Quality and Nutritional Parameters of Food in Agri-Food Production Systems
Abstract
:1. Introduction
2. Organic Food
3. Traditional Food
4. Nutritional Value, Food Quality and Safety
5. Content of Nutrients, Dry Matter, Vitamins and Other Substances in Crops
6. Secondary Metabolites and Antioxidants
7. Food Safety
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Çakmakçı, R.; Erdoğan, U. Organic Farming, 3rd ed.; Publishing Office of Atatürk University: Erzurum, Turkey, 2015; pp. 6–256. [Google Scholar]
- Boone, L.; Roldán-Ruiz, I.; Van linden, V.; Muylle, H.; Dewulf, J. Environmental sustainability of conventional and organic farming: Accounting for ecosystem services in life cycle assessment. Sci. Total Environ. 2019, 695, 133841. [Google Scholar] [CrossRef]
- Goel, R.; Debbarma, P.; Kumari, P.; Suyal, D.C.; Kumar, S.; Mahapatra, B.S. Assessment of soil chemical quality, soil microbial population and plant growth parameters under organic and conventional rice-wheat cropping system. Agric. Res. 2021, 10, 193–204. [Google Scholar] [CrossRef]
- Rempelos, L.; Baranski, M.; Wang, J.; Adams, T.N.; Adebusuyi, K.; Beckman, J.J.; Brockbank, C.J.; Douglas, B.S.; Feng, T.; Greenway, J.D.; et al. Integrated soil and crop management in organic agriculture: A logical framework to ensure food quality and human health? Agronomy 2021, 11, 2494. [Google Scholar] [CrossRef]
- Bickel, R.; Rossier, R. Sustainability and Quality of Organic Food, 2nd ed.; Research Institute of Organic Agriculture: Ackerstrasse, Switzerland, 2015; pp. 1–28. [Google Scholar]
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.L.; Jia, Z.H.; Peng, L.; Chen, Q.; He, L.; Jiang, Y.M.; Ge, S.F. Life cycle assessment of conventional and organic apple production systems in China. J. Clean. Prod. 2018, 201, 156–168. [Google Scholar] [CrossRef]
- Clark, S. Organic farming and climate change: The need for innovation. Sustainability 2020, 12, 7012. [Google Scholar] [CrossRef]
- Yadava, A.K.; Komaraiah, J.B. Benchmarking the performance of organic farming in India. J. Public Aff. 2020, 20, e2208. [Google Scholar] [CrossRef]
- Lesur-Dumoulin, C.; Malézieux, E.; Ben-Ari, T.; Langlais, C.; Makowski, D. Lower average yields but similar yield variability in organic versus conventional horticulture. A meta-analysis. Agron. Sustain. Dev. 2017, 37, e45. [Google Scholar] [CrossRef] [Green Version]
- Tsvetkov, I.; Atanassov, A.; Vlahova, M.; Carlier, L.; Christov, N.; Lefort, F.; Rusanov, K.; Badjakov, I.; Dincheva, I.; Tchamitchian, M.; et al. Plant organic farming research-current status and opportunities for future development. Biotechnol. Biotechnol. Equip. 2018, 32, 241–260. [Google Scholar] [CrossRef] [Green Version]
- Çakmakçı, R. Effects of organic versus conventional management on bacterial population and pH in tea orchards soils. In Proceedings of the 5th International Eurasian Congress on Natural Nutrition, Healthy Life & Sport, Ankara, Turkey, 2–6 October 2019; Karaman, M.R., Erdogan Orhan, I., Zorba, E., Konar, N., Eds.; Natural: Ankara, Turkey, 2019; pp. 231–239. [Google Scholar]
- Brantsæter, A.L.; Ydersbond, T.A.; Hoppin, J.A.; Haugen, M.; Meltzer, H.M. Organic food in the diet: Exposure and healt implications. Annu. Rev. Public Health 2017, 38, 295–313. [Google Scholar] [CrossRef]
- Wesołowska, S.; Futa, B.; Myszura, M.; Kobyłka, A. Residual Effects of Different Cropping Systems on Physicochemical Properties and the Activity of Phosphatases of Soil. Agriculture 2022, 12, 693. [Google Scholar] [CrossRef]
- Suja, G.; Byju, G.; Jyothi, A.N.; Veena, S.S.; Sreekumar, J. Yield, quality and soil health under organic vs conventional farming in taro. Sci. Hortic. 2017, 218, 334–343. [Google Scholar] [CrossRef]
- Schrama, M.; de Haan, J.J.; Kroonen, M.; Verstegen, H.; Van der Putten, W.H. Crop yield gap and stability in organic and conventional farming systems. Agric. Ecosyst. Environ. 2018, 256, 123–130. [Google Scholar] [CrossRef]
- Seufert, V.; Ramankutty, N.; Foley, J. Comparing the yields of organic and conventional agriculture. Nature 2012, 485, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Bender, I.; Edesi, L.; Hiiesalu, I.; Ingver, A.; Kaart, T.; Kaldmäe, H.; Talve, T.; Tamm, I.; Luik, A. Organic carrot (Daucus carota L.) production has an advantage over conventional in quantity as well as in quality. Agronomy 2020, 10, 1420. [Google Scholar] [CrossRef]
- Montalba, R.; Vieli, L.; Spirito, F.; Muñoz, E. Environmental and productive performance of different blueberry (Vaccinium corymbosum L.) production regimes: Conventional, organic, and agroecological. Sci. Hortic. 2019, 256, 108592. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Ares, G.; Thøgersen, J.; Monteleone, E. A sense of sustainability? How sensory consumer science can contribute to sustainable development of the food sector. Trends Food Sci. Technol. 2019, 90, 180–186. [Google Scholar] [CrossRef]
- Zickafoose, A.; Lu, P.; Baker, M. Forecasting food innovations with a Delphi Study. Foods 2022, 11, 3723. [Google Scholar] [CrossRef]
- Çakmakçı, S.; Çakmakçı, R. Organic food processing and food additives. In Proceedings of the 4th Food Engineering Congress, Ankara, Turkey, 29 September–1 October 2005; pp. 387–400. [Google Scholar]
- Hemmerling, S.; Asioli, D.; Spiller, A. Core organic taste: Preferences for naturalness–related sensory attributes of organic food among European consumers. J. Food Prod. Mark. 2016, 22, 824–850. [Google Scholar] [CrossRef]
- Yadav, R.; Singh, K.K.; Srivastava, A.; Ahmad, A. Motivators and barriers to sustainable food consumption: Qualitative inquiry about organic food consumers in a developing nation. Int. J. Nonprofit Volunt. Sect. Mark. 2019, 24, e1650. [Google Scholar] [CrossRef]
- Boobalan, K.; Nachimuthu, G.S.; Sivakumaran, B. Understanding the psychological benefits in organic consumerism: An empirical exploration. Food Qual. Prefer. 2021, 87, 104070. [Google Scholar] [CrossRef]
- Ayaviri-Nina, V.D.; Jaramillo-Quinzo, N.S.; Quispe-Fernández, G.M.; Mahmud, I.; Alasqah, I.; Alharbi, T.A.F.; Alqarawi, N.; Carrascosa, C.; Saraiva, A.; Alfheeaid, H.A.; et al. Consumer behaviour and attitude towards the purchase of organic products in Riobamba, Ecuador. Foods 2022, 11, 2849. [Google Scholar] [CrossRef] [PubMed]
- Bernacchia, R.; Preti, R.; Vinci, G. Organic and conventional foods: Differences in nutrients. Ital. J. Food Sci. 2016, 28, 565–578. [Google Scholar]
- Hurtado-Barroso, S.; Tresserra-Rimbau, A.; Vallverdú-Queralt, A.; Lamuela-Raventós, R.M. Organic food and the impact on human health. Crit. Rev. Food Sci. Nutr. 2019, 59, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Dello Russo, M.; Spagnuolo, C.; Moccia, S.; Angelino, D.; Pellegrini, N.; Martini, D. Nutritional quality of paste sold on the Italian market: The food labelling of Italian products (FLIP) study. Nutrients 2021, 13, 171. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Xi, Y.G.; Wang, L.; Chen, Q.H.; Tian, W.; Yang, Y.W. A comparison study on quality of organic and conventional rice and wheat. J. Ecol. Rural Environ. 2018, 34, 571–576. [Google Scholar]
