Green Extraction of Antioxidant Fractions from Humulus lupulus Varieties and Microparticle Production via Spray-Drying
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Extraction Sequential Process
2.2.1. Ultrasound-Assisted Extraction
2.2.2. Pressurized Hot Water Extraction
2.3. Solid Residue Fraction Characterization
2.3.1. Minerals
2.3.2. Oligosaccharide Fraction
2.4. Liquid Fraction Characterization
2.4.1. Antioxidant Features
2.4.2. Antioxidant Activity
2.4.3. Structural Profiles
High-Performance Size-Exclusion Chromatography
Fourier-Transform Infrared Spectroscopy
2.5. Production of Microparticles
2.5.1. Characterization of Microparticles
Yield of Production
Scanning Electron Microscopy
Particle Size Distribution
2.6. Rheological Measurements
2.7. Statistical Analysis
3. Results and Discussion
3.1. Sequential Extraction Process
3.2. Characterization of Solid Residue Fraction
3.2.1. Liquid Fraction Characterization
Antioxidant Activity
3.3. Structural Profiles
Molecular Weight Profile
3.4. Fourier-Transform Infrared Spectroscopy
Microparticle Production and Characterization
3.5. Microstructure
3.6. Rheology Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zulham; Wilar, G.; Susilawati, Y.; Subarnas, A.; Chaerunisaa, A.Y. Microparticles of Herbal Extracts with Antioxidant Activity. Pharmacogn. J. 2021, 13, 285–295. [Google Scholar] [CrossRef]
- Joye, I.J.; McClements, D.J. Biopolymer-Based Nanoparticles and Microparticles: Fabrication, Characterization, and Application. Curr. Opin. Colloid Interface Sci. 2014, 19, 417–427. [Google Scholar] [CrossRef]
- Khan, M.R.; di Giuseppe, F.A.; Torrieri, E.; Sadiq, M.B. Recent Advances in Biopolymeric Antioxidant Films and Coatings for Preservation of Nutritional Quality of Minimally Processed Fruits and Vegetables. Food Packag. Shelf Life 2021, 30, 100752. [Google Scholar] [CrossRef]
- Sivakanthan, S.; Rajendran, S.; Gamage, A.; Madhujith, T.; Mani, S. Antioxidant and Antimicrobial Applications of Biopolymers: A Review. Food Res. Int. 2020, 136, 109327. [Google Scholar] [CrossRef]
- Rigon, R.T.; Zapata Noreña, C.P. Microencapsulation by Spray-Drying of Bioactive Compounds Extracted from Blackberry (Rubus fruticosus). J. Food Sci. Technol. 2016, 53, 1515–1524. [Google Scholar] [CrossRef]
- Zanoni, F.; Primiterra, M.; Angeli, N.; Zoccatelli, G. Microencapsulation by Spray-Drying of Polyphenols Extracted from Red Chicory and Red Cabbage: Effects on Stability and Color Properties. Food Chem. 2020, 307, 125535. [Google Scholar] [CrossRef]
- Agüero, L.; Zaldivar-Silva, D.; Peña, L.; Dias, M. Alginate Microparticles as Oral Colon Drug Delivery Device: A Review. Carbohydr. Polym. 2017, 168, 32–43. [Google Scholar] [CrossRef]
- Baltrusch, K.L.; Torres, M.D.; Domínguez, H.; Flórez-Fernández, N. Spray-Drying Microencapsulation of Tea Extracts Using Green Starch, Alginate or Carrageenan as Carrier Materials. Int. J. Biol. Macromol. 2022, 203, 417–429. [Google Scholar] [CrossRef]
