Sensory Evaluation, Physico-Chemical Properties, and Aromatic Profile of Pasteurised Orange Juice with Resistant Maltodextrin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Sample Preparation and Pasteurisation
2.3. Sensory Analysis
2.4. Physico-Chemical Determinations
2.4.1. °Brix, pH, Acidity, and Density
2.4.2. Particle Size
2.4.3. Colour Measurement
2.5. Analysis of Aroma Volatile Compounds with ITEX/GS-MS
2.6. Statistical Analysis
3. Results and Discussion
3.1. Sensory Evaluation
3.2. Physico-Chemical Properties
3.3. Aroma Volatile Compounds
3.4. Instrumental and Sensory Correlations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karelakis, C.; Zevgitis, P.; Galanopoulos, K.; Mattas, K. Consumer trends and attitudes to functional foods. J. Int. Food Agribus. Mark. 2020, 32, 266–294. [Google Scholar] [CrossRef]
- Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A.; Gareau, M.; Eileen, F.M.; Saulnier, D.; Loh, G.; et al. Dietary prebiotics: Current status and new definition. Food Sci. Technol. Bull. Funct. Foods 2010, 7, 1–19. [Google Scholar] [CrossRef]
- Gibson, G.R.; Probert, H.M.; Loo, J.V.; Rastall, R.A.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004, 17, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Corzo, N.; Alonso, J.L.; Azpiroz, F.; Calvo, M.A.; Cirici, M.; Leis, R.; Lombó, F.; Mateos-Aparicio, I.; Plou, F.J.; Ruas-Madiedo, P.; et al. Prebiotics: Concept, properties and beneficial effects. Nutr. Hosp. 2015, 31, 99–118. [Google Scholar] [PubMed]
- Lockyer, S.; Nugent, A.P. Health effects of resistant starch. Nutr. Bull. 2017, 42, 10–41. [Google Scholar] [CrossRef]
- Ye, Z.; Arumugam, V.; Haugabrooks, E.; Williamson, P.; Hendrich, S. Soluble dietary fiber (Fibersol-2) decreased hunger and increased satiety hormones in humans when ingested with a meal. Nutr. Res. 2015, 35, 393–400. [Google Scholar] [CrossRef]
- Livesey, G.; Tagami, H. Interventions to lower the glycemic response to carbohydrate foods with a low-viscosity fiber (resistant maltodextrin): Meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2009, 89, 114–125. [Google Scholar] [CrossRef]
- Kishimoto, Y.; Oga, H.; Hayashi, N.; Yamada, T.; Tagami, H. Suppressive effect of resistant maltodextrin on postprandial blood triacylglycerol elevation. Eur. J. Nutr. 2007, 46, 133–138. [Google Scholar] [CrossRef]
- Baer, D.J.; Stote, K.S.; Henderson, T.; Paul, D.R.; Okuma, K.; Tagami, H.; Kanahori, S.; Gordon, D.T.; Rumpler, W.V.; Ukhanova, M.; et al. The metabolizable energy of dietary resistant maltodextrin is variable and alters fecal microbiota composition in adult men. J. Nutr. 2014, 144, 1023–1029. [Google Scholar] [CrossRef]
- Priyadarshini, A.; Priyadarshini, A. Market dimensions of the fruit juice industry. In Fruit Juices: Extraction, Composition, Quality and Analysis; Rajauria, G., Tiwari, B.K., Eds.; Elsevier: London, UK, 2018; pp. 15–32. [Google Scholar]
- Day, L.; Seymour, R.B.; Pitts, K.F.; Konczak, I.; Lundin, L. Incorporation of functional ingredients into foods. Trends Food Sci. Technol. 2009, 20, 388–395. [Google Scholar] [CrossRef]
