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Abstract: In recent years, food-derived hypoglycemic peptides have received a lot of attention in the
study of active peptides, but their anti-diabetic mechanism of action is not yet clear. In this study,
camellia seed cake protein (CSCP) was used to prepare active peptides with α-glucosidase inhibition.
The optimization of the preparation of camellia seed cake protein hydrolyzed peptides (CSCPH) was
conducted via response surface methodology (RSM) using a protamex with α-glucosidase inhibition
as an indicator. The optimal hydrolysis conditions were pH 7.11, 4300 U/g enzyme concentration,
50 ◦C hydrolysis temperature, and 3.95 h hydrolysis time. Under these conditions, the α-glucosidase
inhibition rate of CSCPH was 58.70% (IC50 8.442 ± 0.33 mg/mL). The peptides with high α-glucosidase
inhibitory activity were isolated from CSCPH by ultrafiltration and Sephadex G25. Leu-Leu-Val-
Leu-Tyr-Tyr-Glu-Tyr (LLVLYYEY) and Leu-Leu-Leu-Leu-Pro-Ser-Tyr-Ser-Glu-Phe (LLLLPSYSEF)
were identified and synthesized for the first time by Liquid chromatography electrospray ionisation
tandem mass spectrometry (LC-ESI-MS/MS) analysis and virtual screening with IC50 values of
0.33 and 1.11 mM, respectively. Lineweaver-Burk analysis and molecular docking demonstrated
that LLVLYYEY was a non-competitive inhibitor of α-glucosidase, whereas LLLLPSYSEF inhibited
α-glucosidase, which displayed a mixed inhibition mechanism. The study suggests the possibility
of using peptides from Camellia seed cake as hypoglycaemic compounds for the prevention and
treatment of diabetes.

Keywords: camellia seed cake protein (CSCP); α-glucosidase; Inhibition kinetic; molecular docking

1. Introduction

Diabetes is becoming more prevalent worldwide and by 2015, the total number of
diabetics is expected to reach 700 million [1]. The International Diabetes Federation (IDF)
reports that the digestion of food produces excess absorbable monosaccharides that may
lead to increased blood glucose levels, leading to hyperglycemia [2,3]. Once a person is
diagnosed with diabetes, they will need to take long-term medication to keep their blood
glucose levels under control. Inhibiting the activity of carbohydrate digestive enzymes to
delay carbohydrate digestion is an efficient method to avoid diabetes or regulate postpran-
dial blood glucose [4]. The best treatment for diabetes mellitus is to maintain appropriate
blood glucose levels after meals [5]. As a result, α-glucosidase inhibitors, which catalyze the
separation of glucose from disaccharides, are efficient in delaying glucose absorption. The
inhibition of α-glucosidase activity is thought to be a useful method for diabetes manage-
ment. In light of this, an increasing number of researchers are concentrating their efforts on
discovering more efficient α-glucosidase inhibitors in natural substances [6].

Camellia oleifera Abel is a Camellia genus in the Camelliaceae family. It has been
cultivated for over 2000 years and is primarily found in the hilly highlands of southern
China, particularly in the Jiangxi Gan’s southern region [7]. China boasts a diverse range
of Camellia trees as well as abundant resources. Camellia oil cake is a by-product of
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oil tea manufacturing made from the seed residue of Camellia oleifera Abel. Tradition-
ally, it has been used primarily as animal feed or as a source of heat, and its biological
potential has not been properly exploited [8]. Active ingredients in Camellia Oil Cake
such as sasanquasaponin (SQS), flavonoids, and tannins have been proven to have anti-
inflammatory, antibacterial, antioxidant, and anticancer properties [9]. Researchers have
extracted peptides that inhibit α-glucosidase from camellia seed cake and identified GH-
SLESIK, GLTSLDRYK, and SPGYYDGR [10], and LPLLR was identified from walnuts [11],
as well as other peptides that inhibit α-glucosidase from cereals. The role of CSCPH in
α-glucosidase inhibition, as well as the relationship between peptide structure and inhibition
effect, have yet to be thoroughly investigated.

Response surface methodology (RSM) is a statistical method that is often used to
explore the relationship between several factors and to find the optimal process parameters
through the analysis of regression equations [12]. Determine the characteristics of the Box
and Behnken test regions using the Box-Behnken design (BBD), a three-level fractional
factorial design. The design is a two-level factorial design for combining incomplete groups
of zones, wherein in each module, a certain number of factors are placed through all combi-
nations of the design, while other factors remain at the central level [13]. The BBD-based
response surface design has been successfully applied to optimize the hydrolysis conditions
for the preparation of α-glucosidase inhibiting peptides from plant-based proteins [14,15].

In earlier studies, peptides with antidiabetic activity were isolated from plant-based
proteins [16,17]; however, little is known about the literature on the α-glucosidase inhibitory
potential of the Camellia seed Cake (CSC) protein and its hydrolyzed peptides. Therefore,
the aim of this study was to prepare peptides with α-glucosidase inhibitory peptides by
enzymatic process optimization, followed by the purification of crude peptide solutions
using sequential chromatographic techniques such as ultrafiltration (UF) membranes with
different molecular weight cut-off values (MWCO), and Sephadex gel chromatography. LC-
ESI-MS/MS was used to identify the amino acid sequences of the α-glucosidase inhibitor
peptides. Finally, the mechanism of α-glucosidase inhibition by the peptides was investigated
using inhibition kinetics analysis and molecular docking. Therefore, the focus of this
study was to optimize the preparation conditions of CSCPH, to identify and screen the α-
glucosidase inhibitory peptides, and to investigate its mechanism of inhibition of α-glucosidase.

2. Materials and Methods
2.1. Materials

Camellia seeds were sourced from Quzhou, Zhejiang Province, China. Flavourzyme
(60 U/mg), alkaline protease (200 U/mg), and Sephadex (G25) were purchased from
Beijing Solarbio Biotechnology Co., Ltd. (Beijing, China). α-glucosidase (200 U/mg), trypsin
(250 U/mg), and protamex (120 U/mg) were from Shanghai Yuanye Biotechnology Co., Ltd.
(Shanghai, China). Dithiothreitol (DTT), o-phenylaldehyde (OPA), and sodium dodecyl
sulfate (SDS) were purchased from Aladdin Reagents (Shanghai) Co., Ltd. (Shanghai,
China), and serine from Shanghai Baiyan Bio-Technology Co., Ltd. (Shanghai, China). All
other chemicals and reagents are of analytical grade.

