Occurrence of Antibiotic-Resistant Bacteria in Fish and Seafood from Slovak Market
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Monitoring of Total and Antibiotic-Resistant Bacteria Occurrence
2.3. Identification of Antibiotic-Resistant Bacteria Isolates
2.4. Detection of Sensitivity Profile in Antibiotic-Resistant Coliform Bacteria Isolates
2.5. Detection of Overproduction of Efflux Pumps in Antibiotic-Resistant Coliform Bacteria Isolates
2.6. Detection of Resistance Genes in Antibiotic-Resistant Coliform Bacteria Isolates
3. Results and Discussion
3.1. Antibiotic-Resistant Isolates Identification and Characterization of Their Antibiotic Susceptibility Profile
3.2. Identification of Selected Resistance Mechanisms in Antibiotic-Resistant Isolates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bohrer, B.M. Review: Nutrient density and nutritional value of meat products and non-meat foods high in protein. Trends Food Sci. Technol. 2017, 65, 103–112. [Google Scholar] [CrossRef]
- Ralston, N.V.C.; Kaneko, J.J.; Raymond, L.J. Selenium health benefit values provide a reliable index of seafood benefits vs. risks. J. Trace Elem. Med. Biol. 2019, 55, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Hulankova, R.; Furmancikova, P. Comparison of microbiological quality of various sushi types from sushi kiosks, restaurants and retail. Int. J. Gastron. Food Sci. 2022, 27, 100467. [Google Scholar] [CrossRef]
- Sarno, E.; Pezzutto, D.; Rossi, M.; Liebana, E.; Rizzi, V. A Review of Significant European Foodborne Outbreaks in the Last Decade. J. Food Prot. 2021, 84, 2059–2070. [Google Scholar] [CrossRef]
- Muscolino, D.; Giarratana, F.; Beninati, C.; Tornambene, A.; Panebianco, A.; Ziino, G. Hygienic-sanitary evaluation of sushi and sashimi sold in Messina and Catania, Italy. Ital. J. Food Saf. 2014, 3, 134–136. [Google Scholar] [CrossRef]
- Poon, L.J.O.; Elias, L.J. Leftward biases in poke bowl plating aesthetics. Int. J. Gastron. Food Sci. 2023, 31, 100672. [Google Scholar] [CrossRef]
- Hsin-I Feng, C. The Tale of Sushi: History and Regulations. Compr. Rev. Food Sci. Food Saf. 2012, 11, 205–220. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/salmonella/thompson-10-21/index.html (accessed on 18 August 2023).
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/salmonella/litchfield-10-22/index.html (accessed on 18 August 2023).
- Ramires, T.; Iglesias, M.A.; Vitola, H.S.; Núncio, A.S.P.; Kroning, I.S.; Kleinubing, N.R.; Fiorentini, M.; da Silva, W.P. First report of Escherichia coli O157:H7 in ready-to-eat sushi. J. Appl. Microbiol. 2020, 128, 301–309. [Google Scholar] [CrossRef]
- Kim, J.S.; Lee, M.S.; Kim, J.H. Recent Updates on Outbreaks of Shiga Toxin-Producing Escherichia coli and Its Potential Reservoirs. Front. Cell. Infect. Microbiol. 2020, 10, 273. [Google Scholar] [CrossRef]
- Arfatahery, N.; Davoodabadi, A.; Abedimohtasab, T. Characterization of Toxin Genes and Antimicrobial Susceptibility of Staphylococcus aureus Isolates in Fishery Products in Iran. Sci. Rep. 2016, 6, 34216. [Google Scholar] [CrossRef]
- Dai, J.; Huang, J.; Wu, S.; Zhang, F.; Li, Y.; Rong, D.; Zhao, M.; Ye, Q.; Gu, Q.; Zhang, Y.; et al. Occurrence, Antibiotic Susceptibility, Biofilm Formation and Molecular Characterization of Staphylococcus aureus Isolated from Raw Shrimp in China. Foods 2023, 12, 2651. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Available online: https://www.who.int/publications/i/item/9789241509763 (accessed on 18 August 2023).
