Enhance Wine Production Potential by Using Fresh and Dried Red Grape and Blueberry Mixtures with Different Yeast Strains for Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Dehydration Process
2.3. Selection and Preparation of Yeast Inocula
2.4. Fermentation Process
2.5. Alcohol Content
2.6. Volatile Acidity
2.7. Spectrophotometric Determinations
2.8. Total Phenolic Compounds
2.9. Total Flavonoids
2.10. Total Anthocyanins
2.11. Antioxidant Activity
2.11.1. DPPH Assay
2.11.2. ABTS Assay
2.12. Sensory Analysis
- First panel: evaluation of aroma and flavor.
- Second panel: evaluation of color.
2.13. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Casagrande, M.; Zanela, J.; Pereira, D.; de Lima, V.A.; Oldoni, T.L.C.; Carpes, S.T. Optimization of the Extraction of Antioxidant Phenolic Compounds from Grape Pomace Using Response Surface Methodology. J. Food Meas. Charact. 2019, 13, 1120–1129. [Google Scholar] [CrossRef]
- Guiné, R.P.F.; Matos, S.; Gonçalves, F.J.; Costa, D.; Mendes, M. Evaluation of Phenolic Compounds and Antioxidant Activity of Blueberries and Modelization by Artificial Neural Networks. Int. J. Fruit Sci. 2018, 18, 199–214. [Google Scholar] [CrossRef]
- Lopresti, A.L.; Smith, S.J.; Pouchieu, C.; Pourtau, L.; Gaudout, D.; Pallet, V.; Drummond, P.D. Effects of a Polyphenol-Rich Grape and Blueberry Extract (MemophenolTM) on Cognitive Function in Older Adults with Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Study. Front. Psychol. 2023, 14, 1144231. [Google Scholar] [CrossRef] [PubMed]
- Baby, B.; Antony, P.; Vijayan, R. Antioxidant and Anticancer Properties of Berries. Crit. Rev. Food Sci. Nutr. 2018, 58, 2491–2507. [Google Scholar] [CrossRef] [PubMed]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Zhou, L.; Zhou, L.; Cang, S.; Liu, Y.; Liu, R.; Liu, J.; Feng, X.; Fan, R. The Research Progress of Extraction, Purification and Analysis Methods of Phenolic Compounds from Blueberry: A Comprehensive Review. Molecules 2023, 28, 3610. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Tarafdar, A.; Chaurasia, D.; Singh, A.; Bhargava, P.C.; Yang, J.; Li, Z.; Ni, X.; Tian, Y.; Li, H.; et al. Blueberry Fruit Valorization and Valuable Constituents: A Review. Int. J. Food Microbiol. 2022, 381, 109890. [Google Scholar] [CrossRef]
- Zhu, Y.; Su, Q.; Jiao, J.; Kelanne, N.; Kortesniemi, M.; Xu, X.; Zhu, B.; Laaksonen, O. Exploring the Sensory Properties and Preferences of Fruit Wines Based on an Online Survey and Partial Projective Mapping. Foods 2023, 12, 1844. [Google Scholar] [CrossRef]
- Johnson, M.H.; de Mejia, E.G.; Fan, J.; Lila, M.A.; Yousef, G.G. Anthocyanins and Proanthocyanidins from Blueberry–Blackberry Fermented Beverages Inhibit Markers of Inflammation in Macrophages and Carbohydrate-utilizing Enzymes in Vitro. Mol. Nutr. Food Res. 2013, 57, 1182–1197. [Google Scholar] [CrossRef]
- Su, M.-S.; Chien, P.-J. Antioxidant Activity, Anthocyanins, and Phenolics of Rabbiteye Blueberry (Vaccinium ashei) Fluid Products as Affected by Fermentation. Food Chem. 2007, 104, 182–187. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, L.; He, B.; Yue, P.; Gao, X. Analysis of Organic Acids in Blueberry Juice and Its Fermented Wine by High Performance Liquid Chromatography. Adv. J. Food Sci. Technol. 2015, 9, 127–134. [Google Scholar] [CrossRef]