- Singla, V.; Chakkaravarthi, S. Applications of prebiotics in food industry: A review. Food Sci. Technol. Int. 2017, 23, 649–667. [Google Scholar] [CrossRef]
- Fonteles Vidal, T.; Rodrigues, S. Prebiotic in fruit juice: Processing challenges, advances, and perspectives. Curr. Opin. Food Sci. 2018, 22, 55–61. [Google Scholar] [CrossRef]
- Neves, M.F.; Trombin, V.G.; Marques, V.N.; Martinez, L.F. Global orange juice market: A 16-year summary and opportunities for creating value. Trop. Plant Pathol. 2020, 45, 166–174. [Google Scholar] [CrossRef]
- Ruiz Perez-Cacho, P.; Rouseff, R.L. Processing and storage effects on orange juice aroma: A review. J. Agric. Food Chem. 2008, 56, 9785–9796. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, A.D.; Jensen, S.L.; Ziegler, G.; Pandeya, A.; Buléon, A.; Svensson, B.; Blennow, A. Structural and physical effects of aroma compound binding to native starch granules. Starch-Stärke 2012, 64, 461–469. [Google Scholar] [CrossRef]
- Berlinet, C.; Guichard, E.; Fournier, N.; Ducruet, V. Effect of Pulp Reduction and Pasteurization on the Release of Aroma Compounds in Industrial Orange Juice. J. Food Sci. 2007, 72, S535–S543. [Google Scholar] [CrossRef]
- van Willige, R.W.G.; Linssen, J.P.H.; Legger-Huysman, A.; Voragen, A.G.J. Influence of flavour absorption by food-packaging materials (low-density polyethylene, polycarbonate and polyethylene terephthalate) on taste perception of a model solution and orange juice. Food Addit. Contam. 2003, 20, 84–91. [Google Scholar] [CrossRef]
- Pujari, R.; Banerjee, G. Impact of prebiotics on immune response: From the bench to the clinic. Immunol. Cell. Biol. 2021, 99, 255–273. [Google Scholar] [CrossRef]
- Baker, M.T.; Lu, P.; Parrella, J.A.; Leggette, H.R. Consumer acceptance toward functional foods: A scoping review. Int. J. Environ. Res. Public Health. 2022, 19, 1217. [Google Scholar] [CrossRef]
- AIJN-European Fruit Juice Association. Orange Juice Guideline. Available online: https://aijn.eu/en/publications/aijn-papers-guidelines/juice-quality (accessed on 1 May 2023).
- ISO 4121; Sensory Analysis—Guidelines for the Use of Quantitative Response Scales. ISO: Geneva, Switzerland, 2003.
- Latimer, G.W. ; AOAC International. Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012; Volume 2. [Google Scholar]
- ISO 13320; Particle Size Analysis-Laser Diffraction Methods. ISO: Geneva, Switzerland, 2020.
- Commission Internationale de l’Eclairage (CIE). Colorimetry, 2nd ed.; Publication CIE No. 15.2; Commission Internationale de l’Eclairage: Austria, Vienna, 1986. [Google Scholar]
- Igual, M.; Chiş, M.S.; Socaci, S.A.; Vodnar, D.C.V.; Ranga, F.; Martínez-Monzó, J.; García-Segovia, P. Effect of Medicago sativa Addition on Physicochemical, Nutritional and Functional Characteristics of Corn Extrudates. Foods 2021, 10, 928. [Google Scholar] [CrossRef]
- The Pherobase Database of Pheromones and Semiochemicals. Available online: https://www.pherobase.com/ (accessed on 10 March 2023).
