prolonged exposure to
ultrasonic irradiation and high temperature will lead to the destruction of UA.

Figure 4c demonstrates the effect of the solid–liquid ratio on the extraction yield of UA.
Within a specific range, the increase of extraction solvent can improve the extraction yield of
UA. The UA extraction yield reached the highest value at 1:16 g/mL but decreased with the
increase of the solid–liquid ratio to 1:20 g/mL. It may be because too much solvent will play
a dilution role. In the process of ultrasonic-assisted extraction, the too high solid–liquid
ratio will reduce the cavitation of ultrasonic [42]. Moreover, too much solvent will dissolve
more impurities, compete with UA for dissolution, and reduce the extraction yield.
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The most appropriate extraction conditions were initially screened for subsequent
response surface optimization based on single-factor time, temperature, and solid–liquid
ratio. The most appropriate conditions were time 30 min, temperature 50 ◦C, and the
solid–liquid ratio of 1:16 g/mL.

3.4. Optimization Method
3.4.1. Response Surface Methodology

Response surface optimization is an excellent method to reduce the number of ex-
periments to optimize the test. In this experiment, the most appropriate experimental
conditions were determined by single factor test: time 30 min, temperature 50 ◦C, and
solid–liquid ratio 1:16 g/mL. Then, according to the results of the single-factor experiment,
the response surface optimization experiment of three factors and three levels of BBD was
designed, and 17 test combinations were obtained, as shown in Table 4.

Table 4. Results of the Box–Behnken design (BBD) for the extraction yield of UA and ANN calculated.

Run
Factor

EY/% RSM Calculated ANN Calculated
A B C

1 30 40 18 1.361 1.3168 1.3277
2 30 50 16 1.526 1.5402 1.5225
3 15 60 16 1.209 1.1836 1.2090
4 45 40 16 1.292 1.3136 1.2920
5 30 50 16 1.567 1.5402 1.5225
6 45 60 16 1.201 1.2121 1.2010
7 45 50 18 1.366 1.3833 1.3660
8 30 50 16 1.52 1.5402 1.5225
9 15 50 18 1.221 1.2767 1.2210

10 15 40 16 1.203 1.1880 1.2030
11 30 50 16 1.519 1.5402 1.5225
12 30 60 14 1.094 1.1345 1.1115
13 30 60 18 1.33 1.2938 1.3300
14 45 50 14 1.284 1.2245 1.3209
15 15 50 14 1.198 1.1769 1.1980
16 30 40 14 1.185 1.2173 1.1850
17 30 50 16 1.578 1.5402 1.5225

The correlation between the experimental data and the model was analyzed based
on the ANOVA. The ANOVA table from Table 5 shows that the model p < 0.05, so it can
indicate that the model is significant, while p > 0.05 for the lack of fit indicates that it
is not significant. In general, C.V. is used to measure the reproducibility of model [28].
The C.V. of this model is 3.80% less than 10%, which indicates that the model is well
reproduced. We can also see that the solid–liquid ratio has the most significant effect on
the extraction yield of UA (p < 0.05). In contrast, temperature and time have no significant
effect on the extraction yield of UA (p > 0.05). According to the size of the F-value, it can
be seen that the solid–liquid ratio has the most significant effect on the extraction yield,
then temperature, and finally, time. The R2 in this experiment was 0.9536, and the adjusted
R2 was 0.8940 (>0.8), indicating that the experimental data fit well with the second-order
polynomial equation. The multiple regression analysis of the data resulted in a second-
order polynomial fit regression equation for UA extraction yield, which can be used to
calculate UA extraction yield, and the equation is as follows:

Y = −11.44037 + 0.041617A + 0.160512B + 1.01406C− 0.000162AB + 0.000492AC+
0.00075BC− 0.000647A2 − 0.001703B2 − 0.032312C2

(8)
where Y is calculated value of response surface optimization. A, B, and C are time (min),
temperature (◦C), and the solid–liquid ratio (g/mL), respectively.
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Table 5. ANOVA statistics of the quadratic model for the extraction yields of UA.

Source Sum of Squares df Mean Square F-Value p-Value

Model 0.3691 9 0.0410 15.99 0.0007 significant
A 0.0122 1 0.0122 4.74 0.0658
B 0.0054 1 0.0054 2.09 0.1917
C 0.0334 1 0.0334 13.03 0.0086

AB 0.0024 1 0..0024 0.9171 0.3701
BC 0.0009 1 0.0009 0.3393 0.5785
AC 0.0009 1 0.0009 0.3509 0.5722
A2 0.0891 1 0.0891 34.75 0.0006
B2 0.1220 1 0.1220 47.58 0.0002
C2 0.0703 1 0.0703 27.42 0.0012