- Santos, R.O.; Trindade, S.C.; Maurer, L.H.; Bersch, A.M.; Sautter, C.K.; Penna, N.G. Physicochemical, Antioxidant and Sensory Quality of Brazilian Blueberry Wine. Acad. Bras Cienc. 2016, 88, 1557–1568. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, N.; Gao, X. Phenolic Compounds and Antioxidant Activity of Wines Fermented Using Ten Blueberry Varieties. Am. J. Food Technol. 2016, 11, 291–297. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Q.; Weng, L.; Zou, L.; Jiang, H.; Qiu, J.; Fu, J. Analysis of Sucrose Addition on the Physicochemical Properties of Blueberry Wine in the Main Fermentation. Front. Nutr. 2023, 9, 1092696. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Q.; Cui, M.-Y.; Fu, Y.; Wang, X.-H.; Yang, Q.; Zhu, Y.; Yang, X.-H.; Bi, H.-J.; Gao, X.-L. Aroma Enhancement of Blueberry Wine by Postharvest Partial Dehydration of Blueberries. Food Chem. 2023, 426, 136593. [Google Scholar] [CrossRef] [PubMed]
- Marquez, A.; Perez-Serratosa, M.; Varo, M.A.; Merida, J. Effect of Temperature on the Anthocyanin Extraction and Color Evolution during Controlled Dehydration of Tempranillo Grapes. J. Agric. Food Chem. 2014, 62, 7897–7902. [Google Scholar] [CrossRef] [PubMed]
- Serratosa, M.P.; Lopez-Toledano, A.; Medina, M.; Merida, J. Drying of Pedro Ximenez Grapes in Chamber at Controlled Temperature and with Dipping Pretreatments. Changes in the Color Fraction. J. Agric. Food Chem. 2008, 56, 10739–10746. [Google Scholar] [CrossRef] [PubMed]
- Serratosa, M.P.; Lopez-Toledano, A.; Merida, J.; Medina, M. Changes in Color and Phenolic Compounds during the Raisining of Grape Cv. Pedro Ximenez. J. Agric. Food Chem. 2008, 56, 2810–2816. [Google Scholar] [CrossRef]
- Serratosa, M.P.; Lopez-Toledano, A.; Millan, C.; Medina, M.; Merida, J. Changes of Ochratoxin A in Grapes Inoculated with Aspergillus Carbonarius and Subjected to Chamber-Drying under Controlled Conditions. J. Agric. Food Chem. 2010, 58, 11907–11912. [Google Scholar] [CrossRef]
- Marquez, A.; Serratosa, M.P.; Lopez-Toledano, A.; Merida, J. Colour and Phenolic Compounds in Sweet Red Wines from Merlot and Tempranillo Grapes Chamber-Dried under Controlled Conditions. Food Chem. 2012, 130, 111–120. [Google Scholar] [CrossRef]
- Martin-Gomez, J.; Varo, M.; Merida, J.; Serratosa, M.P. Bioactive Compounds of Chamber-Dried Blueberries at Controlled Temperature and Wines Obtained from Them. J. Chem. 2017, 2017, 1567106. [Google Scholar] [CrossRef]
- Martín-Gómez, J.; Ángeles Varo, M.; Mérida, J.; Serratosa, M.P. The Influence of Berry Perforation on Grape Drying Kinetics and Total Phenolic Compounds. J. Sci. Food Agric. 2019, 99, 4260–4266. [Google Scholar] [CrossRef]
- García-Martínez, T.; Peinado, R.A.; Maestre, O.; Moreno, J.; Mauricio, J.C. Must Fermentation Containing High Sugar Concentration by Yeast Bioimmobilization. Bull. De L’oiv 2008, 81, 559–568. [Google Scholar]
- Crowell, E.A.; Ough, C.S. Research Note a Modified Procedure for Alcohol Determination by Dichromate Oxidation. Am. J. Enol. Vitic 1979, 30, 61–63. [Google Scholar] [CrossRef]
- International Organization of Vine and Wine. OIV Report. In Collection of International Methods of Analysis of Wines and Musts; International Organization of Vine and Wine: París, France, 2005. [Google Scholar]
- Varo, M.A.; Jacotet-Navarro, M.; Serratosa, M.P.; Mérida, J.; Fabiano-Tixier, A.-S.; Bily, A.; Chemat, F. Green Ultrasound-Assisted Extraction of Antioxidant Phenolic Compounds Determined by High Performance Liquid Chromatography from Bilberry (Vaccinium myrtillus L.) Juice By-Products. Waste Biomass Valorization 2018, 10, 1945–1955. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the PH Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Katalinic, V.; Milos, M.; Kulisic, T.; Jukic, M. Screening of 70 Medicinal Plant Extracts for Antioxidant Capacity and Total Phenols. Food Chem. 2006, 94, 550–557. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- ISO 8586:2023; Sensory Analysis—Selection and Training of Sensory Assessors. ISO: Geneva, Switzerland, 2023.