- Flavornet and Human Odor Space. Available online: http://www.flavornet.org/ (accessed on 10 March 2023).
- Lumivero, XLSTAT Statistical and Data Analysis Solution 2023. Available online: https://www.xlstat.com/en (accessed on 31 May 2023).
- Rega, B.; Fournier, N.; Nicklaus, S.; Guichard, E. Role of pulp in flavor release and sensory perception in orange juice. J. Agric. Food Chem. 2004, 52, 4204–4212. [Google Scholar] [CrossRef]
- Jayasena, V.; Cameron, I. °Brix/acid ratio as a predictor of consumer acceptability of Crimson Seedless table grapes. J. Food Qual. 2008, 31, 736–750. [Google Scholar] [CrossRef]
- Luckow, T.; Delahunty, C. Consumer acceptance of orange juice containing functional ingredients. Food Res. Int. 2004, 37, 805–814. [Google Scholar] [CrossRef]
- Kimball, D.A. Citrus Processing: Quality Control and Technology; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Arilla, E.; Igual, M.; Martínez-Monzó, J.; Codoñer-Franch, P.; García-Segovia, P. Impact of Resistant Maltodextrin Addition on the Physico-Chemical Properties in Pasteurized Orange Juice. Foods 2020, 9, 1832. [Google Scholar] [CrossRef]
- Arilla, E.; García-Segovia, P.; Martínez-Monzó, J.; Codoñer-Franch, P.; Igual, M. Effect of Adding Resistant Maltodextrin to Pasteurized Orange Juice on Bioactive Compounds and Their Bioaccessibility. Foods 2021, 10, 1198. [Google Scholar] [CrossRef]
- Arilla, E.; Martínez-Monzó, J.; Codoñer-Franch, P.; García-Segovia, P.; Igual, M. Stability of vitamin C, carotenoids, phenols, and antioxidant capacity of pasteurised orange juice with resistant maltodextrin storage. Food Sci. Technol. Int. 2022, in press. [CrossRef]
- Ghavidel, R.A.; Karimi, M.; Davoodi, M.; Jahanbani, R.; Asl, A.F.A. Effect of fructooligosaccharide fortification on quality characteristic of some fruit juice beverages (apple & orange juice). Intl. J. Farm. Alli. Sci. 2014, 3, 141–146. [Google Scholar]
- Braga, H.F.; Conti-Silva, A.C. Papaya nectar formulated with prebiotics: Chemical characterization and sensory acceptability. LWT Food Sci. Technol. 2015, 62, 854–860. [Google Scholar] [CrossRef]
- Pimentel, T.C.; Madrona, G.S.; Prudencio, S.H. Probiotic clarified apple juice with oligofructose or sucralose as sugar substitutes: Sensory profile and acceptability. LWT Food Sci. Technol. 2015, 62, 838–846. [Google Scholar] [CrossRef]
- De Paulo Farias, D.; de Araújo, F.F.; Neri-Numa, I.A.; Pastore, G.M. Prebiotics: Trends in food, health and technological applications. Trends Food Sci. Technol. 2019, 93, 23–35. [Google Scholar] [CrossRef]
- Wibowo, S.; Grauwet, T.; Santiago, J.S.; Tomic, J.; Vervoort, L.; Hendrickx, M.; Van Loey, A. Quality changes of pasteurized orange juice during storage: A kinetic study of specific parameters and their relation to colour instability. Food Chem. 2015, 187, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Bodart, M.; de Peñaranda, R.; Deneyer, A.; Flamant, G. Photometry and colorimetry characterisation of materials in daylighting evaluation tools. Build. Environ. 2008, 43, 2046–2058. [Google Scholar] [CrossRef]