2.2. Preparation of CSCP

The treated defatted desaponin powder was weighed and added to distilled water
in a large beaker at a ratio of 1:20 (w/v), and the pH of the solution was adjusted to 10
with 1 M NaOH and placed in a 50 ◦C water bath for 2 h. The water bath was stirred with
mechanical stirring. The alkaline extract was centrifuged at 3800 r/min for 15 min, and
the supernatant was collected and adjusted to pH 4.5 with 1 M HCl and left for 1 h. The
supernatant was discarded after centrifugation at 3800 r/min for 15 min. The precipitate
was re-dissolved with a small amount of distilled water and the pH of the solution was
adjusted to 7 with 1 M NaOH. The solution was then lyophilized and stored at −20 ◦C.
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2.3. Preparation of CSCPH

According to the substrate concentration of 1% w/v (g/mL), a certain amount of CSCP
was weighed and distilled water was added to make a CSCP solution. The solution was
denaturated in a 95 ◦C water bath for 10 min and then cooled to room temperature. Enzy-
matic digestion was for 4 h at optimum pH and temperature. After enzymatic hydrolysis,
the enzyme was killed in a 95 ◦C water bath for 10 min, then cooled to room temperature,
centrifuged at 4 ◦C at 8000 r/min for 30 min, and the supernatant was lyophilized and
stored at −20 ◦C.

2.4. Optimization of Enzymatic Parameters via RSM

In this study, the enzymatic hydrolysis conditions of CSCP were optimized based on
the Box-Behnken design of RSM. The experimental design used temperature (A), pH (B),
hydrolysis time (C), and protease concentration (D) as independent variables, while the
selected response variable (Y) was the inhibition rate of α-glucosidase. The settings of the
factors and levels are shown in Table S1.

2.5. Fractionation and Purification of α-glucosidase Inhibitory Peptides
2.5.1. Ultrafiltration

After the identification of the CSCPH with the highest α-glucosidase inhibitory activity,
further fractionation was carried out using an ultrafiltration unit (Mini Pellicon) (Millipore,
Billerica, MA, USA) and three MWCO (molecular weight cut-off) membranes of 10, 3, and
1 kDa. Four molecular weight fractions were obtained, which were >10 kDa, 3–10 kDa,
1–3 kDa, and <1 kDa. Then, these fractions were lyophilized and the α-glucosidase inhibitory
activity was measured. The fraction with the highest α-glucosidase inhibition potential was
selected for the next step, lyophilized, and stored at −20 ◦C for use in subsequent experiments.

2.5.2. Sephadex G25 Chromatography

The fractionation with the greatest α-glucosidase inhibitory activity, which was pre-
pared by ultrafiltration as chosen in 2.5.1, was applied onto a Sephadex G25 column
(1.6 cm × 80 cm) and balanced with ultra-pure water at a flow rate of 0.6 mL/min. CSCPH-
II was filtered by a 0.22 µm filter. Subsequently, 5 mL (4 mg/mL) of the sample solution
was loaded onto a well-balanced Sephadex G25 column, and the different fractions were
collected at a flow rate of 0.6 mL/min. Fractions were collected using an automatic partial
collector (3 min/tube). The absorbance of the sample was measured at 280 nm.

2.6. Assaying the Inhibitory Action of α-Glucosidase In Vitro

The α-glucosidase inhibition activity was performed as described in the literature [18].
In a 96-well enzyme plate, 40 µL of PBS buffer solution (pH 6.86, 0.1 M), 40 µL of sample solu-
tion, and 80 µL of α-glucosidase solution (0.2 U/mL) were added, mixed well, and reacted at
37 ◦C for 15 min. Next, 80 µL of 2.5 mM p-nitrophenyl-α-D-glucopyranoside (pNPG, 0.1 M,
pH 6.8 in PBS) was added, mixed well, and reacted at 37 ◦C for 20 min. Finally, 150 µL of
0.2 M Na2CO3 solution was added to stop the reaction, which was then measured for ab-
sorbance values at 405 nm A1. Data were collected for three parallel experiments.

α-glucosidase inhibitory activity (%) =
A0 − (A 1 − A2)

A0
× 100% (1)

where A0 is the absorbance of an equal amount of PBS buffer in place of the sample; A2 is
the absorbance of an equal amount of PBS buffer in place of the α-glucosidase solution and
pNPG solution.

2.7. O-Phthaladehyde (OPA) Assay of Hydrolysis Degree (DH) of CSCPH

In this study, the hydrolysis degree of CSCPH was determined according to the method
proposed by Nielsen et al. [19]. In brief, 400 µL of CSCPH and 3 mL of prepared OPA were
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added sequentially to the test tube. The mixture was rapidly mixed and allowed to stand
for 2 min at room temperature before the absorbance value was measured at 340 nm. All
tests were repeated three times. DH is calculated by Equation (2):

DH =
h

htot
× 100% (2)

where h represents the total number of hydrolyzed bonds (h = (serine NH2 − β)/αmeqV/g
protein) and htot represents the total number of peptide bonds found in the CSCP substrate
(7.8 Mequiv/g). The values of α and β depend on the amino acid composition of the protein
used as raw material. Serine NH2 was calculated according to Equation (3):

Serine-NH2 =
(OD sample − ODblank

)
(OD standard − ODblank)

× 0.9516 meqv/L × 0.1 × 100
X × P

(3)

where ODsample is the absorbance of the sample solution, ODblank is the absorbance of the
equal volume of water instead of the sample, ODstandard is the absorbance of the equal
volume of serine solution at 340 nm, X is the number of g samples, P is the percentage of
protein in CSCP (79.05%), and the total sample volume is 0.1 L.

2.8. Examination of Amino Acids

The composition of amino acids was determined by high-performance liquid chro-
matography (HPLC) derived from the PITC column. The mobile phase was 0.1 M sodium
acetate buffer/acetonitrile (97:3, v/v) and acetonitrile/water (4:1, v/v). Inject 10 µL sample
solution directly into the C18 Inertsil ODS-SP column (4.6 mm × 250 mm, 5 µm), the flow
rate is 1.0 mL/min. The HPLC system (LC-20AT, Shimadzu, Kyoto, JPN) was used to
monitor the solution at 254 nm and 40 ◦C.