- Smaldone, G.; Marrone, R.; Cappiello, S.; Martin, G.A.; Oliva, G.; Cortesi, M.L.; Anastasio, A. Occurrence of antibiotic resistance in bacteria isolated from seawater organisms caught in Campania Region: Preliminary study. BMC Vet. Res. 2014, 10, 161. [Google Scholar] [CrossRef] [PubMed]
- von Tippelskirch, P.; Gölz, G.; Projahn, M.; Daehre, K.; Friese, A.; Roesler, U.; Alter, T.; Orquera, S. Prevalence and quantitative analysis of ESBL and AmpC beta-lactamase producing Enterobacteriaceae in broiler chicken during slaughter in Germany. Int. J. Food Microbiol. 2018, 281, 82–89. [Google Scholar] [CrossRef] [PubMed]
- European Committee on Antimicrobial Susceptibility Testing, EUCAST. Breakpoints Tables for Interpretation of MICs and Zone Diameters; Version 12.0 Valid from 2022 (2022). Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0_Breakpoint_Tables.pdf (accessed on 22 October 2023).
- Clinical Laboratory Standards Institute, CLSI. M 100—S 29 Performance Standards for Antimicrobial Susceptibility Testing; Twenty Nine Informational Supplement (2019). Available online: https://clsi.org/media/2663/m100ed29sample.pdf (accessed on 22 October 2023).
- Lépesová, K.; Olejníková, P.; Mackul’ak, T.; Tichý, J.; Birošová, L. Annual Changes in the Occurrence of Antibiotic-Resistant Coliform Bacteria and Enterococci in Municipal Wastewater. Environ. Sci. Pollut. Res. 2019, 26, 18470–18483. [Google Scholar] [CrossRef]
- Martins, M.; McCusker, M.P.; Viveiros, M.; Couto, I.; Fanning, S.; Pagès, J.; Amaral, L. A Simple Method for Assessment of MDR Bacteria for Over-Expressed Efflux Pumps. Open Microbiol. J. 2013, 7, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Lépesová, K.; Olejníková, P.; Mackul’ak, T.; Cverenkárová, K.; Krahulcová, M.; Bírošová, L. Hospital Wastewater—Important Source of Multidrug Resistant Coliform Bacteria with ESBL-Production. Int. J. Environ. Res. Public Health 2020, 17, 7827. [Google Scholar] [CrossRef]
- Dallenne, C.; Da Costa, A.; Decre, D.; Favier, C.H.; Arlet, G. Development of a Set of Multiplex PCR Assays for the Detection of Genes Encoding Important beta-Lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 65, 490–495. [Google Scholar] [CrossRef]
- Ng, L.; Martin, I.; Alfa, M.; Mulvey, M. Multiplex PCR for the Detection of Tetracycline Resistant Genes. Mol. Cell. Probes. 2001, 15, 209–215. [Google Scholar] [CrossRef]
- Boss, R.; Overesch, G.; Baumgartner, A. Antimicrobial resistance of Escherichia coli, enterococci, Pseudomonas aeruginosa, and Staphylococcus aureus from raw fish and seafood imported into Switzerland. J. Food Prot. 2016, 79, 1240–1246. [Google Scholar] [CrossRef]
- Miguéis, S.; Moura, A.T.; Saraiva, C.; Esteves, A. Influence of season and type of restaurants on sashimi microbiota. Eur. J. Public Health 2016, 26, 877–881. [Google Scholar] [CrossRef]