- Ramos, A.M.; Ibarz, A. Density of juice and fruit puree as a function of soluble solids content and temperature. J. Food Eng. 1998, 3, 57–63. [Google Scholar] [CrossRef]
- Ibarz, A.; Miguelsanz, R. Variation with temperature and soluble solids concentration of the density of a depectinised and clarified pear juice. J. Food Eng. 1989, 10, 319–323. [Google Scholar] [CrossRef]
- Saifullah, M.; Shishir, M.R.I.; Ferdowsi, R.; Rahman, M.R.T.; Van Vuong, Q. Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends Food Sci. Technol. 2019, 86, 230–251. [Google Scholar] [CrossRef]
- Jordan, M.J.; Goodner, K.L.; Laencina, J. Deaeration and pasteurization effects on the orange juice aromatic fraction. LWT Food Sci. Technol. 2003, 36, 391–396. [Google Scholar] [CrossRef]
- Wibowo, S.; Vervoort, L.; Tomic, J.; Santiago, J.S.; Lemmens, L.; Panozzo, A.; Grauwet, T.; Hendrickx, M.; Van Loey, A. Colour and carotenoid changes of pasteurised orange juice during storage. Food Chem. 2015, 171, 330–340. [Google Scholar] [CrossRef]
- Wibowo, S.; Grauwet, T.; Kebede, B.T.; Hendrickx, M.; Van Loey, A. Study of chemical changes in pasteurised orange juice during shelf-life: A fingerprinting-kinetics evaluation of the volatile fraction. Food Res. Int. 2015, 75, 295–304. [Google Scholar] [CrossRef]
- Kelebek, H.; Selli, S. Determination of volatile, phenolic, organic acid and sugar components in a Turkish cv. Dortyol (Citrus sinensis L. Osbeck) orange juice. J. Agric. Food Chem. 2011, 91, 1855–1862. [Google Scholar] [CrossRef]
- Ruiz Perez-Cacho, P.; Rouseff, R.L. Fresh squeezed orange juice odor: A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 681–695. [Google Scholar] [CrossRef]
- Brat, P.; Rega, B.; Alter, P.; Reynes, M.; Brillouet, J.M. Distribution of volatile compounds in the pulp, cloud, and serum of freshly squeezed orange juice. J. Agric. Food Chem. 2003, 51, 3442–3447. [Google Scholar] [CrossRef] [PubMed]
- Sellami, I.; Mall, V.; Schieberle, P. Changes in the Key Odorants and Aroma Profiles of Hamlin and Valencia Orange Juices Not from Concentrate (NFC) during Chilled Storage. J. Agric. Food Chem. 2018, 66, 7428–7440. [Google Scholar] [CrossRef] [PubMed]
- Averbeck, M.; Schieberle, P.H. Characterisation of the key aroma compounds in a freshly reconstituted orange juice from concentrate. Eur. Food Res.Technol. 2009, 229, 611–622. [Google Scholar] [CrossRef]
- Bylaite, E.; Meyer, A.S. Characterisation of volatile aroma compounds of orange juices by three dynamic and static headspace gas chromatography techniques. Eur. Food Res.Technol. 2006, 222, 176–184. [Google Scholar] [CrossRef]
- Schalow, S.; Baloufaud, M.; Cottancin, T.; Fischer, J.; Drusch, S. Orange pulp and peel fibres: Pectin-rich by-products from citrus processing for water binding and gelling in foods. Eur. Food Res. Technol. 2018, 244, 235–244. [Google Scholar] [CrossRef]