2.9. Identification of the α-Glucosidase Inhibitory Peptides

The peptide sequence of CSCPH-II-4 was identified by Bio-Tech Pack Technology Co.
Ltd. (Beijing, China). In brief, the fractions CSCPH-II-4 were sequenced using a Nano
UPLC-MS/MS system. Experiments were performed on an Easy-nLC1200 system and a Q
Exactive™ Hybrid Quadrupole-Orbitrap™ mass spectrometer (Thermo Fisher Scientific,
Waltham, MA, USA) with an ESI nanospray source. Raw MS files were analyzed and
searched for these sequences to match parent proteins based on sample species using Peaks
Studio, and the database used for searching was the camellia proteome reference database
from UniProt.

2.10. Virtual Screening

Schrödinger Maestro is a useful molecular simulation software, which was used in
this study to screen promising peptides [20]. The peptide structures were constructed by
ChemDraw. The Glide module in the Schrödinger Maestro software was used for virtual
screening, and the Protein Preparation Wizard module was used to process the target
protein (PDB ID:2QMJ), remove the water of crystallization, add missing hydrogen atoms,
and repair missing bond information. Finally, the protein underwent energy minimization
and geometry optimization. The receptor was minimized using the OPLS3e force field, and
all peptide molecules were prepared according to the default settings of the LigPre module.
For screening in the Glide module, the prepared receptor protein files were imported to
specify the appropriate position in the receptor grid generation. Glide extra precision (XP)
represents a single, coherent approach, where the sampling algorithm and the scoring
function have been optimized concurrently [21]; using glide/XP scoring, peptides with
high scores were screened for in vitro activity validation using the docking template. The
screening process used acarbose as a positive control to determine the binding pattern of
the original ligand to the active site.
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2.11. Synthesis of α-Glucosidase Inhibitory Peptides

Based on the results of the LC-ESI-MS/MS analysis and virtual screening, five pep-
tides: Leu-Leu-Val-Leu-Tyr-Tyr-Glu-Tyr (LLVLYYEY), Leu-Leu-Leu-Leu-Pro-Ser-Tyr-Ser-
Glu-Phe (LLLLPSYSEF), Leu-Cys-Asp-Gln-Cys-Pro-Pro-His-Ala (LCDQCPPHA), Ala-Thr-
Asn-Pro-Pro-Cys-Cys-Gln-Pro (ATNPPCCQP), and Lys-Asp-Asp-Phe-Val-Glu-Lys-Arg
(KDDFVEKR) were synthesized by the GenScript Co., Ltd. (Nanjing, China). In brief, the
peptides were detected by RP-HPLC with purity above 95% (w/w). Mobile phase A, 0.065%
TFA; mobile phase B, 0.05% TFA acetonitrile solution; flow rate, 1 mL/min; column, Inertsil
ODS-3, 4.6 mm × 250 mm, detected at 220 nm. Finally, the purified peptides were identified
by ESI-MS spectroscopy.

2.12. Molecular Docking

In this study, the interactions between the peptide and the target protein were es-
timated using molecular docking [22]. The X-ray crystal structure of α-glucosidase (PDB
ID 2QMJ) was obtained from the Protein Data Bank (www.rcsb.org, accessed on 22 July
2022) by Autodock Tool 1.5.6 Software; the downloaded receptor protein was dehydrated
and hydrogenated. 2QMJ had active centers of X: −20.83, Y: −6.71, and Z: −5.25. The 3D
structure of the peptide was constructed and energy was minimized using ChemBio 3D
software. Semi-flexible docking was performed using the Vina module and the number
of generated docked conformations was set to 20. Based on the least energy score, the
optimum binding conformation for the peptide and α-glucosidase was chosen among all
docking results. Visual analysis was performed by PyMOL.

2.13. Mechanism of α-Glucosidase Inhibitions

With minor modifications, a recent study determined the kinetic parameters of
α-glucosidase inhibition [23]. In brief, different concentrations of peptide solutions were
prepared and mixed with 6 µg/mL of α-glucosidase and incubated at various concentrations
of pNPG (0.8, 1, 2, 3, 4 m M), as described in 2.6. The Linerweave-Burk double inverse
method was used to make a graph, with 1/[S] as the horizontal coordinate and 1/V as the
vertical coordinate, to plot straight lines at different concentrations to determine the type of
inhibition and calculate the relevant parameters, and the double inverse equation is shown
in Equation (4). Secondary graphing is calculated as shown in Equations (5) and (6).

1
V

=
Km+[S]

Vmax×[S]
(4)

Slope =
Km

Vmax
[I]×Km

Kic×Vmax

(5)

1
V

=
Km

[S]× Vmax
× (1+

[I]
Kic

) +
1

Vmax
× (1+

[I]
Kiu

) (6)

Which V is the reaction rate. [S] and [I] are the concentrations of substrate and inhibitors,
respectively. Km is the Michaelis-Menten constant, Vmax is the maximum reaction rate, Kic is
the competitive inhibition constant, and Kiu is the uncompetitive inhibition constant.

2.14. Simulated Gastrointestinal Digestion In Vitro

The method of simulated gastrointestinal digestion (SGID) follows the previous
method with slight modifications [24]. Simulated gastric fluid (SGFs) and simulated
intestinal fluid (SIFs) are both purchased from Shanghai Yuanye Biotechnology Co., Ltd., as
previously mentioned. In brief, the synthesized peptide LLVLYYEY and LLLLPSYSEF was
pre-dissolved to 4 mg/mL in pure water. LLVLYYEY and LLLLPSYSEF aqueous solution
was mixed with SGFs (1:1, v/v) and digested at 37 ◦C for 120 min. SIFs (1:1, v/v) was then
mixed and the mixture was incubated for 120 min. After 120 min of incubation, the pH
was adjusted to 7 by NaOH (1M) to stop the simulated gastric digestion (SGD) phase; after

www.rcsb.org
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240 min of incubation the simulated intestinal digestion (SID) phase was stopped by a
boiling water bath for 10 min.

2.15. Statistical Analysis

The results were analyzed using SPSS version 26. Statistical analysis was performed
using one-way ANOVA and Duncan’s multiple-range test. Differences were considered
significant at p < 0.05. All data are reported as mean ± SD. All experiments were repeated
in triplicate.

