Effects of Seven Sterilization Methods on the Functional Characteristics and Color of Yan 73 (Vitis vinifera) Grape Juice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Grape Juice Preparation
2.3. Preparation of Bacteriostatic Suspension
2.4. Sterilization Treatment
2.5. Physicochemical Indicators
2.6. Functional Indicators
2.6.1. Determination of Total Polyphenol Content (TPC), Total Anthocyanin Content (TAC), Total Flavonoids Content (TFC), Total Flavanol Content (TFOC), and Total Tannin Content (TTC)
2.6.2. Antioxidant Capacity Assay
2.7. Color Measurement
2.7.1. CIELab
2.7.2. Color Intensity (CI) and Tonality (T)
2.7.3. Bathochromic Shift (Δλmax, nm) and Hyperchromic Effect (M)
2.7.4. Polymeric Pigments Color (PPC)
2.8. Electronic Nose (E-Nose) Assay
2.9. Comprehensive Quality of Sterilized BCJ Quantified by PCA, TOPSIS and GRA Models
2.10. Statistical Analysis
3. Results and Discussion
3.1. Effects of Different Sterilization Treatments on the Physicochemical Properties
3.2. Effects of Different Sterilization Treatments on the Polyphenol
3.2.1. TPC and TAC
3.2.2. TFC and TFOC
3.2.3. TCC
3.3. Effects of Different Sterilization Treatments on Antioxidant Activity
3.4. Effects of Different Sterilization Treatments on the Sensory Quality
3.4.1. Color Analysis
3.4.2. E-Nose Analysis
3.5. Comprehensive Quality of Sterilized Quantified by PCA, TOPSIS and GRA Models
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Sterilization Treatment | Abbreviation | Temperature | Ultrasonic Frequency | Bacteriostatic Agent | Irradiation Intensity | Pressure |
---|---|---|---|---|---|---|
Unsterilized grape juice | CK | - | - | - | - | - |
Thermal pasteurization | TP | 90 °C (10 min) | - | - | - | - |
Thermosonication | TS | 55 °C (15 min) | 20–25 kHz | - | - | - |
TS + Nisin | TSN | 55 °C (15 min) | 20–25 kHz | Nisin | - | - |
TS + ε-Polylysine | TSε | 55 °C (15 min) | 20–25 kHz | ε-PL | - | - |
Irradiation 3K | IR3 | - | - | - | 3 kGy | - |
Irradiation 5K | IR5 | - | - | - | 5 kGy | - |
High hydrostatic pressure | HHP | - | - | - | - | 500 MPa (10 min) |
CK | TP | TS | TSN | TSε | IR3 | IR5 | HHP | |
---|---|---|---|---|---|---|---|---|
L* | 12.01 | 14.81 | 8.57 | 10.29 | 10.26 | 14.92 | 13.42 | 11.44 |
a* | 32.75 | 36.57 | 30.17 | 30.39 | 31.20 | 31.56 | 34.54 | 31.64 |
b* | 16.26 | 19.70 | 13.05 | 14.00 | 14.50 | 15.04 | 18.24 | 15.12 |
C* | 36.56 | 41.55 | 32.88 | 33.46 | 34.41 | 34.98 | 39.06 | 35.07 |
BI-A420 | 0.27 | 0.29 | 0.32 | 0.29 | 0.30 | 0.25 | 0.24 | 0.24 |
BI-A440 | 0.28 | 0.30 | 0.32 | 0.30 | 0.31 | 0.26 | 0.24 | 0.24 |
PPC | 0.19 | 0.23 | 0.18 | 0.16 | 0.17 | 0.22 | 0.23 | 0.25 |
Color intensity | 6.45 | 7.31 | 7.67 | 7.23 | 7.50 | 5.31 | 5.50 | 5.93 |
λmax | 520.00 | 522.00 | 520.00 | 521.00 | 521.00 | 520.00 | 520.00 | 520.00 |
M (%) | 0.00 | 13.32 | 17.44 | 11.03 | 14.74 | −1.97 | −12.95 | −6.04 |
TPC | 2913.33 | 3773.33 | 2793.33 | 3666.67 | 3686.67 | 3483.33 | 3756.67 | 2773.33 |
TFC | 96.02 | 62.77 | 77.73 | 75.85 | 77.98 | 109.18 | 136.10 | 111.32 |