- Nestrud, M.A.; Lawless, H.T. Perceptual mapping of citrus juices using projective mapping and profiling data from culinary professionals and consumers. Food Qual. Prefer. 2008, 19, 431–438. [Google Scholar] [CrossRef]
Sample | °Brix | pH | Acidity | L* | a* | b* | ΔE |
---|---|---|---|---|---|---|---|
OJWP0 | 12.3 (0.2) d | 3.67 (0.02) b | 0.920 (0.002) a | 40.68 (0.13) a | −1.54 (0.13) d | 29.6 (0.3) a | - |
OJWP2.5 | 14.4 (0.2) c | 3.67 (0.02) b | 0.882 (0.002) c | 37.89 (0.16) d | −1.29 (0.07) bc | 28.70 (0.07) c | 2.95 (0.13) e |
OJWP5 | 16.5 (0.2) b | 3.67 (0.02) b | 0.861 (0.002) e | 36.80 (0.12) e | −1.48 (0.09) d | 27.4 (0.4) d | 4.5 (0.2) c |
OJWP7.5 | 18.7 (0.2) a | 3.67 (0.02) b | 0.838 (0.002) g | 35.12 (0.02) g | −1.51 (0.02) d | 26.43 (0.12) e | 6.41 (0.05) a |
OJP0 | 12.2 (0.2) d | 3.70 (0.02) a | 0.891 (0.002) b | 40.13 (0.10) b | −1.35 (0.12) c | 29.4 (0.4) ab | - |
OJP2.5 | 14.4 (0.2) c | 3.68 (0.02) b | 0.872 (0.002) d | 38.84 (0.13) c | −1.240 (0.002) ab | 28.76 (0.15) bc | 1.46 (0.07) f |
OJP5 | 16.5 (0.2) b | 3.71 (0.02) a | 0.849 (0.002) f | 37.9 (0.3) d | −1.350 (0.014) c | 26.5 (1.2) e | 3.7 (0.5) d |
OJP7.5 | 18.8 (0.2) a | 3.68 (0.02) b | 0.832 (0.002) h | 35.69 (0.13) f | −1.16 (0.05) a | 26.5 (0.5) e | 5.3 (0.2) b |
Sample | D[4,3] | d(0.1) | d(0.5) | d(0.9) | Density |
---|---|---|---|---|---|
OJWP0 | 302 (13) cd | 25.6 (1.6) c | 245 (10) cd | 665 (30) c | 1.0487 (0.0002) g |
OJWP2.5 | 307 (4) c | 26.1 (1.2) c | 247 (5) c | 677 (8) c | 1.0575 (0.0003) f |
OJWP5 | 299 (14) cd | 23 (2) e | 242 (11) cd | 657 (31) c | 1.0659 (0.0009) d |
OJWP7.5 | 286 (12) d | 19.9 (1.2) f | 230 (9) d | 632 (28) c | 1.0757 (0.0004) b |
OJP0 | 427 (26) ab | 43 (3) ab | 332 (18) ab | 963 (66) a | 1.0487 (0.0005) g |
OJP2.5 | 410 (37) b | 41 (4) b | 324 (29) b | 916 (87) b | 1.0579 (0.0002) e |
OJP5 | 433 (20) a | 41 (3) ab | 339 (18) a | 974 (47) a | 1.0670 (0.0003) c |
OJP7.5 | 427 (25) ab | 44 (4) a | 335 (20) ab | 957 (62) ab | 1.0762 (0.0007) a |
Alcohols | OJWP0 | OJWP2.5 | OJWP5 | OJWP7.5 | OPJ0 | OPJ2.5 | OPJ5 | OPJ7.5 |
1-Octanol | 0.09(0.03) bc | 0.11(0.03) bc | 0.07(0.03) c | 0.07(0.01) c | 0.21(0.02) a | 0.22(0.02) a | 0.18(0.01) a | 0.11(0.02) b |
3-methyl-1-Butanol, | 0.07(0.02) b | 0.06(0.02) bc | 0.06(0.03) bc | 0.07(0.02) b | 0.16(0.02) a | 0.02(0.01) d | n.d. | 0.03(0.02) cd |
2-methyl-1-Butanol | n.d. | 0.04(0.02) b | n.d. | n.d. | n.d. | n.d. | 0.35(0.02) a | n.d. |
1-Terpinen-4-ol | 0.69(0.02) c | 0.60(0.02) d | 0.57(0.02) d | 0.49(0.02) e | 1.03(0.02) a | 0.88(0.02) b | 0.87(0.02) b | 0.94(0.02) b |
cis-p-Mentha-2,8-dien-1-ol | 0.13(0.02) c | 0.16(0.03) bc | 0.15(0.02) bc | 0.17(0.02) b | 0.14(0.02) bc | 0.28(0.02) a | 0.25(0.02) a | |
2-Cyclohexen-1-ol, 2-methyl-5-(1-methylethenyl)-, cis-//cis-Carveol | 0.34(0.03) bc | 0.24(0.02) d | 0.29(0.04) c | 0.31(0.02) c | 0.23(0.02) d | 0.12(0.02) e | 0.39(0.02) a | 0.37(0.02) ab |
2-Cyclohexen-1-ol, 2-methyl-5-(1-methylethenyl)-, trans-//trans-Carveol | n.d. | 0.08(0.02) bc | 0.06(0.01) cd | 0.07(0.02) bc | 0.03(0.02) d | 0.03(0.02) d | 0.11(0.01) ab | 0.12(0.02) a |