3. Results and Discussion
3.1. Protease Screening

In order to investigate whether different peptides are effective, we used different
proteases to treat the same protein substrate based on their specific enzymatic cleavage sites
and obtained peptides that may have different structures and biological activities [25]. As a
result, it is necessary to screen suitable proteases for peptides with strong hypoglycemic
activity. Four typical endoproteases were employed in this investigation to hydrolyze CSCP.
Since α-glucosidase is one of the key enzymes for the fine regulation of insulin function,
it is a target for delaying glucose absorption and inhibiting postprandial hyperglycemia.
Some α-glucosidase inhibitors can inhibit carbohydrate digestion by competitively inhibiting
various α-glucosidases in the small intestine; therefore, the rate of α-glucosidase inhibition is
used as an indicator for selecting the optimal protease. It was discovered that protamex’s
hydrolysate was noticeably (p < 0.05) more effective than the other aforementioned enzymes
(Figure 1). Protamex was therefore selected for this experiment as an expeditious enzyme
in producing efficacious bioactive peptides from the CSCP to inhibit α-glucosidase activity.
The flavourzyme hydrolysate α-glucosidase inhibition activity was the lowest, which could
be attributed to the special selection of the substrate by different proteases.
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Figure 1. Comparison of α-glucosidase inhibitory activity during hydrolysis with four proteases. All
values are expressed as the mean ± standard deviation of α-glucosidase inhibition. Bias and testing
are performed in triplicate. Different superscript letters in the same group indicate that they are
significantly different (p < 0.05).

3.2. Optimization of CSCPH
3.2.1. Preliminary Assessment

During the initial testing, RSM was used to discover the optimum conditions for
CSCPH hydrolysis, where the different components were changed one by one to see how
they affected the results. The aim was to determine the central point values for these several
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hydrolysis parameters, including pH (A), hydrolysis time (B), protease concentration (C),
and temperature (D). As shown in Figure 2A, the change in pH from 6.0 to 7.0 resulted
in an increase in α-glucosidase inhibitory activity values and a significant increase in DH
values. As the pH exceeded 7.0, the DH value gradually decreased and the α-glucosidase
inhibitory activity value also decreased slightly. The results indicated that the highest α-
glucosidase inhibitory activity was obtained for CSCPH in the pH range of 6–8 at the time of
enzymatic digestion (Figure 2B). The DH value increased with increasing hydrolysis time,
while the α-glucosidase inhibitory activity increased at 4 h of hydrolysis. As the enzymatic
digestion continued, the α-glucosidase inhibitory activity showed a decreasing trend, which
was consistent with the results of Gao et al. (2019) [26]. The duration of the follow-up
experiment was set at 4 h. This may be due to the fact that the effective fragments with
inhibitory activity obtained by hydrolysis at around 4 h were destroyed after successive
hydrolysis, and the content of peptides with inhibitory effects on α-glucosidase was reduced,
resulting in a decrease in the overall inhibitory activity of the hydrolysis product. When
the degree of hydrolysis was stabilized, the inhibitory activity also stabilized, indicating
that the composition of the peptides in the hydrolysis product remained unchanged, and
the content and structure of the peptides with an inhibitory effect on α-glucosidase did
not change. The inhibitory activity of CSCPH α-glucosidase was also affected by enzyme
concentration, with the maximum inhibitory activity reaching 4000 U/g and no significant
change in inhibitory activity as the enzyme concentration continued to increase (Figure 2C.
Similar to the other factors, the DH value increased from 40 °C to 50 °C and the α-glucosidase
inhibitory activity increased slightly as well. Above 55 °C, the DH value gradually decreased
and the α-glucosidase inhibitory activity also decreased slightly. The protease is thought to
be inhibited at higher temperatures, leading to incomplete enzymatic digestion, which
reduces DH and α-glucosidase inhibitory activity [27].

1 
 

  
(A) (B) 

  
(C) (D) 

 
Figure 2. Influence of pH (A), hydrolysis time (B), protease concentration (C), and temperature (D),
upon α-glucosidase inhibitory activity and DH of the hydrolysate. All values are expressed as the
mean ± standard deviation of α-glucosidase inhibition. Bias and testing are performed in triplicate.
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3.2.2. Optimization Analysis of RSM

Further optimization of four variables using BBD-based RSM based on an initial
assessment of single-factor trials to achieve the best α-glucosidase inhibition rate of CSCPH:
pH, enzymatic digestion time, enzyme concentration, and temperature. The center point
values for the four independent variables had already been fixed at 50 ◦C, pH 7.0, 4000 U/g,
and 240 min in previous studies (Table S1). The design matrix included 29 experimental
runs (Table S2). The experimental data for the α-glucosidase inhibitory activity of CSCPH
were analyzed, and the p-values and coefficients are shown in (Table S3). The prediction
equation to achieve the maximum α-glucosidase inhibitory activity of CSCPH is as follows:

Y = + 58.37 + 0.2258A + 1.8B − 0.3058C + 2.83D − 0.42AB + 0.415AC +
0.2775AD − 0.0675BC + 0.1775BD + 0.355CD − 1.95A2 − 6.2B2 − 2.66C2 −

10.62D2
(7)

where Y is the α-glucosidase inhibition rate (%), and A, B, C, and D is the pH of the enzymatic
digestion solution, the enzymatic digestion time, the protease concentration, and the
temperature of the enzymatic digestion solution, respectively.

The coefficient of determination (R2) was used in conjunction with the lack of fit test
and probability (p) values to assess model fitness. Table 1 shows the ANOVA findings
for the response surface quadratic model explaining α-glucosidase inhibitory action, which
showed F-values of 21.37 and an extremely low p-value (p < 0.0001), implying that the
variables in the model were very significant. Meanwhile, the respective p-values of the lack
of fit test for the model of α-glucosidase inhibition activity were 0.0614, demonstrating that
the model was capable of accurately predicting the α-glucosidase inhibitory activity for all
combinations of the independent variables investigated at the significance level (p > 0.05).
Furthermore, the purpose of the lack of fit test is to establish whether the experimental data
can be adequately described by the model or whether a more complicated model is required.
The model of α-glucosidase inhibitory activity gave an R2 value of 0.9553, suggesting that
according to the prediction equation, the model would describe the response variability
quite well. Closer R2 values approaching 1.00 indicate that the model has a better capacity
to predict the response with more accuracy [28]. Meanwhile, the relative adjusted R2

values for α-glucosidase inhibition activity were 0.9553, suggesting that only 4.47% of the
α-glucosidase inhibitory activity in this model was not explained. These results demonstrate
that the fitting model is a satisfactory mathematical description of the hydrolysis process.