- Nocente, F.; De Stefanis, E.; Ciccoritti, R.; Pucciarmati, S.; Taddei, F.; Campiglia, E.; Radicetti, E.; Mancinelli, R. How do conventional and organic management affect the healthy potential of durum wheat grain and semolina pasta traits? Food Chem. 2019, 297, 124884. [Google Scholar] [CrossRef]
- Park, E.Y.; Baik, B.K.; Miller, P.R.; Burke, I.C.; Wegner, E.A.; Tautges, N.E.; Morris, C.F.; Fuersst, E.P. Functional and nutritional characteristics of wheat grown in organic and conventional cropping systems. Cereal Chem. 2015, 92, 504–512. [Google Scholar] [CrossRef]
- Fares, C.; Menga, V.; Codianni, P.; Russo, M.; Perrone, D.; Suriano, S.; Savino, M.; Rascio, A. Phenolic acids variability and grain quality of organically and conventionally fertilised old wheats under a warm climate. J. Sci. Food Agric. 2019, 88, 4615–4623. [Google Scholar] [CrossRef]
- Brečić, R.; Mesić, Z.; Cerjak, M. Importance of intrinsic and extrinsic quality food characteristics by different consumer segments. Br. Food J. 2017, 119, 845–862. [Google Scholar] [CrossRef]
- Çakmakçı, S.; Salık, M.A. Erzurum’un coğrafi işaret tescili almış ürünleri: Güncel bir bakış ve öneriler (Products with geographical indication of Erzurum: A current overview and suggestions). ATA-Food J. 2022, 1, 0010. [Google Scholar]
- Krajnca, B.; Bontempo, L.; Araus, J.L.; Giovanetti, M.; Alegria, C.; Lauteri, M.; Augusti, A.; Atti, N.; Smeti, S.; Taous, F.; et al. Selective methods to investigate authenticity and geographical origin of Mediterranean food products. Food Rev. Int. 2021, 37, 656–682. [Google Scholar] [CrossRef]
- Bircha, D.; Memery, J. Tourists, local food and the intention-behaviour gap. J. Hosp. Tour. Manag. 2020, 43, 53–61. [Google Scholar] [CrossRef]
- Bisht, I.S. Agri-food system dynamics of small-holder hill farming communities of Uttarakhand in North-Western India: Socio-economic and policy considerations for sustainable development. Agroecol. Sustain. Food Syst. 2020, 45, 417–449. [Google Scholar] [CrossRef]
- Ürkek, B.; Şengül, M.; Erkaya, T.; Aksakal, V. Prevalence and comparing of some microbiological properties, somatic cell count and antibiotic residue of organic and conventional raw milk produced in Turkey. Korean J. Food Sci. Anim. 2017, 37, 264–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popa, M.E.; Mitelut, A.C.; Popa, E.E.; Stan, A.; Popa, V.I. Organic foods contribution to nutritional quality and value. Trends Food Sci. Technol. 2019, 84, 15–18. [Google Scholar] [CrossRef]
- Mukherjee, T.; Omondi, E.C.; Hepperly, P.R.; Seidel, R.; Heller, W.P. Impacts of organic and conventional management on the nutritional level of vegetables. Sustainability 2020, 12, 8965. [Google Scholar] [CrossRef]
- Dos Santos, A.M.P.; Lima, J.S.; dos Santos, I.F.; Silva, E.F.R.; de Santana, F.A.; de Araujo, D.G.G.R.; dos Santos, L.O. Mineral and centesimal composition evaluation of conventional and organic cultivars sweet potato (Ipomoea batatas (L.) Lam) using chemometric tools. Food Chem. 2019, 273, 166–171. [Google Scholar] [CrossRef]
- Navarro, P.; Pérez-Lόpez, A.J.; Mercader, M.T.; Carbonell-Barrachina, A.A.; Gabaldon, J.A. Antioxidant activity, color, carotenoids composition, minerals, vitamin C and sensory quality of organic and conventional mandarin juice, cv. Orogrande. Food Sci. Technol. Int. 2011, 17, 241–248. [Google Scholar] [CrossRef]
- Sreedevi, L.; Divakar, S. Comparative quality analysis of banana (var palayamkodan). Int. Res. J. Biol. Sci. 2015, 4, 6–11. [Google Scholar]
- Han, W.Y.; Wang, D.H.; Fu, S.W.; Ahmed, S. Tea from organic production has higher functional quality characteristics compared with tea from conventional management systems in China. Biol. Agric. Hortic. 2018, 34, 120–131. [Google Scholar] [CrossRef]
- Gomiero, T. Food quality assessment in organic vs. conventional agricultural produce: Findings and issues. Appl. Soil Ecol. 2018, 123, 714–728. [Google Scholar] [CrossRef]
- Rempelos, L.; Almuayrifi, A.M.; Baranski, M.; Tetard-Jones, C.; Eyre, M.; Shotton, P.; Cakmak, I.; Ozturk, L.; Cooper, J.; Volakakis, N.; et al. Effects of agronomic management and climate on leaf phenolic profiles, disease severity, and grain yield in organic and conventional wheat production systems. J. Agric. Food Chem. 2018, 66, 10369–10379. [Google Scholar] [CrossRef] [PubMed]
- Pedro, A.S.; Sánchez-Mata, M.C.; Pérez-Rodríguez, M.L.; Cámara, M.; López-Colón, J.L.; Bach, F.; Bellettini, M.; Haminiuk, C.W.I. Qualitative and nutritional comparison of goji berry fruits produced in organic and conventional systems. Sci. Hortic. 2019, 257, 108660. [Google Scholar] [CrossRef]
- Montiel-León, J.M.; Duy, S.V.; Munoz, G.; Verner, M.A.; Hendawi, M.Y.; Moya, H.; Amyot, M.; Sauvé, S. Occurrence of pesticides in fruits and vegetables from organic and conventional agriculture by QuEChERS extraction liquid chromatography tandem mass spectrometry. Food Control 2019, 104, 74–82. [Google Scholar] [CrossRef]
- Brandt, K.; Leifert, C.; Sanderson, C.; Seal, C.J. Agroecosystem management and nutritional quality of plant foods: The case of organic fruits and vegetables. Crit. Rev. Plant Sci. 2011, 30, 177–197. [Google Scholar] [CrossRef]
- Yu, X.F.; Guo, L.; Jiang, G.; Song, Y.; Muminov, M.A. Advances of organic products over conventional productions with respect to nutritional quality and food security. Acta Ecol. Sin. 2018, 38, 53–60. [Google Scholar] [CrossRef]
- Hadayat, N.; De Oliveira, L.M.; Silva, E.; Han, L.; Hussain, M.; Liu, X.; Ma, L.Q. Assessment of trace metals infive most-consumed vegetables in the US: Conventional vs. organic. Environ. Pollut. 2018, 243, 292–300. [Google Scholar] [CrossRef]
- Hallmann, E.; Kazimierczak, R.; Marszałek, K.; Drela, N.; Kiernozek, E.; Toomik, P.; Matt, D.; Luik, A.; Rembiałkowska, E. The nutritive value of organic and conventional white cabbage (Brassica oleracea L. var. capitata) and anti-apoptotic activity in gastric adenocarcinoma cells of sauerkraut juice produced therof. J. Agric. Food Chem. 2017, 65, 8171–8183. [Google Scholar]
- Gill, B.S.; Kaur, K. Study on functional and antioxidant properties of organically and conventionally grown rice. Agric. Res. J. 2020, 57, 235–244. [Google Scholar] [CrossRef]
- Karaat, F.E. Organic vs conventional almond: Market quality, fatty acid composition and volatile aroma compounds. Appl. Ecol. Environ. Res. 2019, 17, 7783–7793. [Google Scholar] [CrossRef]
- Villa-Ruano, N.; Rosas-Bautista, A.; Rico-Arzate, E.; Cruz-Narvaez, Y.; Zepeda-Vallejo, L.G.; Lalaleo, L.; Hidalgo-Martínez, D.; Becerra- Martínez, E. Study of nutritional quality of pomegranate (Punica granatum L.) juice using 1H NMR-based metabolomic approach: A comparison between conventionally and organically grown fruits. LWT—Food Sci. Technol. 2020, 134, 110222. [Google Scholar] [CrossRef]