- UNE 87-022-92; Análisis Sensorial. Utensilios. Copa para la Degustación de Vino. Asociación Española de Normalización y Certificación: Madrid Spain, 1992.
- ISO 3591:1977; Sensory Analysis—Apparatus—Wine-Tasting Glass. ISO: Geneva, Switzerland, 1977.
- ISO 4121:2003; International Organization for Standardization. Sensory Analysis—Guidelines for the Use of Quantitative Response Scales. ISO: Geneva, Switzerland, 2023.
- Martín-Gómez, J.; Varo, M.Á.; Mérida, J.; Serratosa, M.P. Influence of Drying Processes on Anthocyanin Profiles, Total Phenolic Compounds and Antioxidant Activities of Blueberry (Vaccinium corymbosum). LWT-Food Sci. Technol. 2020, 120, 108931. [Google Scholar] [CrossRef]
- Boletín Oficial del Estado. Available online: https://www.boe.es/diario_boe/txt.php?id=BOE-A-2012-12569 (accessed on 15 February 2023).
- Soares-da-Silva, F.A.G.; Campos, F.M.; Ferreira, M.L.; Ribeiro, N.; Amaral, B.; Simões, T.; Silva, C.L.M. Colour Profile Analysis of Port Wines by Various Instrumental and Visual Methods. J. Sci. Food Agric. 2019, 99, 3563–3571. [Google Scholar] [CrossRef]
- Generalić Mekinić, I.; Skračić, Ž.; Kokeza, A.; Soldo, B.; Ljubenkov, I.; Banović, M.; Skroza, D. Effect of Winemaking on Phenolic Profile, Colour Components and Antioxidants in Crljenak Kaštelanski (Sin. Zinfandel, Primitivo, Tribidrag) Wine. J. Food Sci. Technol. 2019, 56, 1841–1853. [Google Scholar] [CrossRef] [PubMed]
- Morata, A.; Loira, I.; Heras, J.M.; Callejo, M.J.; Tesfaye, W.; González, C.; Suárez-Lepe, J.A. Yeast Influence on the Formation of Stable Pigments in Red Winemaking. Food Chem. 2016, 197, 686–691. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.H.; Gonzalez de Mejia, E. Comparison of Chemical Composition and Antioxidant Capacity of Commercially Available Blueberry and Blackberry Wines in Illinois. J. Food Sci. 2012, 77, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.H.; Lucius, A.; Meyer, T.; Gonzalez De Mejia, E. Cultivar Evaluation and Effect of Fermentation on Antioxidant Capacity and in Vitro Inhibition of α-Amylase and α-Glucosidase by Highbush Blueberry (Vaccinium corombosum). J. Agric. Food Chem. 2011, 59, 8923–8930. [Google Scholar] [CrossRef] [PubMed]