Residual 0.0180 7 0.0026
Lack of fit 0.0148 3 0.0049 6.17 0.0556 Not significant

According to the results of ANOVA for the Quadratic model, the F and p-values of
AB (time and temperature) were 0.9171 and 0.3701, respectively. The F and p-values of
AC (time and solid–liquid ratio) were 0.3393 and 0.5785, respectively. BC’s F and p-values
(temperature and solid–liquid ratio) were 0.3509 and 0.5722, respectively. AB has the most
considerable F-value and the smallest p-value. In addition, it can be seen from Figure 5
that the surface of Figure 5a is steeper, indicating that the interaction of AB is greater. BC
and AC have small p-values and large F-values. According to Figure 5b,c, it can be seen
that their surfaces are not very steep compared to AB, indicating that the interaction is
not apparent.
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According to the response surface optimization, the predicted reaction conditions were
obtained: time 32.334 min, temperature 49.238 ◦C, and solid–liquid ratio 1:16.514 g/mL. The
calculated UA extraction yield was 1.544%. The optimal reaction conditions were calculated
as follows: time 32 min, temperature 49 ◦C, and solid–liquid ratio 1:16.5 g/mL. The yield
obtained by the final verification was 1.566%. Siani et al. extracted UA from dry apple peel
with aqueous and hydroethanolic to a content of about 6.12 µg/g [43], which is lower than
the content of UA in this study.

3.4.2. ANN Modeling

ANN is a multilayer feedback network model with a feed-forward back propagation
algorithm. The ANN model in this study used the Levenberg–Marquardt algorithm
in training the data. A two-layer feed-forward network with hidden sigmoid neurons
and linear output neurons (fitnet), fits multidimensional mapping problems in extraction
prediction arbitrarily well.

In this study, a trial-and-error approach was used to train the ANN model one after
another, stopping the ANN training when the mean square error (MSE) value is the
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minimum and R is the maximum. The statement that it is not limited when choosing the
number of neurons in the hidden layer is not true [44]. The number of neurons is not
necessarily the more significant. The excessive number of neurons will lead to overfitting
the model. According to this principle, an optimization of the ANN model was performed
to determine the number of neurons of the ANN, and the final number of neurons obtained
is the best when it is 6. Therefore, the structure of the ANN model for this experiment is
3–6–1. That is, the input layer is 3, the output layer is 2, and the number of neurons is 6.

When the neuron node was determined to be 6, RMSE and R were calculated according
to Formulas (6) and (7). The MSE of the training set is 2.22× 10−6, the MSE of the validation
set is 0.000558, and the MSE of the test set is 0.00256. The accuracy of the experimental
model can be demonstrated by the fact that the training and test set errors are close [26].
As seen in Figure 6, the MSE of the training set, the validation set, and the test set tends
to be stable after four iterations, and the MSE difference between the training set and the
validation set is slight. Therefore, it is considered that the model can be used to calculate
the data of this study.
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As shown in Figure 7a–d, after optimization according to ANN, the R of the training
set is 0.99992, the R of the validation set is 0.99731, the R of the test set is 0.99899, and the R
of all sets is 0.99229.

3.4.3. Comparison of Predictive Capability of RSM and ANN

The predicted and experimental values of RSM and ANN are shown in Table 4. It
can be seen from these data intuitively that the predicted values and experimental values
of ANN are closer than those of RSM. Then the prediction ability of the two methods
was compared according to the size of the statistical parameters Radj

2 and RMSE between
RSM and ANN. Generally, the higher Radj

2, the lower RMSE, and the more accurate the
prediction model is [26]. The Radj

2 and RMSE of RSM were 0.9535 and 0.03254, respectively.
The Radj

2 and RMSE of ANN were 0.9797 and 2.72249 × 10−5, respectively. It can be seen
that the Radj

2 of ANN is higher than RSM, and its RMSE is far less than RSM. Therefore, it
can be proved that the ANN model can better calculate the experimental results than the
RSM model, which is related to its general ability to approximate nonlinear systems [28].
In conclusion, it can be concluded that the ANN model is more reliable and accurate than
RSM in its prediction capability and can be better used to calculate the test results of the
extraction process of bioactive substances.
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4. Conclusions

This study prepared 17 kinds of menthol-based HDESs composed of different HBA
and HBD. This natural hydrophobic solvent was used for the first time to extract UA in
apple peels to replace the traditional organic solvent. According to the solubility test, the
solubility of UA in HDESs is significantly improved compared to that in the traditional
organic solvent. The solubility of UA in ethanol is only 4.16 µg/mL, while the solubility
of UA in HDES is up to 36.2 µg/mL. The response surface optimization concluded that
temperature had the most significant effect on the extraction, and the optimized test
conditions obtained were 49 ◦C, 32 min, and 1:16.5 g/mL, respectively. In this study, two
different prediction methods, RSM and ANN, were used to calculate the values of 17 groups
of experiments. According to the analysis of the data parameters in the two models, such
as Radj

2 and RMSE, ANN has a better prediction ability than RSM. Therefore, this work has
the potential to become the foundation of an efficient technique for the extraction of UA for
application in food industry. HDES is a promising extraction solvent, and its significance
as a solvent is more than that. More studies need to pay attention to the coexistence of DES
in the activity protection and efficacy promotion of plant-active ingredients.
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