The response surface plots (3D) were generated using a quadratic equation in which
the z-axis was used to plot the response values of α-glucosidase inhibition activity against any
other pair of independent variables on the x-axes and y-axes, with the other independent
variables held constant at the center point. This statement is supported by the figures. The
plots can aid in presenting a clear picture of the interactions that occur between independent
variables and their impact on the response variables. Additionally, they can be helpful in
identifying the optimal hydrolysate condition that has the highest level of α-glucosidase
inhibition activity.

The effect of independent variables on the α-glucosidase inhibitory activity of the en-
zymatic digestion product was considered. The enzyme concentration had the greatest
effect on the α-glucosidase inhibitory activity of the enzymatic digestion product (p < 0.0001),
followed by pH (p = 0.0041), while there was no significant effect of enzymatic digestion
time (p = 0.5701) and enzymatic digestion temperature (p = 0.6741) on the α-glucosidase
inhibitory activity. To illustrate the calculated interaction of the respective variables on
the α-glucosidase inhibition activity of the enzymatic digestion products, the interaction of
pH, temperature, protease concentration, and time on the α-glucosidase inhibitory activity
of the enzymatic digestion products is depicted in Figure 3. The degree of the indepen-
dent variables’ influence on the response values for the α-glucosidase inhibition rate is
indicated by the steepness of the upper spatial surface of the network plot, and the ellip-
tical eccentricity of the contour plot in the lower part of the image reflects the effect of
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the independent variables on the α-glucosidase inhibition response values. The optimum
conditions for the factors influencing enzymatic digestion are represented at the peak of
each curved surface. The model produced a desirability value close to 1, which implies that
the recommended settings are optimal for obtaining the maximum α-glucosidase inhibition
activity at CSCPH [19]. The ideal hydrolysis conditions for α-glucosidase inhibition were
estimated to be 50.23 ◦C, pH 7.07, 4267 U/g protease concentration, and 3.95 h. These
conditions may result in a 58.70% inhibition of α-glucosidase activity. Experiments were
carried out in triplicate using the expected optimal conditions to confirm the validity of the
model. According to the data, the experimental value obtained was a little higher than the
predicted value, 59.36 ± 0.69%, with an error value of 0.66%. As the experiments produced
results close to the predicted values, the model was considered to anticipate the best-case
scenario for the production of the α-glucosidase inhibitory peptides.

Table 1. Regression model and ANOVA results based on α-glucosidase inhibition activity.

Source Sum of
Squares df Mean

Square F Value p-Value Significance

Model 992.59 14 70.90 21.37 <0.0001 **
A-Temperature 0.6120 1 0.6120 0.1845 0.6741

B-pH 38.81 1 38.81 11.70 0.0041 **
C-Time 1.12 1 1.12 0.3383 0.5701

D-Protease concentration 96.22 1 96.22 29.00 <0.0001 **
AB 0.7056 1 0.7056 0.2127 0.6518
AC 0.6889 1 0.6889 0.2076 0.6556
AD 0.3080 1 0.3080 0.0928 0.7651
BC 0.0182 1 0.0182 0.0055 0.9420
BD 0.1260 1 0.1260 0.0380 0.8483
CD 0.5041 1 0.5041 0.1519 0.7025
A2 24.75 1 24.75 7.46 0.0162 *
B2 249.52 1 249.52 75.21 <0.0001 **
C2 45.93 1 45.93 13.84 0.0023 **
D2 731.54 1 731.54 220.50 <0.0001 **

Residual 46.45 14 3.32

Lack of Fit 43.18 10 4.32 5.29 0.0614 Not
significance

Pure Error 3.27 4 0.8170
Cor Total 1039.04 28

Significance: ** means very significant, p < 0.01; * means significant, p < 0.05.
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Figure 3. Response surface showing the impact of interactions between independent variables on the
activity of α-glucosidase inhibition. (A) the interaction between temperature and pH; (B) the interaction
between temperature and time; (C) the interaction between temperature and protease concentration;
(D) the interaction between protease concentration and pH; (E) the interaction between protease
concentration and time; (F) the interaction between protease pH and time. The mean ± standard
deviation of α-glucosidase inhibition is used to express all values. Bias and testing are performed
in triplicate.

3.3. Separation and Purification
3.3.1. Ultrafiltration

Considering that the molecular weight of protein hydrolysates is so important in the
generation of bioactive peptides, ultrafiltration is used to separate the hydrolysate into
various fractions with varied molecular weights. Different MWCO (molecular weight
cut-off) membranes are often used for this process. This is a method that can be easily
scaled up to produce α-glucosidase inhibitory peptides on an industrial scale [29]. In this
study, CSCPH with high α-glucosidase inhibitory activity was selected for further fractiona-
tion and ultrafiltration separation into CSCPH-I (<1 kDa), CSCPH-II (1–3 kDa), CSCPH-III
(3–10 kDa), and CSCPH-IV (>10 kDa). Table 2 shows the α-glucosidase inhibitory activity,
which is clearly molecular weight dependent. CSCPH-II had the strongest α-glucosidase in-
hibitory activity (IC50 3.896 ± 0.148 mg/mL), while CSCPH-III had the least inhibitory effect
on α-glucosidase (IC50 62.44 ± 0.965 mg/mL). In general, peptides with lower molecular
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weights have higher potential inhibitory activity [30]; however, CSCPH-I was identified
to have the lowest α-glucosidase inhibitory effect, possibly due to the abundance of free
amino acids and salt ions in it, resulting in a reduced positive effect. These findings suggest
that reducing the molecular weight of the hydrolysate fraction may increase the maximum
α-glucosidase inhibition of the peptide. It is also worth noting that the α-glucosidase inhibition
of peptides of different molecular weights is influenced by the amino acid composition
and sequence.

Table 2. α-glucosidase inhibition activity (IC50 mg/mL) of the unfractionated CSCPH and the four
fractions obtained via ultrafiltration.

Molecular Weight (kDa) α-glucosidase Inhibitory Activity (IC50,
mg/mL)

CSCPH (Unfractionated) 8.442 ± 0.33 b

CSCPH-I (MW <1 kDa) 59.450 ± 0.893 d

CSCPH-II (1 kDa < MW < 3 kDa) 3.896 ± 0.148 a

CSCPH-III (3 kDa < MW < 10 kDa) 62.440 ± 0.965 d

CSCPH-IV (MW > 10 kDa) 15.800 ± 0.760 c

All values are expressed as mean α-glucosidase inhibitory activity (IC50 values) ± Std. Deviation and tests were
performed in triplicate. When superscript letters appear different in the same column, it indicates that they are
significantly different (p < 0.05).