- Li, Q.; Wang, J.; Liu, C. Beers. In Current Developments in Biotechnology and Bioengineering: Food and Beverages Industry; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 305–351. ISBN 9780444636775. [Google Scholar]
- Olivares-Galván, S.; Marina, M.L.; García, M.C. Extraction of Valuable Compounds from Brewing Residues: Malt Rootlets, Spent Hops, and Spent Yeast. Trends Food Sci. Technol. 2022, 127, 181–197. [Google Scholar] [CrossRef]
- Arruda, T.R.; Pinheiro, P.F.; Silva, P.I.; Bernardes, P.C. A New Perspective of a Well-Recognized Raw Material: Phenolic Content, Antioxidant and Antimicrobial Activities and α- and β-Acids Profile of Brazilian Hop (Humulus lupulus L.) Extracts. LWT 2021, 141, 110905. [Google Scholar] [CrossRef]
- Zanoli, P.; Zavatti, M. Pharmacognostic and Pharmacological Profile of Humulus lupulus L. J. Ethnopharmacol. 2008, 116, 383–396. [Google Scholar] [CrossRef] [PubMed]
- Gasiński, A.; Kawa-Rygielska, J.; Paszkot, J.; Pietrzak, W.; Śniegowska, J.; Szumny, A. Second Life of Hops: Analysis of Beer Hopped with Hop Pellets Previously Used to Dry-Hop a Beer. LWT 2022, 159, 113186. [Google Scholar] [CrossRef]
- Sanz, V.; Torres, M.D.; López Vilariño, J.M.; Domínguez, H. What Is New on the Hop Extraction? Trends Food Sci. Technol. 2019, 93, 12–22. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Z.; Sun, W.; Luan, Y.; Piao, M.; Deng, Y. Characterization and Formation Mechanisms of Viable, but Putatively Non-Culturable Brewer’s Yeast Induced by Isomerized Hop Extract. LWT 2022, 155, 112974. [Google Scholar] [CrossRef]
- Keskin, Ş.; Şirin, Y.; Çakir, H.E.; Keskin, M. An Investigation of Humulus lupulus L.: Phenolic Composition, Antioxidant Capacity and Inhibition Properties of Clinically Important Enzymes. S. Afr. J. Bot. 2019, 120, 170–174. [Google Scholar] [CrossRef]
- Önder, F.C.; Ay, M.; Sarker, S.D. Comparative Study of Antioxidant Properties and Total Phenolic Content of the Extracts of Humulus lupulus L. and Quantification of Bioactive Components by LC–MS/MS and GC–MS. J. Agric. Food Chem. 2013, 61, 10498–10506. [Google Scholar] [CrossRef]
- Vicente de Andrade Silva, G.; Demaman Arend, G.; Antonio Ferreira Zielinski, A.; Di Luccio, M.; Ambrosi, A. Xanthohumol Properties and Strategies for Extraction from Hops and Brewery Residues: A Review. Food Chem. 2023, 404, 134629. [Google Scholar] [CrossRef]
- Pielech-Przybylska, K.; Balcerek, M.; Patelski, P.; Dziekońska-Kubczak, U. Solutions for Improvement of Saccharification and Fermentation of High Gravity Rye Mashes. Int. Agrophys. 2019, 33, 1–10. [Google Scholar] [CrossRef]
- Trujillo-Mayol, I.; Céspedes-Acuña, C.; Silva, F.L.; Alarcón-Enos, J. Improvement of the Polyphenol Extraction from Avocado Peel by Assisted Ultrasound and Microwaves. J. Food Process Eng. 2019, 42, e13197. [Google Scholar] [CrossRef]
- Tyśkiewicz, K.; Gieysztor, R.; Konkol, M.; Szałas, J.; Rój, E. Essential Oils from Humulus lupulus ScCO2 Extract by Hydrodistillation and Microwave-Assisted Hydrodistillation. Molecules 2018, 23, 2866. [Google Scholar] [CrossRef]
- Sanz, V.; Torres, M.D.; Lopez Vilarino, J.M.; Dominguez, H. Green Extraction of Phenolic Compounds from Perle Hallertau and Nuggets Hop Pellets. Food Biosci. 2022, 50, 102044. [Google Scholar] [CrossRef]