Total | 1.19(0.10) d | 1.26(0.15) d | 1.25(0.16) d | 1.16(0.11) d | 1.83(0.12) b | 1.41(0.11) c | 2.18(0.10) a | 1.82(0.12) b |
Aldehydes | OJWP0 | OJWP2.5 | OJWP5 | OJWP7.5 | OPJ0 | OPJ2.5 | OPJ5 | OPJ7.5 |
Dodecanal | 0.07(0.02) bc | 0.05(0.02) c | 0.06(0.02) c | 0.05(0.02) c | 0.12(0.02) a | 0.10(0.02) ab | 0.06(0.02) c | 0.12(0.02) a |
2-Hexenal, (E)- | 0.09(0.02) c | 0.09(0.02) c | 0.08(0.03) cd | 0.09(0.02) c | 0.20(0.02) a | 0.05(0.02) d | 0.14(0.02) b | 0.16(0.02) b |
Heptanal | n.d. | 0.03(0.02) a | 0.05(0.02) a | 0.03(0.02) a | 0.04(0.02) a | 0.07(0.02) a | 0.06(0.02) a | n.d. |
Undecanal | 0.04(0.03) a | 0.05(0.02) a | 0.04(0.02) a | 0.06(0.03) a | 0.08(0.02) a | 0.08(0.02) a | 0.08(0.02) a | 0.08(0.02) a |
Octanal | 7.27(0.04) d | 7.18(0.03) d | 6.97(0.04) e | 6.52(0.05) f | 8.23(0.04) c | 8.96(0.06) b | 9.20(0.04) a | 9.23(0.03) a |
Nonanal | 0.47(0.06) b | 0.34(0.03) cd | 0.36(0.02) cd | 0.43(0.04) bc | 0.63(0.03) a | 0.59(0.04) a | 0.59(0.02) a | 0.59(0.03) a |
Decanal | 1.64(0.03) d | 1.36(0.05) e | 1.43(0.03) e | 1.62(0.03) d | 2.83(0.03) a | 2.28(0.05) c | 2.43(0.03) b | 2.30(0.04) c |
Total | 9.58(0.20) d | 9.10(0.19) e | 8.99(0.18) f | 8.8(0.21) g | 12.13(0.18) c | 12.13(0.23) c | 12.56(0.17) a | 12.48(0.16) b |
Terpenes and terpenoids | OJWP0 | OJWP2.5 | OJWP5 | OJWP7.5 | OPJ0 | OPJ2.5 | OPJ5 | OPJ7.5 |
Camphene | 0.06(0.02) a | n.d. | n.d. | n.d. | 0.04(0.03) a | 0.08(0.02) a | n.d. | n.d. |
β-Pinene | 0.49(0.02) c | 0.12(0.02) f | 0.25(0.03) d | 0.18(0.02) e | 0.62(0.03) b | 0.08(0.02) f | 0.62(0.04) b | 0.69(0.04) a |
Benzaldehyde | n.d. | n.d. | n.d. | n.d. | 0.08(0.02) a | 0.07(0.03) a | 0.06(0.02) a | 0.07(0.02) a |
β-Myrcene | 34.36(0.06) b | 34.88(0.18) a | 33.51(0.07) c | 32.49(0.08) d | 31.81(0.07) e | 31.17(0.10) f | 31.06(0.08) f | 31.00(0.12) f |
Limonene | 34.18(0.04) c | 35.08(0.06) a | 34.87(0.06) b | 33.87(0.07) d | 23.02(0.10) f | 25.02(0.07) e | 23.16(0.09) f | 23.08(0.10) f |
β-cis-Ocimene | 0.86(0.02) c | 0.73(0.02) d | 0.71(0.02) d | 0.83(0.03) c | 1.05(0.04) b | 1.11(0.03) a | 1.06(0.03) ab | 1.03(0.03) b |
α-Phellandrene | n.d. | n.d. | 0.06(0.02) ab | 0.03(0.01) b | 0.05(0.02) ab | 0.09(0.03) a | 0.07(0.03) ab | n.d. |
.gamma.-Terpinene | 1.98(0.02) e | 1.91(0.02) e | 1.97(0.04) e | 2.20(0.04) d | 2.89(0.07) bc | 3.08(0.05) a | 2.81(0.06) c | 2.97(0.05) ab |
Terpinolene | 0.11(0.02) b | 0.10(0.02) b | 0.11(0.02) b | 0.13(0.03) b | 0.21(0.02) a | 0.12(0.02) b | n.d. | n.d. |
α-Pinene | 6.90(0.04) g | 6.37(0.03) h | 7.24(0.04) f | 7.82(0.06) e | 12.11(0.07) a | 10.27(0.06) d | 10.66(0.08) c | 11.36(0.08) b |
β-Linalool | 0.64(0.02) e | 0.65(0.03) e | 0.61(0.02) e | 0.75(0.05) d | 0.53(0.05) f | 1.21(0.03) c | 1.53(0.03) b | 1.86(0.04) a |
(+)-4-Carene | 1.24(0.02) b | 1.05(0.03) b | 1.07(0.04) b | 1.26(0.03) b | 1.69(0.06) a | 1.78(0.05) a | 1.73(0.04) a | 1.27(0.03) b |