- Silva, V.; Nunes, J.; Gomes, A.; Capita, R.; Alonso-Calleja, C.; Pereira, J.E.; Torres, C.; Igrejas, G.; Poeta, P. Detection of antibiotic resistance in Escherichia coli strains: Can fish commonly used in raw preparations such as sushi and sashimi constitute a public health problem? J. Food Prot. 2019, 82, 1130–1134. [Google Scholar] [CrossRef] [PubMed]
- Yap, M.; Chau, M.L.; Hartantyo, S.H.P.; Oh, J.Q.; Aung, K.T.; Gutiérrez, R.A.; Ng, L.C. Microbial quality and safety of sushi prepared with gloved or bare hands: Food handlers’ impact on retail food hygiene and safety. J. Food Prot. 2019, 82, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Atanassova, V.; Reich, F.; Gu¨, G.; Klein, G. Microbiological Quality of Sushi from Sushi Bars and Retailers. J. Food Prot. 2008, 71, 860–864. [Google Scholar] [CrossRef] [PubMed]
- Batista, C.M.; Ribeiro, M.L.R.; de Souza, M.J.F.; Borges, L.J.; de Castro Ferreira, T.A.P.; André, M.C.P. Microbiological and Physicochemical Qualities of Sushi and Sashimi from Japanese Restaurants in Brazil. J. Food Nutr. Res. 2017, 5, 729–735. [Google Scholar] [CrossRef]
- Miller, W.R.; Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance in enterococci. Expert. Rev. Anti Infect. Ther. 2014, 12, 1221–1236. [Google Scholar] [CrossRef]
- Hammad, A.M.; Shimamoto, T.; Shimamoto, T. Genetic characterization of antibiotic resistance and virulence factors in Enterococcus spp. from Japanese retail ready-to-eat raw fish. Food Microbiol. 2014, 38, 62–66. [Google Scholar] [CrossRef]
- Furmancikova, P.; Hulankova, R. Microbiological quality of sushi from restaurants. In Proceedings of the MendelNet Conference Brno 2020, Brno, Czech Republic, 11–12 November 2020. [Google Scholar]
- Marquis, G.E.; Covaia, S.M.; Tabb, A.M.; Kitch, C.J.; Hellberg, R.S. Microbiological safety and quality of ceviche, poke, and sushi dishes sold at retail outlets in Orange County, CA. Heliyon 2023, 9, e16862. [Google Scholar] [CrossRef]
- Cetinkaya, Y.; Falk, P.; Mayhall, C.G. Vancomycin-resistant enterococci. Clin. Microbiol. Rev. 2000, 13, 686–707. [Google Scholar] [CrossRef]
- Shin, J.; Mattila, A.S. Healthy Taste of High Status: Signaling Status at Restaurants. Cornell Hosp. Q. 2020, 61, 40–52. [Google Scholar] [CrossRef]
- Vitas, A.I.; Naik, D.; Pérez-Etayo, L.; González, D. Increased exposure to extended-spectrum β-lactamase-producing multidrug-resistant Enterobacteriaceae through the consumption of chicken and sushi products. Int. J. Food Microbiol. 2018, 269, 80–86. [Google Scholar] [CrossRef]
- Amelia, S.; Dwi, N.; Lubis, A.; Siregar, M.A.; Rozi, M.F. Antimicrobial Effect of Wasabia japonica or Wasabi on Raw Salmon in Served Sashimi at Japanese Restaurants in Medan. Int. J. Med. Sci. Clin. Invent. 2018, 5, 7. [Google Scholar] [CrossRef]