- Bakuradze, T.; Tausend, A.; Galan, J.; Maria Groh, I.A.; Berry, D.; Tur, J.A.; Marko, D.; Richling, E. Antioxidative Activity and Health Benefits of Anthocyanin-Rich Fruit Juice in Healthy Volunteers. Free Radic. Res. 2019, 53, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.; Hlupić, L.; Elez Garofulić, I.; Descours, E.; Ščetar, M.; Galić, K. Comparison of Protective Supports and Antioxidative Capacity of Two Bio-Based Films with Revalorised Fruit Pomaces Extracted from Blueberry and Red Grape Skin. Food Packag. Shelf. Life 2019, 20, 100315. [Google Scholar] [CrossRef]
- Foti, M.C. Use and Abuse of the DPPH• Radical. J. Agric. Food Chem. 2015, 63, 8765–8776. [Google Scholar] [CrossRef] [PubMed]
- Chaves, V.C.; Boff, L.; Vizzotto, M.; Calvete, E.; Reginatto, F.H.; Simões, C.M.O. Berries Grown in Brazil: Anthocyanin Profiles and Biological Properties. J. Sci. Food Agric. 2018, 98, 4331–4338. [Google Scholar] [CrossRef]
W1 | W2 | |||
---|---|---|---|---|
a | b | a | b | |
Control | W1C_a | W1C_b | W2C_a | W2C_b |
M05 Mead yeast | W1M_a | W1M_b | W2M_a | W2M_b |
X5 yeast | W1X_a | W1X_b | W2X_a | W2X_b |
Ethanol | Volatile Acidity | Total Phenolic Compounds | Total Flavonoids | Total Anthocyanins | Antioxidant Activity | ||
---|---|---|---|---|---|---|---|
DPPH Assay | ABTS Assay | ||||||
M1 | 0 | 0 | 845 ± 2.28 | 27.9 ± 2.62 | 2.91 ± 0.094 | 432 ± 2.72 | 824 ± 43.1 |
W1C_a | 11.4 ± 0.012 | 7.64 ± 0.246 | 917 ± 0.228 | 37.5 ± 0.131 | 11.5 ± 0.155 | 560 ± 13.3 | 1093 ± 3.29 |
W1C_b | 11.3 ± 0.067 | 6.17 ± 0.246 | 912 ± 4.53 | 39.4 ± 1.19 | 10.6 ± 0.106 | 561 ± 28.0 | 1157 ± 15.2 |
W1M_a | 10.5 ± 0.056 | 3.73 ± 0.248 | 1043 ± 7.09 | 41.1 ± 0.758 | 14.2 ± 0.149 | 612 ± 8.52 | 1300 ± 15.9 |
W1M_b | 11.6 ± 0.281 | 3.95 ± 0.000 | 1063 ± 4.48 | 47.9 ± 0.845 | 16.0 ± 0.291 | 600 ± 3.84 | 1380 ± 2.86 |
W1X_a | 10.8 ± 0.080 | 1.74 ± 0.248 | 957 ± 2.00 | 40.3 ± 1.22 | 13.6 ± 0.235 | 626 ± 2.84 | 1264 ± 25.0 |
W1X_b | 10.8 ± 0.080 | 1.74 ± 0.248 | 1019 ± 4.33 | 40.4 ± 0.675 | 13.8 ± 0.072 | 575 ± 15.5 | 1231 ± 23.7 |
M2 | 0 | 0 | 988 ± 3.22 | 24.1 ± 0.611 | 9.08 ± 0.384 | 532 ± 0.620 | 1106 ± 9.61 |
W2C_a | 9.6 ± 0.059 | 7.15 ± 0.246 | 988 ± 1.70 | 30.6 ± 0.007 | 9.96 ± 0.181 | 533 ± 1.43 | 1393 ± 13.4 |
W2C_b | 9.4 ± 0.065 | 7.40 ± 0.000 | 979 ± 4.74 | 33.1 ± 0.801 | 11.2 ± 0.073 | 540 ± 0.562 | 1205 ± 10.9 |
W2M_a | 10.5 ± 0.106 | 2.73 ± 0.248 | 1109 ± 6.48 | 36.4 ± 0.420 | 11.8 ± 0.127 | 634 ± 4.20 | 1155 ± 23.2 |
W2M_b | 10.3 ± 0.049 | 2.96 ± 0.000 | 1025 ± 51.8 | 33.1 ± 0.210 | 12.3 ± 0.068 | 583 ± 0.580 | 1146 ± 11.2 |
W2X_a | 10.4 ± 0.039 | 1.74 ± 0.248 | 1037 ± 5.96 | 34.9 ± 0.250 | 10.8 ± 0.162 | 606 ± 0.926 | 1466 ± 40.5 |
W2X_b | 10.5 ± 0.112 | 1.99 ± 0.000 | 1066 ± 9.15 | 36.5 ± 1.23 | 15.5 ± 1.40 | 610 ± 9.38 | 1294 ± 9.30 |