Benzene, 2-ethenyl-1,3-dimethyl- | 0.22(0.03) ab | 0.16(0.02) b | 0.22(0.03) ab | 0.22(0.03) ab | 0.27(0.03) a | 0.26(0.03) a | 0.23(0.03) a | 0.21(0.03) ab |
β-Terpineol | 0.03(0.03) e | 0.14(0.03) d | 0.03(0.02) e | 0.05(0.03) e | 0.13(0.02) d | 0.23(0.02) c | 0.57(0.03) b | 0.79(0.03) a |
α-Terpineol | 0.23(0.04) c | 0.19(0.03) cd | 0.15(0.03) de | 0.13(0.02) e | 0.33(0.02) b | 0.24(0.03) c | 0.40(0.02) b | 0.86(0.03) a |
α-Citral | n.d. | n.d. | n.d. | n.d. | 0.19(0.02) a | 0.05(0.03) b | n.d. | n.d. |
Copaene | 0.09(0.02) cd | 0.09(0.02) bcd | 0.06(0.03) d | 0.07(0.02) d | 0.19(0.03) a | 0.13(0.03) abc | 0.17(0.03) a | 0.15(0.04) ab |
1,3,8-p-Menthatriene | 0.11(0.02) ab | 0.06(0.03) b | 0.13(0.02) a | 0.13(0.02) a | 0.15(0.03) a | 0.16(0.03) a | 0.14(0.03) a | 0.16(0.02) a |
Limonene epoxide | 0.14(0.03) a | 0.15(0.03) a | 0.14(0.03) a | 0.14(0.03) a | 0.14(0.03) a | 0.15(0.04) a | 0.20(0.03) a | 0.15(0.02) a |
Caryophyllene | 0.13(0.03) b | 0.13(0.03) b | 0.08(0.02) c | 0.10(0.02) bc | 0.25(0.03) a | 0.12(0.03) bc | 0.22(0.02) a | 0.20(0.02) a |
α-Caryophyllene | 0.03(0.02) d | 0.08(0.02) cd | 0.08(0.02) cd | 0.08(0.02) cd | 0.12(0.03) abc | 0.13(0.03) ab | 0.17(0.03) a | 0.11(0.03) bc |
β-Elemene | n.d. | 0.05(0.02) d | 0.07(0.03) bcd | 0.06(0.03) cd | 0.11(0.02) abc | 0.12(0.03) ab | 0.13(0.03) a | 0.10(0.03) abcd |
Naphthalene, 1.2,3,5,6,7,8,8a-octahydro-1.8a-dimethyl-7-(1-methylethenyl)-, [1R-(1.alpha.,7.beta.,8a.alpha.)]- //Valencene | 1.33(0.03) f | 2.73(0.08) d | 2.42(0.05) e | 2.67(0.05) d | 4.12(0.08) b | 4.10(0.06) b | 4.29(0.07) a | 3.84(0.02) c |
2-Cyclohexen-1-one, 2-methyl-5-(1-methylethenyl)-, (R)-// (-)-Carvone | 0.90(0.03) e | 1.00(0.03) d | 1.41(0.04) b | 1.80(0.05) a | 0.85(0.06) e | 0.29(0.04) f | 1.40(0.06) b | 1.21(0.02) c |
2-Cyclohexen-1-one, 3-methyl-6-(1-methylethenyl)-, (S)- | 0.16(0.03) e | 0.36(0.03) c | 1.04(0.03) b | 1.18(0.04) a | 0.08(0.02) f | 0.25(0.03) d | 0.12(0.03) ef | 0.17(0.02) e |
Naphthalene, 1.2,3,5,6,8a-hexahydro-4,7-dimethyl-1-(1-methylethyl)-, (1S-cis)-//delta.-Cadinene | 0.10(0.03) e | 0.08(0.02) e | 0.08(0.02) e | 0.20(0.03) d | 0.32(0.03) bc | 0.36(0.03) ab | 0.41(0.03) a | 0.29(0.01) c |
(-)-α-Panasinsen | n.d. | n.d. | n.d. | n.d. | 0.21(0.03) a | 0.24(0.03) a | 0.23(0.04) a | 0.20(0.02) a |
2,6-Octadien-1-ol, 3,7-dimethyl-, acetate, (Z)-//Nerol acetate | 0.05(0.03) b | n.d. | n.d. | 0.05(0.03) b | 0.06(0.03) ab | 0.07(0.03) ab | 0.08(0.02) ab | 0.11(0.01) a |
1-Cyclohexene-1-carboxaldehyde, 4-(1-methylethenyl)- | 0.04(0.03) d | 0.20(0.03) c | 0.12(0.03) c | 0.25(0.03) bc | 0.21(0.03) bc | 0.04(0.02) d | 0.37(0.04) a | 0.27(0.02) b |
β-Citral | n.d. | n.d. | 0.03(0.03) a | 0.05(0.03) a | 0.06(0.03) a | 0.05(0.02) a | 0.06(0.02) a | 0.04(0.02) a |
Total | 84.38(0.68) b | 86.31(0.82) a | 86.45(0.88) a | 86.74(0.90) a | 81.89(1.16) c | 81.07(1.08) c | 81.95(1.05) c | 82.19(0.80) c |
Ketones | OJWP0 | OJWP2.5 | OJWP5 | OJWP7.5 | OPJ0 | OPJ2.5 | OPJ5 | OPJ7.5 |
Acetophenone | n.d. | 0.04(0.02) c | 0.04(0.02) c | 0.04(0.02) c | 0.05(0.02) c | 0.06(0.03) c | 0.18(0.02) b | 0.53(0.03) a |