3.3.2. Separation of α-Glucosidase Inhibitory Peptides by Gel Filtration Chromatography

Sephadex G25 (1.6 × 80 cm) was used to separate CSCPH-II. Four fractions were
collected based on varied elution times: CSCPH-II-1, CSCPH-II-2, CSCPH-II-3, and CSCPH-
II-4 (Figure 4A), with the inhibition activity of α-glucosidase being IC50 13.641 ± 0.37 mg/mL,
11.376 ± 0.122 mg/mL, 7.021 ± 0.096 mg/mL, and 2.033 ± 0.093 mg/mL, respectively
(Figure 4B). The effect of CSCPH-II-4 was more pronounced, implying that CSCPH-II-4
had greater α-glucosidase inhibitory action. This could be related to the fact that CSCPH-II-4
has a lower average molecular weight than the other three components. Gel filtration
chromatography is often used to separate water-soluble macromolecules, and it has been
widely used for the separation and desalting of mixed components with a good effect for
the separation and purification of peptides [31]. The α-glucosidase inhibition of CSCPH-II-4
was higher than that of other fractions, possibly because the average molecular weight of
CSCPH-II-4 was lower. Yao et al. (2016) found that after molecular weight grading, peptide
mixtures with low molecular weight showed stronger effects [29], which agreed with the
findings of this investigation.
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Figure 4. Elution profile of CSCPH-II purification by Sephadex G25 (A); α-glucosidase inhibitory activity
(IC50 mg/mL) of CSCPH-II-1, CSCPH-II-2, CSCPH-II-3, and CSCPH-II-4 fractions (B). All values
are expressed as the mean ± standard deviation of α-glucosidase inhibition. Bias and testing are
performed in triplicate.
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3.4. Amino Acid Analysis

As shown in Table 3, the proportions of amino acids varied considerably between
the different stages of purification. The essential amino acid (EAA) ratio of purified
CSCPH-II-4 was 37.50 ± 0.41%, which was significantly higher than that of fresh CSCP
(31.51 ± 0.13%). In addition, branched-chain amino acids (BCAAs), including Leu and
Val, showed the same upward trend as EAA. In addition, the levels of His and Arg were
significantly higher than those of their parents. The proportions of specific amino acids (Glu
and Pro) in CSCPH-II-4 were 10.42 ± 0.08% and 13.19 ± 0.13%, respectively. Amino acids
in the diet have different degrees of influence on the body’s metabolism. EAA is not usually
created by our body, however, it is necessary for our metabolism. Therefore, it is often used
to assess the nutritional value of food proteins [32]. Moreover, BCAA is another amino
acid of interest, as it has been shown to have beneficial effects on exercise, sports nutrition,
and improved liver function [29,33]. Thus, the CSCPH-II-4 composition recovered from
Sephadex G25 is rich in EAA and BCAA, particularly Pro and Leu, suggesting that it has
great potential in creating nutrients for humans, particularly hyperglycaemic patients.

Table 3. Amino acid compositions and α-glucosidase inhibitory activity of CSCP and the fractions
obtained from different purification stages.

Amino Acids CSCP (%) CSCPH (%) CSCPH-II (%) CSCPH-II-4 (%)

Asp 7.64 ± 0.11 a 8.22 ± 1.07 a 7.92 ± 0.74 a 6.79 ± 0.11 b

Glu 19.78 ± 0.71 a 21.18 ± 4.37 a 16.47 ± 0.61 b 10.42 ± 0.08 c

Ser 3.98 ± 0.02 bc 3.86 ± 0.48 c 4.37 ± 0.32 a 4.16 ± 0.13 ab

Gly 3.94 ± 0.03 b 3.93 ± 0.34 b 4.84 ± 0.17 a 4.91 ± 0.06 a

His 1.48 ± 0.01 b 1.54 ± 0.21 b 1.72 ± 0.33 b 4.03 ± 0.05 a

Arg 2.42 ± 0.01 c 2.47 ± 0.28 c 3.81 ± 0.33 b 4.41 ± 0.10 a

Thr 4.92 ± 0.04 b 4.79 ± 0.57 b 6.19 ± 0.79 a 5.70 ± 0.07 a

Ala 15.81 ± 0.07 a 16.48 ± 1.13 a 13.79 ± 1.60 a 7.90 ± 0.09 b

Pro 10.89 ± 0.09 bc 10.24 ± 1.31 c 11.59 ± 1.02 b 13.19 ± 0.13 a

Tyr 2.55 ± 0.08 b 2.53 ± 0.30 b 2.58 ± 0.15 b 6.67 ± 0.07 a

Val 2.86 ± 0.02 b 2.64 ± 0.32 b 3.77 ± 0.41 a 3.81 ± 0.04 a

Met 2.53 ± 0.04 a 2.40 ± 0.33 a 2.50 ± 0.19 a 0.81 ± 0.03 b

Leu 1.46 ± 0.10 b 1.22 ± 0.03 b 1.47 ± 0.17 b 4.66 ± 0.06 a

Ile 3.23 ± 0.02 c 3.20 ± 0.34 c 3.90 ± 0.21 b 4.21 ± 0.05 a

Phe 7.01 ± 0.03 ab 6.70 ± 0.78 b 7.08 ± 0.57 ab 7.43 ± 0.14 a

Trp 3.49 ± 0.02 c 3.31 ± 0.36 d 3.97 ± 0.15 b 7.41 ± 0.16 a

Lys 6.00 ± 0.05 a 5.28 ± 0.64 b 4.02 ± 0.38 c 3.48 ± 0.09 d

EAA 31.51 ± 0.13 b 29.58 ± 1.11 c 32.87 ± 0.95 b 37.50 ± 0.41 a

HAA 47.30 ± 0.28 ab 46.36 ± 1.50 b 48.15 ± 1.61 ab 49.47 ± 0.41 a

BCAA 7.55 ± 0.06 c 7.09 ± 0.27 d 9.14 ± 0.08 b 12.63 ± 0.33 a

α-glucosidase inhibitory
(IC50, mg/mL)

activity (IC50, mg/mL)
nd 8.44 ± 0.33 a 3.90 ± 0.15 b 2.03 ± 0.09 c

EAA, essential amino acid; HAA, hydrophobic amino acid; BCAA, branch amino acid; nd, no α-glucosidase
inhibitory activity was detected. When superscript letters appear different in the same row, it indicates that they
are significantly different (p < 0.05).