TFOC | 835.00 | 786.39 | 780.83 | 794.72 | 787.78 | 1083.61 | 915.56 | 1078.06 |
TAC | 949.67 | 1202.67 | 1041.33 | 1217.33 | 1118.33 | 1067.00 | 953.33 | 1155.00 |
TTC | 2726.80 | 2724.20 | 2357.60 | 2422.00 | 2667.50 | 2505.80 | 2655.90 | 2975.50 |
DPPH | 8.28 | 10.04 | 8.95 | 8.53 | 6.60 | 7.70 | 6.97 | 6.33 |
FRAP | 14.59 | 18.24 | 16.44 | 19.53 | 15.65 | 16.06 | 16.15 | 12.97 |
ABTS | 14.82 | 8.56 | 6.66 | 6.16 | 6.14 | 9.78 | 2.03 | 6.95 |
TSS | 17.70 | 18.07 | 18.10 | 18.10 | 18.10 | 18.23 | 17.73 | 18.00 |
pH | 3.67 | 3.68 | 3.69 | 3.68 | 3.69 | 3.70 | 3.67 | 3.68 |
Viscosity | 4.25 | 5.26 | 4.37 | 4.33 | 4.22 | 4.01 | 4.10 | 3.87 |
Conductivity | 3.63 | 4.17 | 3.92 | 4.02 | 4.22 | 3.26 | 3.28 | 3.69 |
Reducing sugar | 182.08 | 194.58 | 196.25 | 194.58 | 193.75 | 197.50 | 185.00 | 184.17 |
Qualities Indexes | Entropy Weight | CRITIC | PCA | |||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |||
L* | 3.04% | 3.73% | −0.14 | 0.28 | 0.28 | −0.02 |
a* | 5.52% | 3.52% | −0.08 | 0.40 | −0.02 | −0.02 |
b* | 3.98% | 3.55% | −0.10 | 0.40 | −0.01 | −0.04 |
C* | 4.93% | 3.53% | −0.09 | 0.40 | −0.02 | −0.03 |
BI-A420 | 3.38% | 4.80% | −0.31 | 0.04 | 0.10 | 0.03 |
BI-A440 | 4.15% | 4.83% | −0.31 | 0.04 | 0.07 | 0.01 |
PPC | 4.16% | 4.16% | −0.23 | 0.16 | 0.16 | 0.28 |
Color intensity | 3.70% | 4.90% | 0.29 | 0.01 | −0.21 | 0.09 |
λmax | 12.39% | 3.63% | 0.20 | 0.29 | 0.08 | 0.16 |
M (%) | 2.92% | 4.85% | 0.31 | −0.02 | −0.04 | 0.10 |
TPC | 4.53% | 4.00% | 0.06 | 0.23 | 0.28 | −0.27 |
TFC | 3.82% | 5.41% | −0.30 | −0.07 | 0.06 | −0.20 |
TFOC | 8.79% | 5.06% | −0.24 | −0.10 | 0.29 | 0.22 |
TAC | 4.13% | 4.13% | 0.17 | 0.08 | 0.23 | 0.40 |
TTC | 3.48% | 4.40% | −0.18 | 0.13 | −0.14 | 0.49 |
DPPH | 4.10% | 4.12% | 0.19 | 0.20 | −0.04 | −0.12 |
FRAP | 2.68% | 4.26% | 0.21 | 0.15 | 0.17 | −0.34 |
ABTS | 2.73% | 4.89% | 0.01 | 0.00 | −0.17 | 0.21 |
TSS | 3.13% | 4.78% | 0.18 | −0.11 | 0.43 | 0.22 |
pH | 2.37% | 4.59% | −0.11 | 0.20 | −0.42 | −0.06 |
Viscosity | 4.63% | 3.64% | 0.19 | 0.33 | −0.04 | 0.03 |
Conductivity | 3.93% | 4.54% | 0.27 | 0.07 | −0.14 | 0.28 |
Reducing sugar | 3.51% | 4.71% | 0.23 | −0.04 | 0.38 | −0.07 |
References
- Luan, L.Y.; Zhang, Z.W.; Xi, Z.M.; Huo, S.S.; Ma, L.N. Comparing the effects of exogenous abscisic acid on the phenolic composition of Yan 73 and Cabernet Sauvignon (Vitis vinifera L.) wines. Eur. Food Res. Technol 2014, 239, 203–213. [Google Scholar] [CrossRef]
- Tang, K.; Li, Y.; Han, Y.H.; Han, F.L.; Li, J.M.; Nie, Y.; Xu, Y. Studies on the preparative isolation and stability of seven main anthocyanins from Yan 73 grape. J. Sci. Food Agric. 2014, 94, 2472–2481. [Google Scholar] [CrossRef] [PubMed]
- Yue, W.; Han, F. Effects of monoglucoside and diglucoside anthocyanins from Yan 73 (Vitis vinifera L.) and spine grape (Vitis davidii Foex) skin on intestinal microbiota in vitro. Food Chem. X 2022, 16, 100501. [Google Scholar] [CrossRef] [PubMed]