- Armesto, J.; Rocchetti, G.; Senizza, B.; Pateiro, M.; Barba, F.J.; Domíngueza, R.; Lucini, L.; Lorenzo, J.M. Nutritional characterization of Butternut squash (Cucurbita moschata D.): Effect of variety (Ariel vs. Pluto) and farming type (conventional vs. organic). Food Res. Int. 2020, 132, 109052. [Google Scholar] [CrossRef] [PubMed]
- Głodowska, M.; Krawczyk, J. Difference in the concentration of macro elements between organically and conventionally grown vegetables. Agric. Sci. 2019, 10, 267–277. [Google Scholar] [CrossRef] [Green Version]
- Vinha, A.F.; Barreira, S.V.P.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Organic versus conventional tomatoes: Influence on physicochemical parameters, bioactive compounds and sensorial attributes. Food Chem. Toxicol. 2014, 67, 139–144. [Google Scholar] [CrossRef]
- Datta, P.; Das, K. Vitamin C content of guava in conventional versus organic farming system. J. Ecofriendly Agric. 2017, 12, 17–18. [Google Scholar]
- Kazimierczak, R.; Średnicka-Tober, D.; Hallmann, E.; Kopczyńska, K.; Zarzyńska, K. The impact of organic vs. conventional agricultural practices on selected quality features of eight potato cultivars. Agronomy 2019, 9, 799. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The effect on tuber quality of an organic versus a conventional cultivation system in the early crop potato. J. Food Compos. Anal. 2017, 62, 189–196. [Google Scholar] [CrossRef]
- Hallmann, E. The influence of organic and conventional cultivation systems on the nutritional value and content of bioactive compounds in selected tomato types. J. Sci. Food Agric. 2012, 92, 2840–2848. [Google Scholar] [CrossRef]
- Oliveira, A.B.; Moura, C.F.H.; Gomes-Filho, E.; Marco, C.A.; Urban, L.; Miranda, M.R.A. The impact of organic farming on quality of tomatoes is associated to increased oxidative stress during fruit development. PLoS ONE 2013, 8, e56354. [Google Scholar] [CrossRef] [Green Version]
- Anton, D.; Matt, D.; Pedastsaar, P.; Bender, I.; Kazimierczak, R.; Roasto, M.; Kaart, T.; Luik, A.; Püssa, T. Three-year comparative study of polyphenol contents and antioxidant capacities in fruits of tomato (Lycopersicon esculentum Mill.) cultivars grown under organic and conventional conditions. J. Agric. Food Chem. 2014, 62, 5173–5180. [Google Scholar] [CrossRef]
- Liñero, O.; Cidad, M.; Carrero, J.A.; Nguyen, C.; de Diego, A. Accumulation and translocation of essential and nonessential elements by tomato plants (Solanum lycopersicum) cultivated in open-air plots under organic or conventional farming techniques open-air plots under organic or conventional farming techniques. J. Agric. Food Chem. 2015, 63, 9461–9470. [Google Scholar] [CrossRef]
- Martí, R.; Leiva-Brondo, M.; Lahoz, I.; Campillo, C.; Cebolla-Cornejo, J.; Roselló, S. Polyphenol and L-ascorbic acid content in tomato as influenced by high lycopene genotypes and organic farming at different environments. Food Chem. 2018, 239, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Vallverdú-Queralt, A.; Medina-Remón, A.; Casals-Ribes, I.; Amat, M.; Lamuela-Raventós, R.M. A metabolomic approach differentiates between conventional and organic ketchups. J. Agric. Food Chem. 2011, 59, 11703–11710. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.S.; Kim, G.H. Comparison of the impact of organic and conventional agricultural practices on the quality and antioxidant activity of Welsh onion. Acta Hortic. 2016, 1141, 251–255. [Google Scholar] [CrossRef]
- Ren, F.; Reilly, K.; Kerry, J.P.; Gaffney, M.; Hossain, M.; Rai, D.K. Higher antioxidant activity, total flavonols, and specific quercetin glucosides in two different onions (Allium cepa L.) varieties grown under organic production: Results from a 6-year field study. J. Agric. Food Chem. 2017, 65, 5122–5132. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. Nutritional and sensory characteristics of ‘‘early’’ potato cultivars under organic and conventional cultivation systems. Food Chem. 2012, 133, 1249–1254. [Google Scholar] [CrossRef]
- Brazinskiene, V.; Asakaviciute, R.; Miezeliene, A.; Alencikiene, G.; Ivanauskas, L.; Jakstas, V.; Viskelis, P.; Razukas, A. Effect of farming systems on the yield, quality parameters and sensory properties of conventionally and organically grown potato (Solanum tuberosum L.) tubers. Food Chem. 2014, 145, 903–909. [Google Scholar] [CrossRef]
- Kopczyńska, K.; Średnicka-Tober, D.; Hallmann, E.; Wilczak, J.; Wasiak-Zys, G.; Wyszyński, Z.; Kucińska, K.; Perzanowska, A.; Szacki, P.; Barański, M.; et al. Bioactive compounds, sugars, and sensory attributes of organic and conventionally produced courgette (Cucurbita pepo). Foods 2021, 10, 2475. [Google Scholar] [CrossRef]
- Bach, V.; Kidmose, U.; Kristensen, H.L.; Edelenbos, M. Eating quality of carrots (Daucus carota L.) grown in one conventional and three organic cropping systems over three years. J. Agric. Food Chem. 2015, 63, 9803–9811. [Google Scholar] [CrossRef] [Green Version]
- de Castro, N.T.; de Alencar, E.R.; Zandonadi, R.P.; Han, H.; Raposo, A.; Ariza-Montes, A.; Araya-Castillo, L.; Botelho, R.B.A. Influence of cooking method on the nutritional quality of organic and conventional Brazilian vegetables: A study on sodium, potassium, and carotenoids. Foods 2021, 10, 1782. [Google Scholar] [CrossRef] [PubMed]
- Valverde, J.; Reilly, K.; Villacreces, S.; Gaffney, M.; Grant, J.; Brunton, N. Variation in bioactive content in broccoli (Brassica oleracea var. italica) grown under conventional and organic production systems. J. Sci. Food Agric. 2015, 95, 1163–1171. [Google Scholar] [PubMed]
- Lo Scalzo, R.; Picchi, V.; Migliori, C.A.; Campanelli, G.; Leteo, F.; Ferrari, V.; Di Cesare, L.F. Variations in the phytochemical contents and antioxidant capacity of organically and conventionally grown Italian cauliflower (Brassica oleracea L. subsp. botrytis): Results from a three-year field study. J. Agric. Food Chem. 2013, 61, 10335–10344. [Google Scholar]
- Raigón, M.D.; Rodríguez-Burruezo, A.; Prohens, J. Effects of organic and conventional cultivation methods on composition of eggplant fruits. J. Agric. Food Chem. 2010, 58, 6833–6840. [Google Scholar] [CrossRef] [PubMed]
- Jakopic, J.; Slatnar, A.; Mikulic-Ptkovsek, M.; Veberic, R.; Stampar, F.; Bavec, F.; Bavec, M. Effect of different production systems on chemical profiles of dwarf french bean (Phaseolus vulgaris L. cv. Top Crop) pods. J. Agric. Food Chem. 2013, 61, 2392–2399. [Google Scholar] [CrossRef]
- Lima, G.P.P.; Costa, S.M.; Monaco, K.A.; Uliana, M.R.; Fernandez, R.M.; Correa, C.R.; Vianello, F.; Zevallos, L.C.; Minatel, I.O. Cooking processes increase bioactive compounds in organic and conventional green beans. Int. J. Food Sci. Nutr. 2017, 68, 919–930. [Google Scholar] [CrossRef] [Green Version]