A420 | A520 | A620 | Color Intensity | Hue | |
---|---|---|---|---|---|
M1 | 1.85 ± 0.010 | 1.68 ± 0.003 | 0.410 ± 0.003 | 3.94 ± 0.009 | 1.10 ± 0.004 |
W1C_a | 1.59 ± 0.005 | 2.58 ± 0.000 | 0.358 ± 0.003 | 4.52 ± 0.002 | 0.615 ± 0.002 |
W1C_b | 1.61 ± 0.001 | 2.50 ± 0.005 | 0.345 ± 0.005 | 4.45 ± 0.001 | 0.646 ± 0.001 |
W1M_a | 2.11 ± 0.008 | 3.66 ± 0.023 | 0.497 ± 0.004 | 6.26 ± 0.034 | 0.578 ± 0.001 |
W1M_b | 2.23 ± 0.029 | 3.83 ± 0.043 | 0.526 ± 0.020 | 6.59 ± 0.092 | 0.583 ± 0.001 |
W1X_a | 2.05 ± 0.004 | 3.47 ± 0.011 | 0.511 ± 0.001 | 6.03 ± 0.015 | 0.592 ± 0.001 |
W1X_b | 1.84 ± 0.004 | 3.14 ± 0.006 | 0.436 ± 0.002 | 5.41 ± 0.008 | 0.586 ± 0.000 |
M2 | 1.47 ± 0.007 | 2.30 ± 0.034 | 0.400 ± 0.003 | 4.17 ± 0.044 | 0.642 ± 0.006 |
W2C_a | 1.23 ± 0.004 | 1.84 ± 0.019 | 0.272 ± 0.001 | 3.34 ± 0.024 | 0.667 ± 0.005 |
W2C_b | 1.24 ± 0.006 | 1.94 ± 0.021 | 0.253 ± 0.002 | 3.43 ± 0.029 | 0.641 ± 0.004 |
W2M_a | 1.50 ± 0.007 | 2.32 ± 0.015 | 0.316 ± 0.004 | 4.13 ± 0.025 | 0.643 ± 0.001 |
W2M_b | 1.49 ± 0.002 | 2.44 ± 0.011 | 0.343 ± 0.002 | 4.27 ± 0.015 | 0.607 ± 0.002 |
W2X_a | 1.65 ± 0.005 | 2.64 ± 0.017 | 0.385 ± 0.001 | 4.67 ± 0.023 | 0.622 ± 0.002 |
W2X_b | 1.65 ± 0.001 | 2.70 ± 0.007 | 0.419 ± 0.001 | 4.76 ± 0.005 | 0.611 ± 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Gómez, J.; García-Martínez, T.; Varo, M.Á.; Mérida, J.; Serratosa, M.P. Enhance Wine Production Potential by Using Fresh and Dried Red Grape and Blueberry Mixtures with Different Yeast Strains for Fermentation. Foods 2023, 12, 3925. https://doi.org/10.3390/foods12213925
Martín-Gómez J, García-Martínez T, Varo MÁ, Mérida J, Serratosa MP. Enhance Wine Production Potential by Using Fresh and Dried Red Grape and Blueberry Mixtures with Different Yeast Strains for Fermentation. Foods. 2023; 12(21):3925. https://doi.org/10.3390/foods12213925
Chicago/Turabian StyleMartín-Gómez, Juan, Teresa García-Martínez, M. Ángeles Varo, Julieta Mérida, and María P. Serratosa. 2023. "Enhance Wine Production Potential by Using Fresh and Dried Red Grape and Blueberry Mixtures with Different Yeast Strains for Fermentation" Foods 12, no. 21: 3925. https://doi.org/10.3390/foods12213925
APA StyleMartín-Gómez, J., García-Martínez, T., Varo, M. Á., Mérida, J., & Serratosa, M. P. (2023). Enhance Wine Production Potential by Using Fresh and Dried Red Grape and Blueberry Mixtures with Different Yeast Strains for Fermentation. Foods, 12(21), 3925. https://doi.org/10.3390/foods12213925