- Frankel, E.N.; Bosanek, C.A.; Meyer, A.S.; Silliman, K.; Kirk, L.L. Commercial grape juices inhibit the in vitro oxidation of human low-density lipoproteins. J. Agric. Food Chem. 1998, 46, 834–838. [Google Scholar] [CrossRef]
- Martins, N.C.; Dorneles, G.P.; Blembeel, A.S.; Marinho, J.P.; Proença, I.C.T.; da Cunha Goulart, M.J.V.; Moller, G.B.; Marques, E.P.; Pochmann, D.; Salvador, M.; et al. Effects of grape juice consumption on oxidative stress and inflammation in male volleyball players: A randomized, double-blind, placebo-controlled clinical trial. Complement. Ther. Med. 2020, 54, 102570. [Google Scholar] [CrossRef] [PubMed]
- Visalli, G.; Ferlazzo, N.; Facciolà, A.; Picerno, I.; Navarra, M.; Di Pietro, A. Ex vivo evaluation of the effects of a white grape juice extract on lymphocytic mitochondrial functions. Nat. Prod. Res. 2019, 34, 580–584. [Google Scholar] [CrossRef]
- Bedê, T.P.; de Jesus, V.; Rosse de Souza, V.; Mattoso, V.; Abreu, J.P.; Dias, J.F.; Teodoro, A.J.; de Azeredo, V.B. Effect of grape juice, red wine and resveratrol solution on antioxidant, anti-inflammatory, hepactic function and lipid profile in rats feds with high-fat diet. Nat. Prod. Res. 2021, 35, 5255–5260. [Google Scholar] [CrossRef]
- Zhang, L.; Zha, M.; Li, S.; Zong, W. Investigation on the effect of thermal sterilization versus non-thermal sterilization on the quality parameters of jujube juice fermented by Lactobacillus plantarum. J. Food Sci. Technol.-Mysore 2022, 59, 3765–3774. [Google Scholar] [CrossRef]
- Mukhtar, K.; Nabi, B.G.; Arshad, R.N.; Roobab, U.; Yaseen, B.; Ranjha, M.M.A.N.; Aadil, R.M.; Ibrahim, S.A. Potential impact of ultrasound, pulsed electric field, high-pressure processing and microfludization against thermal treatments preservation regarding sugarcane juice (Saccharum officinarum). Ultrason. Sonochem. 2022, 90, 106194. [Google Scholar] [CrossRef]
- Chiozzi, V.; Agriopoulou, S.; Varzakas, T. Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic Packaging) against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic Pressure) Technologies in Food Processing. Appl. Sci. 2022, 12, 2202. [Google Scholar] [CrossRef]
- Xu, F.; Wang, B.; Hong, C.; Telebielaigen, S.; Nsor-Atindana, J.; Duan, Y.; Zhong, F. Optimization of spiral continuous flow-through pulse light sterilization for Escherichia coli in red grape juice by response surface methodology. Food Control 2019, 105, 8–12. [Google Scholar] [CrossRef]
- Golombek, P.; Wacker, M.; Buck, N.; Durner, D. Impact of UV-C treatment and thermal pasteurization of grape must on sensory characteristics and volatiles of must and resulting wines. Food Chem. 2021, 338, 128003. [Google Scholar] [CrossRef] [PubMed]
- Fredericks, I.N.; du Toit, M.; Krugel, M. Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines. Food Microbiol. 2011, 28, 510–517. [Google Scholar] [CrossRef]