- Giusti, F.; Caprioli, G.; Ricciutelli, M.; Torregiani, E.; Vittori, S.; Sagratini, G. Analysis of 17 polyphenolic compounds in organic and conventional legumes by high-performance liquid chromatography-diode array detection (HPLC-DAD) and evaluation of their antioxidant activity. Int. J. Food Sci. Nutr. 2018, 69, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Koh, E.; Charoenprasert, S.; Mitchell, A.E. Effect of organic and conventional cropping systems on ascorbic acid, vitamin C, flavonoids, nitrate, and oxalate in 27 varieties of spinach (Spinacia oleracea L.). J. Agric. Food Chem. 2012, 60, 3144–3150. [Google Scholar] [CrossRef]
- Negrão, L.D.; Sousa, P.V.D.; Barradas, A.M.; Brandão, A.D.A.S.; Araújo, M.A.D.; Moreira-Araújo, R.S.D. Bioactive compounds and antioxidant activity of crisphead lettuce (Lactuca sativa L) of three different cultivation systems. Food Sci. Technol. Camp. 2021, 41, 365–370. [Google Scholar]
- Lo Scalzo, R.; Campanelli, G.; Paolo, D.; Fibiani, M.; Bianchi, G. Infuence of organic cultivation and sampling year on quality indexes of sweet pepper during 3 years of production. Eur. Food Res. Technol. 2020, 246, 1325–1339. [Google Scholar] [CrossRef]
- Hallmann, E.; Marszałek, K.; Lipowski, J.; Jasińska, U.; Kazimierczak, R.; Średnicka-Tober, D.; Rembiałkowska, E. Polyphenols and carotenoids in pickled bell pepper from organic and conventional production. Food Chem. 2019, 278, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, K.; Mishra, P.; Dayanand; Patni, V. Influence of organic farming on volatile compounds in methanolic fruit extracts of chili (Capsicum annuum L.). J. Microbiol. Biotechnol. Food Sci. 2022, 12, e3545. [Google Scholar] [CrossRef]
- Liang, K.; Liang, S.; Lu, L.; Zhu, D.; Zhu, H.; Liu, P.; Zhang, M. Metabolic variation and cooking qualities of millet cultivars grown both organically and conventionally. Food Res. Int. 2018, 106, 825–833. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, W.; Zhang, Y.; Liu, Z.; Shao, S.; Zhou, L.; Rogers, K.M. Differentiating organically farmed rice from conventional and green rice harvested from an experimental field trial using stable isotopes and multi-element chemometrics. J. Agric. Food Chem. 2018, 66, 2607–2615. [Google Scholar] [CrossRef] [PubMed]
- Vrček, I.V.; Čepo, D.V.; Rašić, D.; Peraica, M.; Žuntar, I.; Bojić, M.; Mendaš, G.; Medić-Šarić, M. A comparison of the nutritional value and food safety of organically and conventionally produced wheat flours. Food Chem. 2014, 143, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Mazzoncini, M.; Antichi, D.; Silvestri, N.; Ciantelli, G.; Sgherri, C. Organically vs conventionally grown winter wheat: Effects on grain yield, technological quality, and on phenolic composition and antioxidant properties of bran and refined flour. Food Chem. 2015, 175, 445–451. [Google Scholar] [CrossRef]
- Žvikas, V.; Pukelevičienė, V.; Ivanauskas, L.; Pukalskas, A.; Ražukas, A.; Jakštas, V. Variety-based research on the phenolic content in the aerial parts of organically and conventionally grown buckwheat. Food Chem. 2016, 213, 660–667. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Hallmann, E.; Rembiałkowska, E. Effects of organic and conventional production systems on the content of bioactive substances in four species of medicinal plants. Biol. Agric. Hortic. 2015, 31, 118–127. [Google Scholar] [CrossRef]
- Lu, Y.; Gao, B.; Chen, P.; Charles, D.; Yu, L.L. Characterisation of organic and conventional sweet basil leaves using chromatographic and flow-injection mass spectrometric (FIMS) fingerprints combined with principal component analysis. Food Chem. 2014, 154, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Ku, Y.G.; Bae, J.H.; Namieśnik, J.; Barasch, D.; Nemirovski, A.; Katrich, E.; Gorinstein, S. Detection of bioactive compounds in organically and conventionally grown asparagus spears. Food Anal. Methods 2018, 11, 309–318. [Google Scholar] [CrossRef]
- Ozuna, C.; Mulík, S.; Valdez-Rodríguez, B.; Abraham-Juáreza, M.R.; Fernández-López, C.L. The effect of organic farming on total phenols, total flavonoids, brown compounds and antioxidant activity of spent coffee grounds from Mexico. Biol. Agric. Hortic. 2020, 36, 107–118. [Google Scholar] [CrossRef]
- Jin, P.; Wang, S.Y.; Wang, C.Y.; Zheng, Y. Effect of cultural system and storage temperature on antioxidant capacity and phenolic compounds in strawberries. Food Chem. 2011, 124, 262–270. [Google Scholar] [CrossRef]
- Conti, S.; Villari, G.; Faugno, S.; Melchionna, G.; Somma, S.; Caruso, G. Effects of organic vs. conventional farming system on yield and quality of strawberry grown as an annual or biennial crop in southern Italy. Sci. Hortic. 2014, 180, 63–71. [Google Scholar] [CrossRef]
- Kobi, H.B.; Martins, M.C.; Silva, P.I.; Souza, J.L.; Carneiro, J.C.S.; Heleno, F.; Queiroz, M.E.L.R.; Costa, N.M.B. Organic and conventional strawberries: Nutritional quality, antioxidant characteristics and pesticide residues. Fruits 2018, 73, 39–47. [Google Scholar] [CrossRef]
- Jin, P.; Wang, S.Y.; Gao, H.; Chen, H.; Zheng, Y.; Wang, C.Y. Effect of cultural system and essential oil treatment on antioxidant capacity in raspberries. Food Chem. 2012, 132, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Ponder, A.; Hallmann, E. The nutritional value and vitamin C content of different raspberry cultivars from organic and conventional production. J. Food Compos. Anal. 2020, 87, 103429. [Google Scholar] [CrossRef]
- Espe, A.; Shetty, K.; Sarkar, D.; Hatterman-Valenti, H. Phenolic bioactive-linked antioxidant and anti-hyperglycemic functionalities of blackberry cultivars grown under organic and conventional production practices. Acta Hortic. 2021, 1329, 99–112. [Google Scholar] [CrossRef]
- Khalil, H.A.; Hassan, S.M. Ascorbic acid, β-carotene, total phenolic compound and microbiological quality of organic and conventional citrus and strawberry grown in Egypt. Afr. J. Biotechnol. 2015, 14, 272–277. [Google Scholar]
- Ponder, A.; Najman, K.; Aninowski, M.; Leszczynska, J.; Glowacka, A.; Bielarska, A.M.; Lasinskas, M.; Hallmann, E. Polyphenols content, antioxidant properties and allergenic potency of organic and conventional blue honeysuckle berries. Molecules 2022, 27, 6083. [Google Scholar] [CrossRef]
- Trenka, M.; Nawirska-Olszanska, A.; Oziemblowski, M. Analysis of selected properties of fruits of black chokeberry (Aronia melanocarpa L.) from organic and conventional cultivation. Appl. Sci. 2020, 10, 9096. [Google Scholar] [CrossRef]
- Reche, J.; Hernández, F.; Almansa, M.S.; Carbonell-Barrachina, Á.A.; Legua, P.; Amorós, A. Effects of organic and conventional farming on the physicochemical and functional properties of jujube fruit. LWT—Food Sci. Technol. 2019, 99, 438–444. [Google Scholar] [CrossRef]