- Queffelec, J.; Flórez-Fernández, N.; Dominguez, H.; Torres, M.D. Microwave Hydrothermal Processing of Undaria pinnatifida for Bioactive Peptides. Bioresour. Technol. 2021, 342, 125882. [Google Scholar] [CrossRef] [PubMed]
- Flórez-Fernández, N.; Torres, M.D.; González-Muñoz, M.J.; Domínguez, H. Recovery of Bioactive and Gelling Extracts from Edible Brown Seaweed Laminaria ochroleuca by Non-Isothermal Autohydrolysis. Food Chem. 2019, 277, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Von Gadow, A.; Joubert, E.; Hansmam, C.F. Comparison of the Antioxidant Activity of Rooibos Tea (Aspalathus linearis) with Green, Oolong and Black Tea. Food Chem. 1997, 60, 7377. [Google Scholar]
- Gupta, S.; Wang, W.S.; Vanapalli, S.A. Microfluidic Viscometers for Shear Rheology of Complex Fluids and Biofluids. Biomicrofluidics 2016, 10, 043402. [Google Scholar] [CrossRef]
- Lamberti, L.; Grillo, G.; Gallina, L.; Carnaroglio, D.; Chemat, F.; Cravotto, G. Microwave-Assisted Hydrodistillation of Hop (Humulus lupulus L.) Terpenes: A Pilot-Scale Study. Foods 2021, 10, 2726. [Google Scholar] [CrossRef]
- Noshad, M.; Alizadeh Behbahani, B.; Rahmati-Joneidabad, M. Investigation of the Chemical Properties and Antimicrobial Activities of Humulus lupulus Extract on Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Enterobacter aerogenes in Vitro. J. Food Sci. Technol. 2022, 19, 143–152. [Google Scholar] [CrossRef]
- Kurumatani, M.; Fujita, R.; Tagashira, M.; Shoji, T.; Kanda, T.; Ikeda, M.; Shoji, A.; Yanagida, A.; Shibusawa, Y.; Shindo, H.; et al. Analysis of Polyphenols from Hop Bract Region Using CCC. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 1971–1983. [Google Scholar] [CrossRef]
- Ramirez, C.S.V.; Temelli, F.; Saldaña, M.D.A. Production of Pea Hull Soluble Fiber-Derived Oligosaccharides Using Subcritical Water with Carboxylic Acids. J. Supercrit. Fluids 2021, 178, 105349. [Google Scholar] [CrossRef]
- Masek, A.; Chrzescijanska, E.; Kosmalska, A.; Zaborski, M. Characteristics of Compounds in Hops Using Cyclic Voltammetry, UV-VIS, FTIR and GC-MS Analysis. Food Chem. 2014, 156, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Ivanovski, M.; Petrovic, A.; Ban, I.; Goricanec, D.; Urbancl, D. Determination of the Kinetics and Thermodynamic Parameters of Lignocellulosic Biomass Subjected to the Torrefaction Process. Materials 2021, 14, 7877. [Google Scholar] [CrossRef]
- Macchioni, V.; Picchi, V.; Carbone, K. Hop Leaves as an Alternative Source of Health-Active Compounds: Effect of Genotype and Drying Conditions. Plants 2022, 11, 99. [Google Scholar] [CrossRef]
- Rajbanshi, K.; Bajracharya, R.; Shrestha, A.; Thapa, P. Dissolution Enhancement of Aceclofenac Tablet by Solid Dispersion Technique. Int. J. Pharm. Sci. Res. 2014, 5, 127–139. [Google Scholar]
- Grenha, A.; Guerreiro, F.; Lourenço, J.P.; Lopes, J.A.; Cámara-Martos, F. Microencapsulation of Selenium by Spray-Drying as a Tool to Improve Bioaccessibility in Food Matrix. Food Chem. 2023, 402, 134463. [Google Scholar] [CrossRef]