- Ma, T.; Wang, J.; Wang, L.; Yang, Y.; Yang, W.; Wang, H.; Lan, T.; Zhang, Q.; Sun, X. Ultrasound-Combined Sterilization Technology: An Effective Sterilization Technique Ensuring the Microbial Safety of Grape Juice and Significantly Improving Its Quality. Foods 2020, 9, 1512. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Feng, Z.; Hong, M.; Gao, X.; Maerhaba, P.; Xie, Y.; Bai, Y. Optimization of Preparation of Cabernet Sauvignon Grape Juice with Compound Enzymatic Hydrolysis by Response Surface Methodology. Sci. Technol. Food Ind. 2019, 40, 141–146+152. (In Chinese) [Google Scholar] [CrossRef]
- Zhao, Q.Y.; Yuan, Q.Y.; Gao, C.X.; Wang, X.Y.; Zhu, B.H.; Wang, J.Q.; Sun, X.Y.; Ma, T.T. Thermosonication Combined with Natural Antimicrobial Nisin: A Potential Technique Ensuring Microbiological Safety and Improving the Quality Parameters of Orange Juice. Foods 2021, 10, 1851. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhao, Q.; Yuan, Q.; Gao, C.; Ge, Q.; Li, C.; Liu, X.; Ma, T. Thermosonication combined with ε-polylysine (TSε): A novel technology to control the microbial population and significantly improve the overall quality attributes of orange juice. Food Control 2022, 141, 109200. [Google Scholar] [CrossRef]
- Jo, C.; Ahn, D.U.; Lee, K.H. Effect of gamma irradiation on microbiological, chemical, and sensory properties of fresh ashitaba and kale juices. Radiat. Phys. Chem. 2012, 81, 1076–1078. [Google Scholar] [CrossRef]
- Song, H.-P.; Kim, D.-H.; Jo, C.; Lee, C.-H.; Kim, K.-S.; Byun, M.-W. Effect of gamma irradiation on the microbiological quality and antioxidant activity of fresh vegetable juice. Food Microbiol. 2006, 23, 372–378. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, P.; Zhan, P.; Tian, H.; Lu, C.; Tian, P. Aroma characteristics of cloudy kiwifruit juices treated with high hydrostatic pressure and representative thermal processes. Food Res. Int. 2021, 139, 109841. [Google Scholar] [CrossRef]
- Varo, M.A.; Martin-Gomez, J.; Serratosa, M.P.; Merida, J. Effect of potassium metabisulphite and potassium bicarbonate on color, phenolic compounds, vitamin C and antioxidant activity of blueberry wine. LWT 2022, 163, 113585. [Google Scholar] [CrossRef]
- Li, S.-Y.; Zhao, P.-R.; Ling, M.-Q.; Qi, M.-Y.; García-Estévez, I.; Escribano-Bailón, M.T.; Chen, X.-J.; Shi, Y.; Duan, C.-Q. Blending strategies for wine color modification Ⅰ: Color improvement by blending wines of different phenolic profiles testified under extreme oxygen exposures. Food Res. Int. 2020, 130, 108885. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Shokri, S.; Gao, B.; Xu, Z.; Li, B.; Zhu, T.; Wang, Y.; Zhu, J. Improving effects of three selected co-pigments on fermentation, color stability, and anthocyanins content of blueberry wine. LWT 2022, 156, 113070. [Google Scholar] [CrossRef]
- Lan, T.; Wang, J.Q.; Yuan, Q.Y.; Lei, Y.S.; Peng, W.; Zhang, M.; Li, X.Y.; Sun, X.Y.; Ma, T.T. Evaluation of the color and aroma characteristics of commercially available Chinese kiwi wines via intelligent sensory technologies and gas chromatography-mass spectrometry. Food Chem. X 2022, 15, 100427. [Google Scholar] [CrossRef]