- Letaief, H.; Zemni, H.; Mliki, A.; Chebil, S. Composition of Citrus sinensis (L.) Osbeck cv «Maltaise demi-sanguine» juice. A comparison between organic and conventional farming. Food Chem. 2016, 194, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Stracke, B.A.; Rüfer, C.E.; Weibel, F.P.; Bub, A.; Watzl, B. Three-year comparison of the polyphenol contents and antioxidant capacities in organically and conventionally produced apples (Malus domestica Bork. Cultivar ‘Golden Delicious’). J. Agric. Food Chem. 2009, 57, 4598–4605. [Google Scholar] [CrossRef] [PubMed]
- Gąstoł, M.; Domagała-Świątkiewicz, I. Comparative study on mineral content of organic and conventional apple, pear and black currant juices. Acta Sci. Pol-Hortorum 2012, 11, 3–14. [Google Scholar]
- Hallmann, E.; Rozpara, E.; Słowianek, M.; Leszczyńska, J. The effect of organic and conventional farm management on the allergenic potency and bioactive compounds status of apricots (Prunus armeniaca L.). Food Chem. 2019, 279, 171–178. [Google Scholar] [CrossRef]
- D’Evoli, L.; Moscatello, S.; Baldicchi, A.; Lucarini, M.; Cruz-Castillo, J.G.; Aguzzi, A.; Gabrielli, P.; Proietti, S.; Battistelli, A.; Famiani, F.; et al. Post-harvest quality, phytochemicals and antioxidant activity in organic and conventional kiwifruit (Actinidia deliziosa, cv. Hayward). Ital. J. Food Sci. 2013, 25, 362–368. [Google Scholar]
- Karaosmanoğlu, H.; Üstün, N.Ș. Some physical properties of organic and conventional hazelnuts (Corylus avellana L.). Akademic Gida 2017, 15, 377–385. [Google Scholar]
- Muleroa, J.; Pardo, F.; Zafrilla, P. Antioxidant activity and phenolic composition of organic and conventional grapes and wines. J. Food Compos. Anal. 2010, 23, 569–574. [Google Scholar] [CrossRef]
- Granato, D.; de Magalhães Carrapeiro, M.; Fogliano, V.; van Ruth, S.M. Effects of geographical origin, varietal and farming system on the chemical composition and functional properties of purple grape juices: A review. Trends Food Sci. Technol. 2016, 52, 31–48. [Google Scholar] [CrossRef]
- Dutra, M.C.P.; Rodriguez, L.L.; Oliveira, D.; Pereira, G.E.; Lima, M.S. Integrated analyses of phenolic compounds and minerals of Brazilian organic and conventional grape juices and wines: Validation of a method for determination of Cu, Fe and Mn. Food Chem. 2018, 269, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Duman, I.; Aksoy, U.; Altındişli, A.; Elmacı, Ö.L. A long-term trial to determine variations in the yield and quality of a processing type pepper (Capsicum annuum L. cv. Yalova yağlık-28) in organic and conventional farming systems. Org. Agric. 2018, 8, 69–77. [Google Scholar] [CrossRef]
- Skrodzka, V. Organic agricultural products in Europe and USA. Management 2017, 21, 151–164. [Google Scholar] [CrossRef]
- Pires, P.C.C.; Cândido, F.G.; Cardoso, L.M.; Costa, N.M.B.; Martino, H.S.D.; Pinheiro–Sant’Ana, H.M. Comparison of mineral and trace element contents between organically and conventionally grown fruit. Fruits 2014, 70, 29–36. [Google Scholar]
- Pereira, F.O.; Pereira, R.S.; Rosa, L.S.; Teodoro, A.J. Organic and conventional vegetables: Comparison of the physical and chemical characteristics and antioxidant activity. Afr. J. Biotechnol. 2016, 15, 1746–1755. [Google Scholar]
- Średnicka-Tober, D.; Barański, M.; Kazimierczak, R.; Ponder, A.; Kopczyńska, K.; Hallmann, E. Selected antioxidants in organic vs. conventionally grown apple fruits. Appl. Sci. 2020, 10, 2997. [Google Scholar] [CrossRef]
- Kopczyńska, K.; Kazimierczak, R.; Średnicka-Tober, D.; Barański, M.; Wyszyński, Z.; Kucińska, K.; Perzanowska, A.; Szacki, P.; Rembiałkowska, E.; Hallmann, E. The profile of selected antioxidants in two courgette varieties from organic and conventional production. Antioxidants 2020, 9, 404. [Google Scholar] [CrossRef]
- Ceccanti, C.; Landi, M.; Antichi, D.; Guidi, L.; Manfrini, L.; Monti, M.; Tosti, G.; Frasconi, C. Bioactive properties of fruits and leafy vegetables managed with integrated, organic, and organic no-tillage practices in the Mediterranean area: A two-year rotation experiment. Agronomy 2020, 10, 841. [Google Scholar] [CrossRef]
- Çakmakçı, S.; Topdaş, E.F.; Çakır, Y.; Kalın, P. Functionality of kumquat (Fortunella margarita) in the production of fruity ice cream. J. Sci. Food Agric. 2016, 96, 1451–1458. [Google Scholar] [CrossRef]
- Frias-Moreno, M.N.; Olivas-Orozco, G.I.; Gonzalez-Aguilar, G.A.; Benitez-Enriquez, Y.E.; Paredes-Alonso, A.; Jacobo-Cuellar, J.L.; Salas-Salazar, N.A.; Ojeda-Barrios, D.L.; Parra-Quezada, R.A. Yield, quality and phytochemicals of organic and conventional raspberry cultivated in Chihuahua, Mexico. Not. Bot. Horti. Agrobot. Cluj Napoca 2019, 47, 522–530. [Google Scholar] [CrossRef] [Green Version]
- Koureh, O.K.; Bakhshi, D.; Pourghayoumi, M.; Majidian, M. Comparison of yield, fruit quality, antioxidant activity, and some phenolic compounds of white seedless grape obtained from organic, conventional, and integrated fertilization. Int. J. Fruit Sci. 2019, 19, 1–12. [Google Scholar] [CrossRef]
- Krόl, K.; Gantner, M.; Tatarak, A.; Hallmann, E. The content of polyphenols in coffee beans as roasting, origin and storage effect. Eur. Food Res. Technol. 2020, 246, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Chrysargyris, A.; Kloukina, C.; Vassiliou, R.; Tomou, E.M.; Skaltsa, H.; Tzortzakis, N. Cultivation strategy to improve chemical profile and anti-oxidant activity of Sideritis perfoliata L. subsp. perfoliata. Ind. Crops Prod. 2019, 140, 111694. [Google Scholar] [CrossRef]
- Anjos, R.; Cosme, F.; Gonçalves, A.; Nunes, F.M.; Vilela, A.; Pinto, T. Effect of agricultural practices, conventional vs organic, on the phytochemical composition of ‘Kweli’ and ‘Tulameen’ raspberries (Rubus idaeus L.). Food Chem. 2020, 328, 126833. [Google Scholar] [CrossRef] [PubMed]
- Carrilloa, C.; Wilches-Pérez, D.; Hallmann, E.; Kazimierczak, R.; Rembiałkowska, E. Organic versus conventional beetroot. Bioactive compounds and antioxidant properties. LWT—Food Sci. Technol. 2019, 116, 108552. [Google Scholar] [CrossRef]
- Zahedipour, P.; Asghari, M.; Abdollahi, B.; Alizadeh, M.; Danesh, Y.R. A comparative study on quality attributes and physiological responses of organic and conventionally grown table grapes during cold storage. Sci. Hortic. 2019, 247, 86–95. [Google Scholar] [CrossRef]
- Hasanaliyeva, G.; Chatzidimitrou, E.; Wang, J.; Baranski, M.; Volakakis, N.; Seal, C.; Rosa, E.A.S.; Iversan, P.O.; Vigar, V.; Barkla, B.; et al. Effects of production region, production systems and grape type/variety on nutritional quality parameters of table grapes; results from a UK retail survey. Foods 2020, 9, 1874. [Google Scholar] [CrossRef]
- Zambrano-Moreno, E.L.; Chávez-Jáuregui, R.N.; Plaza, M.L.; Wessel-Beaver, L. Phenolic content and antioxidant capacity in organically and conventionally grown eggplant (Solanum melongena) fruits following thermal processing. Food Sci. Technol. 2015, 35, 414–420. [Google Scholar] [CrossRef] [Green Version]