- Ruppé, É.; Woerther, P.L.; Barbier, F. Mechanisms of antimicrobial resistance in Gram-negative bacilli. Ann. Intensive Care 2015, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Cheong, H.T.; Ho, W.Y.; Choo, Q.C.H. β-lactamase gene blaSHV detected in bacteria isolated from retail sushi in Kampar, Malaysia. Biomed. Res. 2014, 25, 25–31. [Google Scholar]
- Yoshino, Y.; Nakazawa, S.; Otani, S.; Sekizuka, E.; Ota, Y. Nosocomial bacteremia due to Kluyvera cryocrescens: Case report and literature review. IDCases 2016, 4, 24–26. [Google Scholar] [CrossRef] [PubMed]
- Lartigue, M.F.; Poirel, L.; Aubert, D.; Nordmann, P. In vitro analysis of ISEcp1B-mediated mobilization of naturally occurring β-lactamase gene blaCTX-M of Kluyvem ascorbata. Antimicrob. Agents Chemother. 2006, 50, 1282–1286. [Google Scholar] [CrossRef]
- Lupo, A.; Coyne, S.; Berendonk, T.U. Origin and evolution of antibiotic resistance: The common mechanisms of emergence and spread in water bodies. Front. Microbiol. 2012, 3, 18. [Google Scholar] [CrossRef]
- Hemlata; Bhat, M.A.; Kumar, V.; Ahmed, M.Z.; Alqahtani, A.S.; Alqahtani, M.S.; Jan, A.T.; Rahman, S.; Tiwari, A. Screening of natural compounds for identification of novel inhibitors against β-lactamase CTX-M-152 reported among Kluyvera georgiana isolates: An in vitro and in silico study. Microb. Pathog. 2021, 150, 104688. [Google Scholar] [CrossRef]
- Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug resistance: An emerging crisis. Interdiscip. Perspect. Infect. Dis. 2014, 2014, 541340. [Google Scholar] [CrossRef]
- Rai, M.; Kon, K.; Gade, A.; Ingle, A.; Nagonkar, D.; Paralikar, P.; da Silva, S.S. Antibiotic Resistance: Can Nanoparticles Tackle The Problem? In Antibiotic Resistance: Mechanisms and New Antimicrobial Approaches, 1st ed.; Kon, K., Rai, M., Eds.; Academic Press: London, UK, 2016; Volume 3, pp. 121–135. [Google Scholar]
- Dang, H.; Ren, J.; Song, L.; Sun, S.; An, L. Diverse tetracycline resistant bacteria and resistance genes from coastal waters of Jiaozhou Bay. Microb. Ecol. 2008, 55, 237–246. [Google Scholar] [CrossRef]
- Abdelall, M.F.; Hafez, S.S.; Fayad, M.E.; Nour El-Din, H.A.; Abdallah, S.A. Tetracycline Resistant Genes as Bioindicators of Water Pollution. J. Biol. Res. 2020, 93, 9–21. [Google Scholar] [CrossRef]
- Granados-Chinchilla, F.; Rodríguez, C. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications. J. Anal. Methods Chem. 2017, 2017, 1315497. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare, A.; Eckert, E.M.; Teruggi, A.; Fontaneto, D.; Bertoni, R.; Callieri, C.; Corno, G. Constitutive presence of antibiotic resistance genes within the bacterial community of a large subalpine lake. Mol. Ecol. 2015, 24, 3888–3900. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.A.; Söderquist, B.; Jass, J. Prevalence and diversity of antibiotic resistance genes in Swedish aquatic environments impacted by household and hospital wastewater. Front. Microbiol. 2019, 10, 688. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Tan, L.; Zhang, L.; Tian, W.; Ma, L. A Review of the Distribution of Antibiotics in Water in Different Regions of China and Current Antibiotic Degradation Pathways. Front. Environ. Sci. 2021, 9, 692298. [Google Scholar] [CrossRef]
Sushi Samples | ||
---|---|---|
FSE A | FSE E | FSE I |
M: Salmon | M: Salmon | M: Crab sticks |
M: Tuna | N: Salmon | M: Salmon |
M: Shrimp | N: Tuna | N: Tuna |
FSE B | FSE F | N: Tuna |
M: Salmon | M: Tuna | N: Salmon |
N: Shrimp | M: Salmon | N: Cuttlefish |
N: Tuna | N: Shrimp | N: Shrimp |
N: Salmon | N: Cuttlefish | N: Escolar |
M: Tuna | N: Salmon | FSE J |
FSE C | N: Tuna | M: Salmon |
N: Tuna | FSE G | M: Salmon |
N: Salmon | M: Salmon | N: Salmon |
N: Shrimp | FSE H | N: Tuna |
M: Salmon | N: Cuttlefish | FSE K |
M: Salmon | N: Shrimp | N: Shrimp |
FSE D | N: Salon | N: Tuna |
N: Tuna | N: Tuna | N: Salmon |
N: Salmon | M: Salmon | M: Tuna |
N: Shrimp | M: Salmon | |
N: Japanese eel | ||
N: Cuttlefish | ||
Poke Samples | ||
FSE E | FSE G | FSE L |
Salmon | Salmon | Salmon |
Tuna | Tuna | |
Cooled Fish Sample | ||
Supermarket 1 | Supermarket 2 | Supermarket 3 |
Shrimp | Halibut | Shrimp |
Shrimp | Halibut | Tuna |
Halibut | Salmon | Salmon |
Halibut | Salmon | Salmon Keta |
Halibut |
FSE | AFS | VS | TCB | Antibiotic-Resistant Coliform Bacteria | TEN | Antibiotic-Resistant Enterococci | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
AMP | GEN | CIP | CHL | TET | AMP | VAN | |||||
A | SL | N | 3.0 ± 0.15 | 2.9 ± 0.13 | ND | ND | ND | ND | ND | ND | ND |
TN | N | 1.1 ± 0.05 | 0.8 ± 0.09 | ND | ND | ND | ND | ND | ND | ND | |
SHR | N | 1.3 ± 0.04 | 0.5 ± 0.02 | 0.1 ± 0.01 | ND | ND | ND | ND | ND | ND | |
B | SL | M | 1.9 ± 0.04 | 1.2 ± 0.08 | ND | ND | ND | ND | 1.1 ± 0.04 | 0.7 ± 0.02 | ND |
SHR | N | 1.5 ± 0.07 | 0.1 ± 0.02 | ND | ND | ND | ND | 0.1 ± 0.02 | ND | ND | |
TN | N | 2.6 ± 0.09 | 2.6 ± 0.10 | 2.2 ± 0.09 | ND | ND | ND | 0.7 ± 0.04 | 0.4 ± 0.01 | ND | |
SL | N | 1.7 ± 0.02 | ND | ND | ND | ND | ND | 1.0 ± 0.07 | 1.0 ± 0.08 | ND | |
TN | M | 2.2 ± 0.11 | 1.6 ± 0.09 | ND | ND | ND | ND | 1.0 ± 0.05 | 0.3 ± 0.01 | ND | |
C | TN | N | ND | ND | ND | ND | ND | ND | 0.9 ± 0.08 | 0.5 ± 0.05 | ND |
SL | N | ND | ND | ND | ND | ND | ND | 0.8 ± 0.03 | ND | ND | |
SHR | N | ND | ND | ND | ND | ND | ND | 0.5 ± 0.02 | 0.3 ± 0.01 | ND | |
SL | M | 0.6 ± 0.01 | ND | ND | ND | ND | ND | 0.3 ± 0.02 | ND | ND | |
SL | M | 0.7 ± 0.01 | 0.3 ± 0.02 | ND | ND | ND | ND | 1.2 ± 0.07 | 1.0 ± 0.09 | ND | |
D | TN | N | 2.2 ± 0.10 | 2.0 ± 0.07 | ND | ND | ND | ND | 1.5 ± 0.08 | 0.9 ± 0.07 | ND |
SL | N | 1.9 ± 0.12 | 1.8 ± 0.11 | ND | ND | ND | ND | ND | ND | ND | |