- Bao, S.; Yin, D.; Zhao, Q.; Zhou, Y.; Hu, Y.; Sun, X.; Liu, X.; Ma, T. Comprehensive evaluation of the effect of five sterilization methods on the quality of black carrot juice based on PCA, TOPSIS and GRA models. Food Chem. X 2023, 17, 100604. [Google Scholar] [CrossRef]
- Zhu, D.S.; Zhang, Y.Y.; Kou, C.C.; Xi, P.S.; Liu, H. Ultrasonic and other sterilization methods on nutrition and flavor of cloudy apple juice. Ultrason. Sonochem. 2022, 84, 105975. [Google Scholar] [CrossRef]
- Kalsi, B.S.; Singh, S.; Alam, M.S.; Bhatia, S. Application of thermosonication for guava juice processing: Impacts on bioactive, microbial, enzymatic and quality attributes. Ultrason. Sonochem. 2023, 99, 106595. [Google Scholar] [CrossRef]
- Tian, J.; Cheng, F.Y.; Yun, Y.R.; Yi, J.J.; Cai, S.B.; Zhou, L.Y. Characterization of the flavor, sensory quality and in vitro bioaccessibility in cloudy pomegranate juice treated by high pressure and thermal processing. J. Sci. Food Agric. 2023, 103, 666–679. [Google Scholar] [CrossRef]
- Vandresen, S.; Quadri, M.G.N.; de Souza, J.A.R.; Hotza, D. Temperature effect on the rheological behavior of carrot juices. J. Food Eng. 2009, 92, 269–274. [Google Scholar] [CrossRef]
- Wu, S.L.; Yang, N.; Jin, Y.M.; Xu, X.M.; Jin, Z.Y.; Xie, Z.J. Effects of induced electric field (IEF) on the reduction of Saccharomyces cerevisiae and quality of fresh apple juice. Food Chem. 2020, 325, 126943. [Google Scholar] [CrossRef]
- Zou, Y.; Jiang, A.L. Effect of ultrasound treatment on quality and microbial load of carrot juice. Food Sci. Technol. 2016, 36, 111–115. [Google Scholar] [CrossRef]
- Tchuenchieu, A.; Ngang, J.J.E.; Servais, M.; Dermience, M.; Kamdem, S.S.; Etoa, F.X.; Sindic, M. Effect of low thermal pasteurization in combination with carvacrol on color, antioxidant capacity, phenolic and vitamin C contents of fruit juices. Food Sci. Nutr. 2018, 6, 736–746. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.G.; Feng, M.; Chitrakar, B.; Cheng, J.A.; Wei, B.X.; Wang, B.; Zhou, C.S.; Ma, H.L. Multi-frequency power thermosonication treatments of clear strawberry juice: Impact on color, bioactive compounds, flavor volatiles, microbial and polyphenol oxidase inactivation. Innov. Food Sci. Emerg. Technol. 2023, 84, 103295. [Google Scholar] [CrossRef]
- Li, F.; Chen, G.; Zhang, B.; Fu, X. Current applications and new opportunities for the thermal and non-thermal processing technologies to generate berry product or extracts with high nutraceutical contents. Food Res. Int. 2017, 100, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.W.; Xu, Q.; Li, X.Y.; Wang, Y.H.; Zhu, J.Y.; Ning, C.; Chang, X.D.; Meng, X.J. Effects of high hydrostatic pressure on physicochemical properties, enzymes activity, and antioxidant capacities of anthocyanins extracts of wild Lonicera caerulea berry. Innov. Food Sci. Emerg. Technol. 2016, 36, 48–58. [Google Scholar] [CrossRef]
- You, Y.L.; Li, N.; Han, X.; Guo, J.L.; Zhao, Y.; Liu, G.J.; Huang, W.D.; Zhan, J.C. Influence of different sterilization treatments on the color and anthocyanin contents of mulberry juice during refrigerated storage. Innov. Food Sci. Emerg. Technol. 2018, 48, 1–10. [Google Scholar] [CrossRef]