- Zrckova, M.; Capouchova, I.; Eliášová, M.; Paznocht, L.; Pazderů, K.; Dvořák, P.; Konvalina, P.; Orsák, M.; Štěrba, Z. The effect of genotype, weather conditions and cropping system on antioxidant activity and content of selected antioxidant compounds in wheat with coloured grain. Plant Soil Environ. 2018, 64, 530–538. [Google Scholar] [CrossRef]
- Silva, C.K.C.; da Silva, K.B.; de Miranda, P.R.B.; Gomes, T.C.A.; Júnior, J.M.S.; Souza, M.A.; dos Santos, A.F.; da Costa, J.G. Fertilizer source influence on antioxidant activity of lettuce. Afr. J. Agric. Res. 2018, 13, 2855–2861. [Google Scholar]
- Ceglie, F.G.; Amodio, M.L.; Colelli, G. Effect of organic production systems on quality and postharvest performance of horticultural produce. Horticulturae 2016, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mesquita, E.; Monteiro, M. Simultaneous HPLC determination of flavonoids and phenolic acids profile in Pêra-Rio orange juice. Food Res. Int. 2018, 106, 54–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legzdina, L.; Ivdre, E.; Piliksere, D.; Vaivode, A.; Mierina, I.; Jure, M. Effect of genotype and crop management systems on the content of antioxidants in hulless and covered spring barley. Zemdirbyste 2018, 105, 315–322. [Google Scholar] [CrossRef] [Green Version]
- Lόpez-Yerena, A.; Lozano-Castellón, J.; Olmo-Cunillera, A.; Tresserra-Rimbau, A.; Quifer-Rada, P.; Jiménez, B.; Pérez, M.; Vallverdú-Queralt, A. Effects of organic and conventional growing systems on the phenolic profile of extra-virgin olive oil. Molecules 2019, 24, 1986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribes-Moya, A.M.; Adalid, A.M.; Raigón, M.D.; Hellín, P.; Fita, A.; Rodríguez-Burruezo, A. Variation in flavonoids in a collection of peppers (Capsicum sp.) under organic and conventional cultivation: Effect of the genotype, ripening stage, and growing system. J. Sci. Food Agric. 2020, 100, 2208–2223. [Google Scholar] [CrossRef] [PubMed]
- Guilherme, R.; Aires, A.; Rodrigues, N.; Peres, A.M.; Pereira, J.A. Phenolics and antioxidant activity of green and red sweet peppers from organic and conventional agriculture: A comparative study. Agriculture 2020, 10, 652. [Google Scholar] [CrossRef]
- Wang, Z.; Erasmus, S.W.; van Ruth, S.M. Preliminary Study on tracing the origin and exploring the relations between growing conditions and isotopic and elemental fingerprints of organic and conventional cavendish bananas (Musa spp.). Foods 2021, 10, 1021. [Google Scholar] [CrossRef]
- Aina, O.E.; Amoo, S.O.; Mugivhisa, L.L.; Olowoyo, J.O. Effect of organic and inorganic sources of nutrients on the bioactive compounds and antioxidant activity of tomato. Appl. Ecol. Environ. Res. 2019, 17, 3681–3694. [Google Scholar] [CrossRef]
- Hassauer, C.; Roosen, J. Toward a conceptual framework for food safety criteria: Analyzing evidence practices using the case of plant protection products. Saf. Sci. 2020, 127, 104683. [Google Scholar] [CrossRef]
- Chai, D.; Meng, T.; Zhang, D. Influence of food safety concerns and satisfaction with government regulation on organic food consumption of Chinese urban residents. Foods 2022, 11, 2965. [Google Scholar] [CrossRef]
- Gawęda, M.; Nizioł-Łukaszewska, Z.; Szopińska, A. The contents of selected metals in carrot cultivated using conventional, integrated and organic method. Acta Hortic. 2012, 936, 257–263. [Google Scholar] [CrossRef]
- Głodowska, M.; Krawczyk, J. Heavy metals concentration in conventionally and organically grown vegetables. Qual. Assur. Saf. Crop Foods 2017, 9, 497–503. [Google Scholar] [CrossRef]
- Hattab, S.; Bougattass, I.; Hassine, R.; Dridi-Al-Mohandes, B. Metals and micronutrients in some edible crops and their cultivation soils in eastern-central region of Tunisia: A comparison between organic and conventional farming. Food Chem. 2019, 270, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Chatterjee, A.; Pal, T.P. Organic farming in India: A vision towards a healthy nation. Food Qual. Saf. 2020, 4, 69–76. [Google Scholar] [CrossRef]
- Krejčová, A.; Návesník, J.; Jičínská, J.; Černohorský, T. An elemental analysis of conventionally, organically and self-grown carrots. Food Chem. 2016, 192, 242–249. [Google Scholar] [CrossRef]
- Pleadin, J.; Staver, M.M.; Markov, K.; Frece, J.; Zadravec, M.; Jaki, V.; Krupić, I.; Vahčić, N. Mycotoxins in organic and conventional cereals and cereal products grown and marketed in Croatia. Mycotoxin Res. 2017, 33, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Pagadala, S.; Sasha, C.; Marine, S.C.; Micallef, S.A.; Wang, F.; Pahl, D.M.; Melendez, M.V.; Kline, W.L.; Oni, R.A.; Walsh, C.S.; et al. Assessment of region, farming system, irrigation source and sampling time as food safety risk factors for tomatoes. Int. J. Food Microbiol. 2015, 196, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Muniz, A.S.; Carvalho, G.A.D.; Raices, R.S.L.; de Souza, S.L.Q. Organic vs conventional agriculture: Evaluation of cadmium in two of the most consumed vegetables in Brazil. Food Sci. Technol. 2022, 42, e106721. [Google Scholar] [CrossRef]
- Ilić, Z.; Kapoulas, N.; Sunic, L.; Bekovic, D.; Mirecki, N. Heavy metals and nitrate content in tomato fruit grown in organic and conventional production systems. Pol. J. Environ. Stud. 2014, 23, 2027–2032. [Google Scholar] [CrossRef]
- Polišenská, I.; Jirsa, O.; Salava, J.; Sedláčková, I.; Frydrych, J. Fusarium mycotoxin content and Fusarium species presence in Czech organic and conventional wheat. World Mycotoxin J. 2020, 14, 201–211. [Google Scholar] [CrossRef]
- Mruczyk, K.; Mizgier, M.; Wójciak, R.W.; Cisek-Woźniak, A. Comparison of deoxynivalenol and zearaleone concentration in conventional and organic cereal products in western Poland. Ann. Agric. Environ. Med. 2021, 28, 44–48. [Google Scholar] [CrossRef]
- Testempasis, S.I.; Kamou, N.N.; Papadakis, E.N.; Menkissoglu-Spiroudi, U.; Karaoglanidis, G.S. Conventional vs. organic vineyards: Black aspergilli population structure, mycotoxigenic capacity and mycotoxin contamination assessment in wines, using a new Q-TOF MS-MS detection method. Food Control 2022, 136, 108860. [Google Scholar] [CrossRef]
- Čepo, D.V.; Pelajić, M.; Vrček, I.V.; Krivohlavek, A.; Žuntar, I.; Karoglan, M. Differences in the levels of pesticides, metals, sulphites and ochratoxin A between organically and conventionally produced wines. Food Chem. 2018, 246, 394–403. [Google Scholar] [CrossRef] [PubMed]
- González, P.A.; Dans, E.P.; Acosta-Dacal, A.C.; Peña, M.Z.; Luzardo, O.P. Differences in the levels of sulphites and pesticide residues in soils and wines and under organic and conventional production methods. J. Food Compos. Anal. 2022, 112, 104714. [Google Scholar] [CrossRef]
- Čuš, F.; Česnik, H.B.; Velikonja Bolta, Š. Pesticide residues, copper and biogenic amines in conventional and organic wines. Food Control 2022, 132, 108534. [Google Scholar] [CrossRef]