SHR | N | 1.3 ± 0.09 | 1.2 ± 0.05 | ND | ND | ND | ND | 0.6 ± 0.04 | 0.5 ± 0.04 | ND | |
D | JPE | N | 1.2 ± 0.05 | 1.0 ± 0.06 | ND | ND | ND | ND | ND | ND | ND |
CF | N | 1.3 ± 0.04 | 1.2 ± 0.02 | ND | ND | ND | ND | ND | ND | ND | |
E | SL | M | 4.3 ± 0.24 | 4.1 ± 0.20 | ND | ND | ND | 3.5 ± 0.13 | 4.1 ± 0.17 | 4.0 ± 0.27 | ND |
SL | N | 4.1 ± 0.20 | 3.0 ± 0.19 | ND | ND | ND | 3.5 ± 0.16 | 4.2 ± 0.11 | 4.1 ± 0.30 | ND | |
TN | N | 4.2 ± 0.20 | 4.2 ± 0.45 | ND | ND | ND | 3.6 ± 0.17 | 4.1 ± 0.20 | 4.1 ± 0.31 | ND | |
F | TN | M | 4.1 ± 0.19 | 2.2 ± 0.08 | ND | ND | ND | 3.6 ± 0.10 | 4.1 ± 0.07 | ND | ND |
SL | M | 4.1 ± 0.30 | 1.9 ± 0.08 | ND | ND | ND | 3.6 ± 0.19 | 4.1 ± 0.13 | ND | ND | |
SHR | N | 4.1 ± 0.42 | 2.6 ± 0.15 | ND | ND | ND | 3.6 ± 0.17 | 4.1 ± 0.21 | ND | ND | |
CF | N | 4.2 ± 0.25 | 2.6 ± 0.07 | ND | ND | ND | 3.7 ± 0.13 | 4.1 ± 0.20 | 2.0 ± 0.08 | ND | |
SL | N | 4.2 ± 0.20 | 2.6 ± 0.11 | ND | ND | ND | 3.7 ± 0.20 | 4.1 ± 0.15 | 2.0 ± 0.07 | ND | |
TN | N | 4.2 ± 0.31 | 2.6 ± 0.13 | ND | ND | ND | 3.7 ± 0.17 | 4.2 ± 0.08 | 2.0 ± 0.10 | ND | |
G | SL | M | 1.9 ± 0.12 | 1.9 ± 0.09 | ND | ND | ND | ND | 1.9 ± 0.05 | ND | ND |
H | CF | N | ND | ND | ND | ND | ND | ND | ND | ND | ND |
SHR | N | 2.9 ± 0.30 | 2.6 ± 0.15 | ND | ND | ND | ND | ND | ND | ND | |
SL | N | ND | ND | ND | ND | ND | ND | ND | ND | ND | |
TN | N | 2.0 ± 0.36 | 2.0 ± 0.15 | 2.0 ± 0.12 | ND | ND | ND | ND | ND | ND | |
SL | M | 2.0 ± 0.19 | 2.0 ± 0.17 | ND | ND | ND | ND | ND | ND | ND | |
I | CTS | M | 3.9 ± 0.55 | 3.5 ± 0.31 | ND | ND | ND | 2.0 ± 0.12 | 2.3 ± 0.09 | ND | ND |
SL | M | 2.2 ± 0.17 | 1.9 ± 0.08 | ND | ND | ND | ND | 2.2 ± 0.10 | ND | ND | |
TN | N | 2.9 ± 0.40 | 2.2 ± 0.11 | ND | ND | ND | ND | 2.5 ± 0.07 | ND | ND | |
TN | N | 3.1 ± 0.48 | 2.7 ± 0.20 | ND | ND | ND | ND | 2.9 ± 0.11 | ND | ND | |
SL | N | 2.4 ± 0.21 | 2.2 ± 0.19 | ND | ND | ND | ND | 2.6 ± 0.07 | ND | ND | |
CF | N | 2.7 ± 0.16 | 2.4 ± 0.21 | ND | ND | ND | ND | ND | ND | ND | |
SHR | N | 3.3 ± 0.30 | 3.0 ± 0.29 | ND | ND | ND | ND | ND | ND | ND | |
EC | N | 2.4 ± 0.15 | ND | ND | ND | ND | ND | 2.8 ± 0.12 | ND | ND | |
J | SL | M | 3.3 ± 0.33 | 3.1 ± 0.25 | ND | ND | ND | ND | 3.7 ± 0.27 | ND | ND |
SL | M | 3.2 ± 0.30 | 2.9 ± 0.17 | ND | ND | ND | ND | 3.2 ± 0.21 | ND | ND | |
SL | N | 3.3 ± 0.28 | 2.8 ± 0.18 | ND | ND | ND | ND | 3.4 ± 0.25 | ND | ND | |
TN | N | 3.5 ± 0.51 | 3.0 ± 0.22 | ND | ND | 2.1 ± 0.10 | ND | 3.5 ± 0.25 | ND | ND | |
K | SHR | N | 2.8 ± 0.25 | 1.4 ± 0.06 | ND | 2.7 ± 0.19 | ND | ND | 3.0 ± 0.18 | ND | 1.9 ± 0.08 |
TN | N | 3.0 ± 0.22 | 1.8 ± 0.08 | ND | 2.2 ± 0.20 | ND | ND | 3.2 ± 0.15 | ND | ND | |
SL | N | 3.1 ± 0.29 | 1.8 ± 0.08 | ND | 1.9 ± 0.10 | ND | ND | 3.2 ± 0.20 | ND | ND | |
TN | M | 2.8 ± 0.16 | 1.0 ± 0.04 | ND | ND | ND | ND | 3.3 ± 0.25 | ND | ND | |