- Davidov-Pardo, G.; Arozarena, I.; Marin-Arroyo, M.R. Stability of polyphenolic extracts from grape seeds after thermal treatments. Eur. Food Res. Technol. 2011, 232, 211–220. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Peng, Z.; Zhao, Y.; Wu, K.; Zhou, N.; Yan, Y.; Ramaswamy, H.S.; Sun, J.; Bai, W. The impact of ultrasonic treatment on blueberry wine anthocyanin color and its In-vitro anti-oxidant capacity. Food Chem. 2020, 333, 127455. [Google Scholar] [CrossRef]
- Ju, Y.; Wang, W.; Yue, X.; Xue, W.; Zhang, Y.; Fang, Y. Integrated metabolomic and transcriptomic analysis reveals the mechanism underlying the accumulation of anthocyanins and other flavonoids in the flesh and skin of teinturier grapes. Plant Physiol. Biochem. 2023, 197, 107667. [Google Scholar] [CrossRef]
- Bendaali, Y.; Vaquero, C.; Gonzalez, C.; Morata, A. Contribution of Grape Juice to Develop New Isotonic Drinks With Antioxidant Capacity and Interesting Sensory Properties. Front. Nutr. 2022, 9, 890640. [Google Scholar] [CrossRef]
- Buve, C.; Pham, H.T.T.; Hendrickx, M.; Grauwet, T.; Van Loey, A. Reaction pathways and factors influencing nonenzymatic browning in shelf-stable fruit juices during storage. Compr. Rev. Food. Sci. Food Saf. 2021, 20, 5698–5721. [Google Scholar] [CrossRef] [PubMed]
- Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B. Evaluation of different Saccharomyces cerevisiae strains for red winemaking. Influence on the anthocyanin, pyranoanthocyanin and non-anthocyanin phenolic content and colour characteristics of wines. Food Chem. 2007, 104, 814–823. [Google Scholar] [CrossRef]
- Yuan, L.; Cheng, F.; Yi, J.; Cai, S.; Liao, X.; Lao, F.; Zhou, L. Effect of high-pressure processing and thermal treatments on color and in vitro bioaccessibility of anthocyanin and antioxidants in cloudy pomegranate juice. Food Chem. 2022, 373, 131397. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, G.X.; Ma, C.L.; Li, G.Y.; Wang, R.F. Effect of ultra-high pressure and ultra-high temperature treatments on the quality of watermelon juice during storage. J. Food Process Preserv. 2021, 45, e15723. [Google Scholar] [CrossRef]
- Heras-Roger, J.; Alonso-Alonso, O.; Gallo-Montesdeoca, A.; Díaz-Romero, C.; Darias-Martín, J. Influence of copigmentation and phenolic composition on wine color. J. Food Sci. Technol.-Mysore 2016, 53, 2540–2547. [Google Scholar] [CrossRef] [PubMed]
- Bestulić, E.; Rossi, S.; Plavša, T.; Horvat, I.; Lukić, I.; Bubola, M.; Ilak Peršurić, A.S.; Jeromel, A.; Radeka, S. Comparison of different maceration and non-maceration treatments for enhancement of phenolic composition, colour intensity, and taste attributes of Malvazija istarska (Vitis vinifera L.) white wines. J. Food Compos. Anal. 2022, 109, 104472. [Google Scholar] [CrossRef]