- Gaspar, L.A.; Galoso, B.T.; Pascua, C.A.; Olinares, R.B.; Callueng, M.P.; Pablo, B.; de Guzman, L.A.; Ibarra, J.; Miranda, C.T.; Corales, V.; et al. Production of organic vegetables towards food safety in Cagayan Valley, Philippines. Acta Hortic. 2018, 1213, 475–479. [Google Scholar] [CrossRef]
- Kai, T.; Adhikari, D. Effect of organic and chemical fertilizer application on apple nutrient content and orchard soil condition. Agriculture 2021, 11, 340. [Google Scholar] [CrossRef]
- Schleiffer, M.; Speiser, B. Presence of pesticides in the environment, transition into organic food, and implications for quality assurance along the European organic food chain-A review. Environ. Pollut. 2022, 313, 120116. [Google Scholar] [CrossRef]
- Geissen, V.; Silva, V.; Lwanga, E.H.; Beriot, N.; Oostindie, K.; Bin, Z.; Pyne, E.; Busink, S.; Zomer, P.; Mol, H. Cocktails of pesticide residues in conventional and organic farming systems in Europe–Legacy of the past and turning point for the future. Environ. Pollut. 2021, 278, 116827. [Google Scholar] [CrossRef]
- Simonne, A.; Ozores-Hampton, M.; Treadwell, D.; House, L. Organic and conventional produce in the U.S.: Examining safety and quality, economic values, and consumer attitudes. Horticulturae 2016, 2, 5. [Google Scholar] [CrossRef]
- Ciccccarese, L.; Silli, V. The role of organic farming for food security: Local nexus with a global view. Future Food J. Food Agric. Soc. 2016, 4, 56–67. [Google Scholar]
Crops Tested (Foodstuff) | Main Effects of Agricultural System (Higher/Lower/Similar Content in Organic Fruits or Vegetables compared to Conventional) | Ref. |
---|---|---|
Tomatoes | Higher nutritional value, vitamin C and total flavonoid content, 3-quercetin rutinoside and myricetin in org | [63] |
Tomatoes | Higher vitamin C, soluble solids and total phenolics in org | [64] |
Tomatoes | Richer health-promoting nutrients, lycopene, vitamin C, flavonoids and total phenolic content in org | [59] |
Tomatoes | Higher content of polyphenols in org | [65] |
Tomatoes | Higher Mo, Cu, Zn, K and Ba content and lower Mn, Co, Na, Mg and Cd in org | [66] |
Tomatoes | Higher content of caffeic acid and chlorogenic acid, but lower ferulic acid and naringenin org | [67] |
Tomatoes, ketchups | Higher content of total phenols and antioxidant microconstituents in org tomatoes and tomato-based ketchups | [68] |
Welsh onion | Overall, no difference in weight, length, diameter and moisture content; higher total phenolic and flavonoid content and better compositional quality in org | [69] |
Red onion | Overall, no difference in individual anthocyanins; higher total phenolic and flavonoid content and antioxidant activity in in org | [70] |
Three potato cultivars | Higher nutritional value and total phenolic and dry matter, and better sensory performance, but lower nitrate content in org | [71] |
Five potato cultivars | Content of phenolic acids, dry matter and starch, and sensory properties similar in org and conv | [72] |
Six potato cultivars | Lower nitrate content; higher nutritional value, total phenolic content and more attractive colour of both the skin and flesh in org tubers | [62] |
Sweet potato | Higher concentrations of minerals such as Ca, Cu, Fe, K, Mg, Mn and P in org | [42] |
Courgette | No difference in vitamin C, carotenoids, and chlorophylls, but more sugars and polyphenols (gallic acid, chlorogenic acid, ferulic acid and quercetin-3-O-rutinoside) in org | [73] |
Carrots | No difference in eating and sensory quality, and overall higher nitrate content in conv | [74] |
Carrots, broccoli and zucchini | Carotenoids higher in org carrot, but higher in conv zucchini and broccoli | [75] |
Taro | Higher dry matter, starch, sugars, P, K, Ca and Mg content, and better cornel quality in org | [15] |
Broccoli | No differences in polyphenol content in org | [76] |
Cauliflower | Higher ascorbic acid, polyphenols, carotenoids, and antioxidants in org | [77] |
White cabbage | Lower nitrates and nitrites, and higher dry matter, zeaxanthin and β-carotene in org | [53] |
Eggplant | Higher nutritional value (K, Ca, Mg, Cu) and total phenolics, but lower polyphenol oxidase activity in org | [78] |
Dwarf French bean | No difference in organic acids such as malic, citric and ascorbic acid; higher ascorbic acid, sucrose content and total sugars in org | [79] |
Green beans | No difference in carotenoid and polyamines; lower chlorophyll and total phenolics, but higher flavonoid and antioxidant capacity in org | [80] |
10 legume cultivars | Higher phenolic acids (namely gallic acid, caffeic acid, syringic acid and ferulic acid) and antioxidant capacity in org | [81] |
27 spinach varieties | Lower levels of nitrates and higher levels of flavonoids and ascorbic acid in org | [82] |
Lettuce | Higher values of ash, protein, total phenolic compounds and flavonoids, and antioxidant activity, in org | [83] |
Sweet pepper | Higher content of sugar, ascorbic acid and yellow carotenoids, and Folin–Ciocalteu index, in org | [84] |
Sweet bell pepper | More flavonoids, including myricetin, quercetin, kaempferol, apigenin and carotenoids such as beta-carotene, alpha-carotene, capsorubin and cryptoflavin in org | [85] |
Chili fruits | Higher ascorbic acid and capsaicinoid content in org | [86] |
Foxtail millet | Higher fructose and glucose content in org | [87] |
Rice | No significant differences found for K, Cu, Zn, Rb, Mo or Cd in org | [88] |
Rice and wheat | Lower protein, essential amino acid and heavy metal (Cr, As, Cd and Cu) content, but higher flavonoids in both org rice and wheat | [30] |
Winter wheat | Lower protein content and levels of Ca, Mn and Fe, as well as toxic elements (i.e., Al, As, Cd and Pb), but higher levels of K, Zn, Mo and quality proteins in org wheat flours | [89] |
Winter wheat and spring wheat | No differences in protein content of whole wheat and refined flours, but phenolic content and total antioxidant capacity tended to be lower in org | [32] |
Winter wheat | Overall, no difference in total amounts of phenolics and phenolic acid; lower yield, flour proteins and bread-making quality in org wheat | [90] |
Buckwheat | Higher amounts of rutin and phenolics in org | [91] |
Tea | Higher polyphenols, catechins and the amino acid proline in org | [45] |
Peppermint, rosemary, lemon balm and sage | Higher dry matter, vitamin C, phenolic acids and total flavonoids, but lower carotenoids in org medicinal plants | [92] |
Sweet basil | Higher concentrations of almost all the major and health compounds in org | [93] |
Asparagus | Higher total phenolic compounds, total flavonoids, rutin, vitamin C, chlorophylls, carotenoids and total antioxidants in org | [94] |
Coffee | Higher bioactive compound concentration and antioxidants in org | [95] |
Strawberries | Higher activities of antioxidant enzymes, and higher antioxidant and flavonoid content in org | [96] |