SL | M | 3.3 ± 0.28 | 1.7 ± 0.10 | 1.3 ± 0.11 | 2.9 ± 0.15 | ND | ND | 3.4 ± 0.27 | ND | 1.6 ± 0.05 |
FSE | AFS | TCB | Antibiotic-Resistant Coliform Bacteria | TEN | Antibiotic-Resistant Enterococci | ||
---|---|---|---|---|---|---|---|
AMP | GEN | TET | AMP | ||||
E | SL | 4.5 ± 0.39 | 4.2 ± 0.35 | 2.2 ± 0.16 | 2.69 ± 0.15 | 4.0 ± 0.22 | 3.8 ± 0.26 |
G | SL | 3.5 ± 0.33 | 3.4 ± 0.19 | 2.3 ± 0.19 | ND | 2.0 ± 0.06 | 2.0 ± 0.09 |
TN | 3.4 ± 0.28 | 3.3 ± 0.14 | ND | ND | 4.4 ± 0.35 | 4.2 ± 0.31 | |
L | SL | 3.4 ± 0.25 | 3.2 ± 0.11 | 2.0 ± 0.10 | ND | 3.7 ± 0.21 | 3.5 ± 0.25 |
TN | 3.5 ± 0.20 | 3.4 ± 0.15 | 2.3 ± 0.12 | ND | 4.1 ± 0.37 | 3.9 ± 0.30 |
Supermarket | AFS | TCB | TEC | Antibiotic-Resistant Coliform Bacteria | TEN | Antibiotic-Resistant Enterococci | |
---|---|---|---|---|---|---|---|
AMP | GEN | VAN | |||||
1 | SHR | 4.1 ± 0.30 | ND | 4.0 ± 0.25 | ND | 4.0 ± 0.32 | 2.9 ± 0.17 |
SHR | 4.0 ± 0.28 | ND | 3.9 ± 0.29 | ND | 3.8 ± 0.26 | ND | |
HB | 4.5 ± 0.28 | ND | 4.4 ± 0.34 | ND | 4.2 ± 0.37 | 3.1 ± 0.25 | |
HB | 4.7 ± 0.33 | 2.0 ± 0.10 | 4.4 ± 0.27 | ND | 4.1 ± 0.35 | 2.2 ± 0.18 | |
2 | HB | 5.1 ± 0.39 | 2.0 ± 0.09 | 5.1 ± 0.41 | ND | 3.1 ± 0.23 | ND |
HB | 5.1 ± 0.40 | 2.5 ± 0.12 | 5.1 ± 0.39 | ND | 3.2 ± 0.22 | ND | |
SL | 3.7 ± 0.29 | 3.3 ± 0.23 | 3.3 ± 0.25 | ND | 3.9 ± 0.20 | ND | |
SL | 3.6 ± 0.25 | 3.1 ± 0.20 | 3.5 ± 0.22 | ND | 3.9 ± 0.30 | ND | |
3 | SHR | 2.2 ± 0.15 | ND | ND | ND | ND | ND |
TN | 2.2 ± 0.11 | ND | ND | ND | ND | ND | |
SL | 2.6 ± 0.10 | ND | 2.0 ± 0.14 | 2.0 ± 0.21 | ND | ND | |
SL | 3.7 ± 0.26 | 2.6 ± 0.19 | 3.2 ± 0.22 | ND | ND | ND | |
HB | 3.5 ± 0.30 | ND | 3.4 ± 0.15 | ND | ND | ND |
Sample | Resistant Isolate | Antibiotic Susceptibility Profile | O-EP | RG | Sample | Resistant Isolates | Antibiotic Susceptibility Profile | O-EP | RG | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMP | GEN | CIP | CHF | TET | CEF | MER | tetA | AMP | GEN | CIP | CHF | TET | CEF | MER | tetA | ||||||
S/Sal | K. oxytoca | IR | R1 | S | S | S | S | S | - | S/Tun | E. cloacae | IR | S | S | R1 | S | S | S | - | ||
E. hormaechei | IR | R1 | S | S | S | S | S | - | E. cloacae | IR | S | S | R1 | S | S | S | - | ||||
K. pneumoniae | IR | R1 | S | S | S | S | S | - | E. cloacae | IR | S | S | R2 | S | S | S | + | - | |||
E. hormaechei | IR | R1 | S | S | S | S | S | - | K. oxytoca | IR | S | S | R1 | S | S | S | - | ||||
E. cloacae | IR | R1 | S | S | S | S | S | - | E. kobei | IR | S | S | R1 | S | S | S | - | ||||
K. pneumoniae | IR | R1 | S | S | S | S | S | - | S. liquefaciens | IR | S | S | R1 | S | S | S | - | ||||
E. cloacae | IR | R1 | S | S | S | S | S | - | S. liquefaciens | IR | S | S | R1 | S | S | S | - | ||||
K. cryocrescens | IR | S | S | S | R2 | S | S | + | + | K. oxytoca | IR | S | S | R1 | S | S | S | - | |||