- Lan, T.; Wang, J.; Bao, S.; Zhao, Q.; Sun, X.; Fang, Y.; Ma, T.; Liu, S. Effects and impacts of technical processing units on the nutrients and functional components of fruit and vegetable juice. Food Res. Int. 2023, 168, 112784. [Google Scholar] [CrossRef]
- Zhang, W.T.; Dong, P.; Lao, F.; Liu, J.Y.; Liao, X.J.; Wu, J.H. Characterization of the major aroma-active compounds in Keitt mango juice: Comparison among fresh, pasteurization and high hydrostatic pressure processing juices. Food Chem. 2019, 289, 215–222. [Google Scholar] [CrossRef]
- Apichartsrangkoon, A.; Wongfhun, P.; Gordon, M.H. Flavor Characterization of Sugar-Added Pennywort (Centella asiatica L.) Juices Treated with Ultra-High Pressure and Thermal Processes. J. Food Sci. 2009, 74, 643–646. [Google Scholar] [CrossRef]
- Zou, Y.; Hou, X.Y. Sonication enhances quality and antioxidant activity of blueberry juice. Food Sci. Technol. 2017, 37, 599–603. [Google Scholar] [CrossRef]
- Liu, F.; Chen, Y.; Chen, J.; Xu, E.; Pan, H.; Chen, S.; Ye, X.; Cheng, H. Characteristic aroma improvement mechanisms of heat-sterilized bayberry juice regulated by exogenous polyphenols. Food Chem. 2023, 427, 136644. [Google Scholar] [CrossRef] [PubMed]
CK | TP | TS | TSN | TSε | IR3 | IR5 | HHP | |
---|---|---|---|---|---|---|---|---|
λmax (nm) | 520 | 522 | 520 | 521 | 521 | 520 | 520 | 520 |
M (%) | 0 | 13.32 | 17.44 | 11.03 | 14.74 | −1.97 | −12.95 | −6.04 |
Sample | Entropy Weight-TOPSIS | CRITIC-Topsis | PCA | Average | ||||
---|---|---|---|---|---|---|---|---|
Score | Rank | Score | Rank | Score | Rank | Score | Rank | |
CK | 0.33 | 7 | 0.45 | 6 | −4.69 | 7 | −1.30 | 7 |
TP | 0.67 | 1 | 0.65 | 1 | 8.84 | 1 | 3.39 | 1 |
TS | 0.28 | 8 | 0.39 | 8 | −0.78 | 5 | −0.03 | 5 |
TSN | 0.42 | 2 | 0.47 | 5 | 2.19 | 2 | 1.02 | 2 |
TSε | 0.40 | 6 | 0.43 | 7 | 1.97 | 3 | 0.93 | 3 |
IR3 | 0.41 | 3 | 0.48 | 2 | 0.04 | 4 | 0.31 | 4 |
IR5 | 0.41 | 5 | 0.48 | 3 | −5.05 | 8 | −1.39 | 8 |
HHP | 0.41 | 4 | 0.47 | 4 | −2.52 | 6 | −0.55 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Z.; Wang, J.; Li, C.; Zhang, Y.; Sun, X.; Ma, T.; Ge, Q. Effects of Seven Sterilization Methods on the Functional Characteristics and Color of Yan 73 (Vitis vinifera) Grape Juice. Foods 2023, 12, 3722. https://doi.org/10.3390/foods12203722
Zhao Z, Wang J, Li C, Zhang Y, Sun X, Ma T, Ge Q. Effects of Seven Sterilization Methods on the Functional Characteristics and Color of Yan 73 (Vitis vinifera) Grape Juice. Foods. 2023; 12(20):3722. https://doi.org/10.3390/foods12203722
Chicago/Turabian StyleZhao, Zixian, Jiaqi Wang, Caihong Li, Yuanke Zhang, Xiangyu Sun, Tingting Ma, and Qian Ge. 2023. "Effects of Seven Sterilization Methods on the Functional Characteristics and Color of Yan 73 (Vitis vinifera) Grape Juice" Foods 12, no. 20: 3722. https://doi.org/10.3390/foods12203722
APA StyleZhao, Z., Wang, J., Li, C., Zhang, Y., Sun, X., Ma, T., & Ge, Q. (2023). Effects of Seven Sterilization Methods on the Functional Characteristics and Color of Yan 73 (Vitis vinifera) Grape Juice. Foods, 12(20), 3722. https://doi.org/10.3390/foods12203722