- Torge, A.; Grützmacher, P.; Mücklich, F.; Schneider, M. The Influence of Mannitol on Morphology and Disintegration of Spray-Dried Nano-Embedded Microparticles. Eur. J. Pharm. Sci. 2017, 104, 171–179. [Google Scholar] [CrossRef]
Perle | Nugget | |||
---|---|---|---|---|
UAE | UAE-PHW | UAE | UAE-PHW | |
Moisture (%) | 6.47 ± 0.10 b | 5.22 ± 0.02 d | 7.92 ± 0.10 a | 5.64 ± 0.03 c |
Ash (%) | 5.11 ± 0.21 a | 3.88 ± 0.14 c | 4.63 ± 0.14 b | 3.81 ± 0.09 c |
Protein (%) | 13.53 ± 0.25 b | 13.57 ± 0.07 b | 14.21 ± 0.11 a | 14.11 ± 0.04 a |
AIR (%) | 49.90 ± 3.86 b | 75.55 ± 1.00 a | 38.43 ± 2.16 c | 71.36 ± 3.86 a |
Carbohydrates (%) | 5.39 ± 0.12 b | 4.79 ± 0.09 c | 7.05 ± 0.21 a | 7.08 ± 0.11 a |
Glucose | 2.92 ± 0.04 c | 3.45 ± 0.04 b | 3.37 ± 0.06 b | 4.39 ± 0.03 a |
Xylose | 1.23 ± 0.02 b | 0.96 ± 0.02 c | 1.60 ± 0.04 a | 1.26 ± 0.01 b |
Galactose | 0.43 ± 0.02 a | 0.21 ± 0.02 c | 0.44 ± 0.02 a | 0.35 ± 0.01 b |
Rhamnose | 0.16 ± 0.01 b | 3.94 ± 0.76 a | 0.24 ± 0.01 b | 0.09 ± 0.01 c |
Arabinose | 0.40 ± 0.01 a | 0.17 ± 0.02 b | 0.41 ± 0.03 a | 0.20 ± 0.02 b |
Acetic acid | 0.07 ± 0.01 d | 0.23 ± 0.01 c | 0.48 ± 0.01 b | 1.18 ± 0.59 a |
Perle | Nugget | |||
---|---|---|---|---|
UAE | UAE-PHW | UAE | UAE-PHW | |
Total minerals (%) | 1.61 | 1.36 | 1.70 | 1.34 |
Macroelements (g/kg) | ||||
K | 5.4 | 1.7 | 7.0 | 2.2 |
Ca | 8.1 | 9.8 | 7.6 | 9.3 |
Mg | 2.1 | 1.7 | 2.1 | 1.5 |
Microelements (mg/kg) | ||||
B | 25 | 10.8 | 29 | 13.2 |
Cd | <2 | <2 | <2 | <2 |
Cu | 82.2 | 116 | 23.6 | 35 |
Na | 310.4 | 325.6 | 311.8 | 310 |
Pb | <6 | <6 | <6 | <6 |
Hg | <0.040 | 0.044 | 0.064 | 0.114 |
Spray-Drying Yield (%) | ||
---|---|---|
UAE-Perle | UAE-Nugget | |
Mannitol/T (°C) | 120 °C | 130 °C |
1 | 66.8 a ± 1.5 | 61.2 b ± 1.7 |
2 | 61.9 a ± 2.4 | 63.7 a ± 2.9 |
5 | 44.6 b ± 1.3 | 60.9 a ± 0.2 |
10 | 32.3 b ± 3.1 | 41.2 a ± 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira-Anta, T.; Torres, M.D.; Vilarino, J.M.; Dominguez, H.; Flórez-Fernández, N. Green Extraction of Antioxidant Fractions from Humulus lupulus Varieties and Microparticle Production via Spray-Drying. Foods 2023, 12, 3881. https://doi.org/10.3390/foods12203881
Ferreira-Anta T, Torres MD, Vilarino JM, Dominguez H, Flórez-Fernández N. Green Extraction of Antioxidant Fractions from Humulus lupulus Varieties and Microparticle Production via Spray-Drying. Foods. 2023; 12(20):3881. https://doi.org/10.3390/foods12203881
Chicago/Turabian StyleFerreira-Anta, Tania, María Dolores Torres, Jose Manuel Vilarino, Herminia Dominguez, and Noelia Flórez-Fernández. 2023. "Green Extraction of Antioxidant Fractions from Humulus lupulus Varieties and Microparticle Production via Spray-Drying" Foods 12, no. 20: 3881. https://doi.org/10.3390/foods12203881
APA StyleFerreira-Anta, T., Torres, M. D., Vilarino, J. M., Dominguez, H., & Flórez-Fernández, N. (2023). Green Extraction of Antioxidant Fractions from Humulus lupulus Varieties and Microparticle Production via Spray-Drying. Foods, 12(20), 3881. https://doi.org/10.3390/foods12203881