Strawberries | Higher values of dry and optical residue and content of glucose, sucrose, vitamin C and ß-carotene but lower nitrate in org | [97] |
Strawberries | No differences in total titratable acidity, lipids, anthocyanins, phenolic compounds, antioxidant activity and vitamin C. | [98] |
Red raspberries | Higher values of antioxidant capacities and antioxidant enzymes, and higher anthocyanin and individual flavonoid content in org | [99] |
Raspberry | More organic acids in org, but higher vitamin C content in conv | [100] |
Blackberries | Higher phenolic-linked antioxidant and anti-hyperglycaemic properties in org | [101] |
Goji berry fruits | Higher ash and lipid content and lower proteins, total sugars and total fibres in org | [48] |
Oranges, strawberries | Ascorbic acid and β-carotene content higher in org oranges and strawberries, but total phenol content higher in conv oranges and in org strawberries | [102] |
Blue honeysuckle berries | Higher total polyphenol and dry matter content in org | [103] |
Black Chokeberry | Higher content of bioactive ingredients and antioxidant activity in org | [104] |
Jujube fruits | Higher content of chlorophylls, carotenoids, sugars, organic acids and total volatile compounds, and more intense yellow and red colour, but lower protein and flavonoids in org | [105] |
Citrus sinensis | No differences in total phenolic compounds, vanillic, p-coumaric and ferulic acids; higher hesperidin, total fatty acids and sugar, and lower antioxidant and titratable acidity in org | [106] |
Apples | No differences in fruit flesh firmness, sugar content and dry matter, and higher phytochemical concentration, antioxidant capacity, chlorogenic acid, flavonols, flavanols and dihydrochalcones in org | [107] |
Juices of fruits (pear, apple and blackcurrant) | Higher content of Ca, Mg, P, Na, Zn, Cu, B, Cd and Ni, but lower S, Na, Cu, B and Ni in org apple juices | [108] |
Apricots | More biologically active compound polyphenols and carotenoids in org | [109] |
Kiwifruit | Higher fruit performance (flesh firmness, dry matter and soluble solids), antioxidant activity, ascorbic acid, lutein and β-carotene content, but lower yield in org | [110] |
Hazelnut | No differences in nut length and thickness, internal cavity, kernel percentage and good kernels | [111] |
Ripe banana | No differences in shelf life, and higher sensory qualities (colour, texture and taste) and nutritional qualities (moisture and minerals) in org | [44] |
Red grapes | No differences in berry weight, soluble solids, phenolic compounds antioxidant activity and flavonols, and higher anthocyanin and hydroxycinnamic acids in org grapes. Additionally, higher phenolic compounds and antioxidant activity in org wine | [112] |
Grape juices Vitis labrusca, V. vinifera, V. rotundifolia | Functional properties, especially antioxidant effects and total phenolic content of org and conv grape juices, were similar; however, higher content of bioactive compounds in org juices | [113] |
Grape juices | No differences in phenolic profile, antioxidant activity, and Cu, Fe and Mn minerals between org and conv juices and wines. | [114] |
Contaminant | Foodstuff | Remarks | Ref. |
---|---|---|---|
Heavy metals (Pb, Cd, Zn, Ni and Cr) | Carrot | Lower quantities of Pb, Cd and Zn in org, but no case exceeded the legal values | [144] |
Nitrate content and elemental composition (Na, K, Ca, S, Al, Mg, B, Fe, Zn, Mn, As, Cd, Cr, Cu, Ni and Pb) | Carrot | No differences between conv- and org-grown carrots, and no potential harm arising from heavy metal contamination | [148] |
Pesticides and nitrates | Carrot | No pesticide residues and lower content of nitrate in org | [18] |
Cadmium (Cd) | Lettuce and carrot | Higher concentrations of Cd in both conv lettuce and carrot, but lower than that established by legislation | [151] |
Elemental composition (Zn, Pb, Cu, Cr, Ni, Co and Cd) and nitrates | Tomato | No difference in amounts of Cd, Co and Cr levels, and lower Zn, Pb, Cu, Ni and nitrate content in org | [152] |
Elemental composition (Cd, Co, Cr, Cu, Zn, Fe, Mn, Ni and Pb) | Vegetables | Higher concentrations of some elements in conv-grown vegetables; however, the results are not conclusive | [145] |
Metal concentrations (As, Cd, Pb, Cr, Ba, Co, Ni, Cu and Zn) | Potato, lettuce, tomato, carrot and onion | All vegetables contained metals, while there were lower concentrations of As, Cd, Pb, Cr and Ba in five org vegetables | [52] |
Micronutrients and heavy metals (Ca, Mg, Fe, Mn, Na, Zn, Cu, Ni and Cd) | Vegetables | Decrease in micronutrients in the edible portion of org crops, but increase in toxic metal loads in conv crops | [146] |
22 pesticides | Lettuce, apples, grapes and tomatoes | Higher proportion of pesticide levels in conv (9.7%) than in org (2.0%) | [49] |
Mycotoxins | Cereals and cereal-based products | No differences in mycotoxin levels between org and conv | [149] |
Mycotoxins (deoxynivalenol (DON) and zearalenone (ZEN)) | Wheat | DON and ZEN content of org wheat was found to be either lower than or comparable to conv wheat | [153] |
Mycotoxins (deoxynivalenol and zearalenone) | Cereal and cereal product | Mycotoxins in org cereals and cereal products did not statistically differ from their conv counterparts. | [154] |
Heavy metals (Cd, Hg and Pb) | Goji berries | Lower levels of heavy metals in org | [48] |
Mycotoxigenic black Aspergilli population | Vineyards | Higher mycotoxigenic Aspergillus strains in conv vineyards, and higher risk of mycotoxins in wine originating from these vineyards | [155] |
Pesticides, metals, sulphites and ochratoxin A | Wines | No difference in the content of sulphite or ochratoxin, but lower Pb and Mg content, total pesticide concentration and average number of pesticides in org wine | [156] |
Sulphite content and pesticide residues | Wines | Higher levels of sulphites, and higher numbers and concentrations of pesticide residues in conv wines | [157] |
Pesticide residues, copper and biogenic amines | Wines | Lower numbers and concentrations of pesticide residues and copper in org, but lower concentration of biogenic amines in both groups of wines | [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çakmakçı, S.; Çakmakçı, R. Quality and Nutritional Parameters of Food in Agri-Food Production Systems. Foods 2023, 12, 351. https://doi.org/10.3390/foods12020351
Çakmakçı S, Çakmakçı R. Quality and Nutritional Parameters of Food in Agri-Food Production Systems. Foods. 2023; 12(2):351. https://doi.org/10.3390/foods12020351
Chicago/Turabian StyleÇakmakçı, Songül, and Ramazan Çakmakçı. 2023. "Quality and Nutritional Parameters of Food in Agri-Food Production Systems" Foods 12, no. 2: 351. https://doi.org/10.3390/foods12020351
APA StyleÇakmakçı, S., & Çakmakçı, R. (2023). Quality and Nutritional Parameters of Food in Agri-Food Production Systems. Foods, 12(2), 351. https://doi.org/10.3390/foods12020351