3.5. Screening for Peptides with α-Glucosidase Inhibitory Activity

To identify peptides with α-glucosidase inhibitory activity, the sequence peptides in
CSCPH-II-4 were identified using LC-ESI-MS/MS. Peptide sequence resolution of the mass
spectrometry raw files using the software PEAKS Studio (8.5) ‘de novo score’ resulted in
the identification of 469 peptides. Molecular docking is now becoming a common tool
for fast and effective virtual drug screening and design. Peptides with higher scores were
further validated for in vitro activity through docking performed by the Glide/XP scoring
function [34] for de novo scores > 90 (Table S3).
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The virtual screening method used 2QMJ as a representative protein structure for
α-glucosidase with high accuracy (resolution of 1.90 Å) and used acarbose as the initial ligand
to ascertain the ligand’s method of binding to the α-glucosidase active site (Figure 5A,B) to
construct the α-glucosidase active site. α-glucosidase active site amino acid residues ASP203,
THR205, ARG526, HIS600, ASP542, and ASP327 play an important role in the formation of
the active pouch and stabilization of the original ligand (Figure 5B). This is consistent with
the findings of Liu et al. (2021), who identified LDLQR, AGGFR, and LDNFR from WGPs
with α-glucosidase inhibitory activity [2]. These amino acids form multiple hydrogen bonds
at the active site and interact with acarbose, setting the stage to screen possible inhibitors
of α-glucosidase.
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The first five promising peptides were screened and scored for in vitro activity vali-
dation (Table 4), and the MS/MS spectra and structures of LLVLYYEY and LLLLPSYSEF
revealed that they had high α-glucosidase inhibitory activity, as shown in Figure 6A,B. The
lower the energy required for the peptide to bind to α-glucosidase, the easier it will be
to bind. LLVLYYEY and LLLLPSYSEF had predicted the binding energies of −9.355 and
−9.060 kcal/mol, respectively, with binding energies below −6 kcal/mol, indicating the
theoretical α-glucosidase inhibitory activity of these two peptides [2]. Similar binding energy
scores for α-glucosidase inhibitory peptides have also been reported by Mohammed et al.
(2018), who utilized in silico-designed peptide sequences with binding energy scores rang-
ing from −6.3 to −8.7 kcal/mol [35]. The results of the screening were consistent with
the results of amino acid analysis, and according to a previous report on the relationship
between structure and activity of peptides, the inhibitory activity of α-glucosidase was
strongly influenced by two hydrophobic amino acids: Pro and Leu [36]. For instance, the
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walnut peptide LFLLR was shown to be a prospective α-glucosidase inhibitor [11], and this
was further validated by the fact that both peptides screened in this study contained high
levels of Leu.

Table 4. Screening peptides for in vitro α-glucosidase inhibitory activity.

Peptides
Sequence de Novo Score Mass m/z XP Score

(kcal/mol)
α-glucosidase Inhibitory

Activity (IC50, mM)

LLVLYYEY 94 1074.56 538.287 −9.335 0.33
LLLLPSYSEF 92 1180.64 591.3289 −9.060 1.11
LCDQCPPHA 91 1096.44 549.229 −8.535 4.32
ATNPPCCQP 90 1043.42 522.7232 −8.868 >10
KDDFVEKR 99 1035.53 518.7742 −8.307 >10
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3.6. Mechanism of α-Glucosidase Inhibition
3.6.1. Kinetics of α-Glucosidase Inhibition

To further investigate the potential mechanism of inhibition of α-glucosidase by LLV-
LYYEY and LLLLPSYSEF, the kinetics of inhibition of α-glucosidase were determined using
the Lineweaver-Burk plot analysis. Figure 7A shows that as the concentration of LLV-
LYYEY increased, Vmax gradually decreased and the double inverse plotting line nearly
intersected the X-axis, indicating that the Km value remained unchanged. This indicates
that the type of inhibition of α-glucosidase by LLVLYYEY is non-competitive, that is, the
peptide is not structurally similar to the substrate and does not occupy the active center
of the enzyme with the substrate, but rather inhibits the enzyme activity by binding to
an essential group other than the active center. Figure 7B shows that LLLLPSYSEF in-
hibited α-glucosidase in a mixed manner, including both competitive and non-competitive
inhibition, as both Km and Vmax values increased with the increasing substrate concen-
tration. In addition, we performed a secondary plot of the peptide concentration I using
slope and 1/Vmax (min/∆OD), respectively, and the fits all yielded a simple straight line,
indicating a single inhibition site or a single inhibition-like site on α-glucosidase [37]. As
shown in Figure 4E, the non-competition constant Kiu for LLVLYYEY was 0.547 mg/mL,
as previously reported by Wu et al. (2020) [38], indicating that LLVLYYEY has a good
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affinity for α-glucosidase. As shown in Figure 4D, the competitiveness of LLLLPSYSEF was
0.9125 mg/mL in the competitive inhibition (Kic) and 3.76 mg/mL in the non-competitive
inhibition (Kiu) (Figure 4F). For LLLLPSYSEF the Kic value was less than the Kiu value,
indicating that LLLLPSYSEF binds with greater affinity to the free enzyme than to the
enzyme-substrate (ES) complex. The inhibition mechanism could indicate that LLLLPS-
FSEF first binds to α-glucosidase to form a competitively inhibited enzyme inhibitor (EI)
complex, and due to the non-competitive inhibition of LLLLPSFSEF, it can further bind to
ES complex to form an enzyme-substrate inhibitor (ESI) complex. These results suggest
that LLVLYYEY is a non-competitive α-glucosidase inhibitor, whereas LLLLPSYSEF is a
mixed α-glucosidase inhibitor.
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3.6.2. Molecular Docking 
Molecular docking is a bioinformatics approach that assesses potential interactions 