K. cryocrescens | IR | S | S | S | R2 | S | S | + | + | E. asburiae | IR | R1 | S | S | S | S | S | - | |||
K. cryocrescens | IR | S | S | S | R2 | S | S | + | + | E. kobei | IR | R1 | S | S | S | S | S | - | |||
K. cryocrescens | IR | S | S | S | R2 | S | S | + | + | E. asburiae | IR | R1 | S | S | S | S | S | - | |||
K. oxytoca | IR | S | S | R1 | S | S | S | - | K. pneumoniae | IR | R1 | S | S | S | S | S | - | ||||
S/Tun | K. oxytoca | IR | R1 | S | S | S | S | S | - | S/JE | K. pneumoniae | IR | S | S | R1 | S | S | S | - | ||
K. oxytoca | IR | R1 | S | S | S | S | S | - | E. cloacae | IR | R1 | S | S | S | S | S | - | ||||
K. oxytoca | IR | R1 | S | S | S | S | S | - | E. cloacae | IR | R1 | S | S | S | S | S | - | ||||
K. oxytoca | IR | R1 | S | S | S | S | S | - | E. cloacae | IR | R1 | S | S | S | S | S | - | ||||
K. pneumoniae | IR | R1 | S | S | S | S | S | - | S/Shr | K. pneumoniae | IR | R1 | S | S | S | S | S | - | |||
K. oxytoca | IR | R1 | S | S | S | S | S | - | CF/Shr | E. cloacae | IR | S | S | R1 | S | S | S | - | |||
K. oxytoca | IR | R1 | S | S | S | S | S | - | E. cloacae | IR | S | S | R1 | S | S | S | - | ||||
K. pneumoniae | IR | R1 | S | R1 | S | S | S | - | E. cloacae | IR | S | S | R1 | S | S | S | - | ||||
R. ornithinolytica | IR | R1 | S | S | S | S | S | - | |||||||||||||
S/Tun | R. planticola | IR | R1 | S | S | S | S | S | - | ||||||||||||
R. ornithinolytica | IR | R1 | S | S | S | S | S | - | |||||||||||||
CF/Hal | E. cloacae | IR | S | S | R1 | S | S | S | + | - | |||||||||||
E. cloacae | IR | S | S | R1 | S | S | S | - | |||||||||||||
E. cloacae | IR | S | S | R1 | S | S | S | - | |||||||||||||
E. coli | R | S | S | S | S | S | S | - | |||||||||||||
E. coli | R | S | S | S | S | S | S | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krahulcová, M.; Cverenkárová, K.; Koreneková, J.; Oravcová, A.; Koščová, J.; Bírošová, L. Occurrence of Antibiotic-Resistant Bacteria in Fish and Seafood from Slovak Market. Foods 2023, 12, 3912. https://doi.org/10.3390/foods12213912
Krahulcová M, Cverenkárová K, Koreneková J, Oravcová A, Koščová J, Bírošová L. Occurrence of Antibiotic-Resistant Bacteria in Fish and Seafood from Slovak Market. Foods. 2023; 12(21):3912. https://doi.org/10.3390/foods12213912
Chicago/Turabian StyleKrahulcová, Monika, Klára Cverenkárová, Júlia Koreneková, Andrea Oravcová, Jana Koščová, and Lucia Bírošová. 2023. "Occurrence of Antibiotic-Resistant Bacteria in Fish and Seafood from Slovak Market" Foods 12, no. 21: 3912. https://doi.org/10.3390/foods12213912
APA StyleKrahulcová, M., Cverenkárová, K., Koreneková, J., Oravcová, A., Koščová, J., & Bírošová, L. (2023). Occurrence of Antibiotic-Resistant Bacteria in Fish and Seafood from Slovak Market. Foods, 12(21), 3912. https://doi.org/10.3390/foods12213912