between receptors and ligands by studying their sites of action and key residues [39]. Sites, 
docking energies, and key residues are used to assess the potential interactions between 
receptors and ligands. Molecular docking was applied to simulate the binding pattern of 
LLVLYYEY and LLLLPSYSEF to α-glucosidase, the binding mode of the identified Ca-
mellia seed protein peptide to α-glucosidase (Figure 8). As noted in Figure 8A,B, both new 
peptides ‘fit’ into the internal cavity of the α-glucosidase enzyme and may create hydrogen 
bonds with a variety of residues of amino acids inside the internal cavity. For instance, 
LLVLYYEY forms seven hydrogen bonds with active sites ARG730, GLY732, ARG653, 
and GLU661 with bond lengths ranging from 1.8 to 2.6 Å, with an average bond length of 
2.21 Å. LLLLPSYSEF forms five hydrogen bonds with active sites ASP203, THR205, 
TYR605, and GLN603 with bond lengths ranging from 2.0 to 2.7 Å, with an average bond 
length of 2.44 Å. Similar findings were made by Abraham et al. (2014), who discovered 
that WVYY (seven bonds) had greater ACE inhibitory action than WYT (four bonds) [40]. 
It is also important to note that the inhibitory capacity appeared to be directly related to 
the number of hydrogen bonds formed. This indicates that hydrogen bonding is the main 
force between LLVLYYEY, LLLLPSYSEF, and α-glucosidase [41]. The α-glucosidase crystal 
active sites used in this study included ASP203, THR205, ASP542, and ARG526 [42]; how-
ever, none of these residues of amino acids reacted with LLVLYYEY. This points to an 
encounter that is not competitive. However, two bonds were created with ASP203 and 
one with THR205 out of the five hydrogen bonds that were generated between 
LLLLPSYSEF and α-glucosidase, suggesting a competitive interaction between 
LLLLPSYSEF and α-glucosidase. This is in line with the findings of enzyme inhibition 
kinetic studies. 
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3.6.2. Molecular Docking

Molecular docking is a bioinformatics approach that assesses potential interactions
between receptors and ligands by studying their sites of action and key residues [39]. Sites,
docking energies, and key residues are used to assess the potential interactions between
receptors and ligands. Molecular docking was applied to simulate the binding pattern
of LLVLYYEY and LLLLPSYSEF to α-glucosidase, the binding mode of the identified
Camellia seed protein peptide to α-glucosidase (Figure 8). As noted in Figure 8A,B, both new
peptides ‘fit’ into the internal cavity of the α-glucosidase enzyme and may create hydrogen
bonds with a variety of residues of amino acids inside the internal cavity. For instance,
LLVLYYEY forms seven hydrogen bonds with active sites ARG730, GLY732, ARG653,
and GLU661 with bond lengths ranging from 1.8 to 2.6 Å, with an average bond length of
2.21 Å. LLLLPSYSEF forms five hydrogen bonds with active sites ASP203, THR205, TYR605,
and GLN603 with bond lengths ranging from 2.0 to 2.7 Å, with an average bond length of
2.44 Å. Similar findings were made by Abraham et al. (2014), who discovered that WVYY
(seven bonds) had greater ACE inhibitory action than WYT (four bonds) [40]. It is also
important to note that the inhibitory capacity appeared to be directly related to the number
of hydrogen bonds formed. This indicates that hydrogen bonding is the main force between
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LLVLYYEY, LLLLPSYSEF, and α-glucosidase [41]. The α-glucosidase crystal active sites used
in this study included ASP203, THR205, ASP542, and ARG526 [42]; however, none of these
residues of amino acids reacted with LLVLYYEY. This points to an encounter that is not
competitive. However, two bonds were created with ASP203 and one with THR205 out of
the five hydrogen bonds that were generated between LLLLPSYSEF and α-glucosidase,
suggesting a competitive interaction between LLLLPSYSEF and α-glucosidase. This is in
line with the findings of enzyme inhibition kinetic studies.

Foods 2023, 12, x FOR PEER REVIEW 18 of 21 
 

 

 
(A) 

 
(B) 

Figure 8. The 3D plot of peptide docking results with α-glucosidase (A): LLVLYYEY; (B): 
LLLLPSYSEF. 

3.7. α-glucosidase Inhibitory Peptides Simulated Gastrointestinal Digestion In Vitro 
Simulated physiological digestion is a very useful tool for evaluating the stability of 

bioactive peptides against digestive enzymes [43]. The results in Figure 9 show that there 
was essentially no loss of α-glucosidase inhibitory activity after simulated gastric digestion 
for LLVLYYEY and LLLLPSYSEF, but after SGID they both demonstrated a significant 
loss of activity. Similar results indicated that YPVEPF was only slightly degraded during 
SGD, whereas after SGID, YPVEPF was substantially degraded [44]. This reflects the di-
gestive process of food in vivo and suggests that the two novel α-glucosidase inhibitory 
peptides are highly resistant to SGD and still have α-glucosidase inhibitory activity after 
SGID. 

Figure 8. The 3D plot of peptide docking results with α-glucosidase (A): LLVLYYEY; (B): LLLLPSYSEF.

3.7. α-Glucosidase Inhibitory Peptides Simulated Gastrointestinal Digestion In Vitro

Simulated physiological digestion is a very useful tool for evaluating the stability of
bioactive peptides against digestive enzymes [43]. The results in Figure 9 show that there
was essentially no loss of α-glucosidase inhibitory activity after simulated gastric digestion
for LLVLYYEY and LLLLPSYSEF, but after SGID they both demonstrated a significant loss
of activity. Similar results indicated that YPVEPF was only slightly degraded during SGD,
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whereas after SGID, YPVEPF was substantially degraded [44]. This reflects the digestive
process of food in vivo and suggests that the two novel α-glucosidase inhibitory peptides are
highly resistant to SGD and still have α-glucosidase inhibitory activity after SGID.
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4. Conclusions

CSC is a by-product of the production process of Camellia seed oil, and the use of these
by-products to produce high-value-added functional food ingredients is a timely and popular
area of research in this field. In this study, we developed a model to optimize CSCP for the
preparation of α-glucosidase inhibiting active peptides. CSCPH was isolated and purified using
ultrafiltration and Sephadex G25 to obtain CSCPH-II-4. Two bioactive peptides, LLVLYYEY
and LLLLPSYSEF, were identified from CSCPH-II-4 for the first time by LC-ESI-MS/MS and
virtual screening. Inhibition kinetics and molecular docking results indicated that LLVLYYEY
was a non-competitive inhibitor, whereas LLLLPSYSEF was a mixed inhibitor. These peptides
have not been found in any natural sources up to this point. Future research will focus on
these peptides’ antidiabetic efficacy and toxicity features, paving the way for the creation of
these peptides as dietary supplements or anti-diabetic medications.
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