Ethanone, 1-(4-methylphenyl)- | 0.11(0.03) bc | 0.11(0.03) bc | 0.11(0.03) bc | 0.15(0.04) b | 0.06(0.03) c | 0.05(0.04) c | 0.18(0.04) b | 0.46(0.05) a |
Total | 0.11(0.03) c | 0.15(0.06) c | 0.15(0.05) c | 0.19(0.07) c | 0.11(0.05) c | 0.11(0.07) c | 0.36(0.06) b | 0.99(0.08) a |
Acids | OJWP0 | OJWP2.5 | OJWP5 | OJWP7.5 | OPJ0 | OPJ2.5 | OPJ5 | OPJ7.5 |
Butanoic acid, methyl ester | 0.59(0.08) b | 0.04(0.01) d | 0.06(0.02) d | 0.06(0.02) d | 1.20(0.02) a | 0.10(0.02) cd | 0.07(0.02) d | 0.15(0.03) c |
Dodecanoic acid | 0.17(0.04) b | 0.14(0.02) b | 0.14(0.03) b | 0.13(0.03) bc | 0.07(0.02) c | 0.25(0.03) a | 0.26(0.04) a | 0.24(0.02) ab |
Tetradecanoic acid | 0.61(0.08) a | 0.14(0.04) d | 0.27(0.01) c | 0.24(0.04) c | 0.14(0.04) d | 0.18(0.02) cd | 0.38(0.04) b | 0.24(0.03) c |
Butanoic acid, ethyl ester | 1.89(0.07) c | 1.35(0.15) d | 1.37(0.04) d | 1.41(0.03) d | 2.33(0.07) b | 3.48(0.05) a | 1.95(0.06) c | 2.19(0.11) b |
Acetic acid, octyl ester | 1.40(0.08) a | 0.78(0.03) b | 0.74(0.06) b | 0.80(0.04) b | 0.15(0.03) c | 0.05(0.01) d | 0.07(0.03) cd | 0.04(0.01) d |
Total | 4.65(0.36) a | 2.45 (0.25) d | 2.58(0.16) cd | 2.63(0.16) cd | 3.87(0.18) b | 4.06(0.13) b | 2.71(0.19) cd | 2.86(0.20) c |
n.i. | 0.09 | 0.73 | 0.58 | 0.47 | 0.15 | 0.99 | 0.55 | 0.08 |
Sensory Colour | Sensory Taste | Sensory Texture | Sensory Flavour | Instrumental Colour | Instrumental Taste | Instrumental Texture | Instrumental Aroma | MFA | |
---|---|---|---|---|---|---|---|---|---|
Sensory colour | 1.000 | 0.058 | 0.093 | 0.025 | 0.175 | 0.083 | 0.099 | 0.278 | 0.294 |
Sensory taste | 0.058 | 1.000 | 0.733 | 0.394 | 0.700 | 0.645 | 0.685 | 0.459 | 0.808 |
Sensory texture | 0.093 | 0.733 | 1.000 | 0.253 | 0.732 | 0.691 | 0.498 | 0.346 | 0.737 |
Sensory flavour | 0.025 | 0.394 | 0.253 | 1.000 | 0.617 | 0.527 | 0.464 | 0.205 | 0.605 |
Instrumental colour | 0.175 | 0.700 | 0.732 | 0.617 | 1.000 | 0.886 | 0.784 | 0.489 | 0.927 |
Instrumental taste | 0.083 | 0.645 | 0.691 | 0.527 | 0.886 | 1.000 | 0.711 | 0.312 | 0.834 |
Instrumental texture | 0.099 | 0.685 | 0.498 | 0.464 | 0.784 | 0.711 | 1.000 | 0.816 | 0.890 |
Instrumental aroma | 0.278 | 0.459 | 0.346 | 0.205 | 0.489 | 0.312 | 0.816 | 1.000 | 0.690 |
MFA | 0.294 | 0.808 | 0.737 | 0.605 | 0.927 | 0.834 | 0.890 | 0.690 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arilla, E.; Martínez-Monzó, J.; Chiş, M.S.; Fǎrcaş, A.C.; Socaci, S.A.; Codoñer-Franch, P.; García-Segovia, P.; Igual, M. Sensory Evaluation, Physico-Chemical Properties, and Aromatic Profile of Pasteurised Orange Juice with Resistant Maltodextrin. Foods 2023, 12, 4025. https://doi.org/10.3390/foods12214025
Arilla E, Martínez-Monzó J, Chiş MS, Fǎrcaş AC, Socaci SA, Codoñer-Franch P, García-Segovia P, Igual M. Sensory Evaluation, Physico-Chemical Properties, and Aromatic Profile of Pasteurised Orange Juice with Resistant Maltodextrin. Foods. 2023; 12(21):4025. https://doi.org/10.3390/foods12214025
Chicago/Turabian StyleArilla, Elías, Javier Martínez-Monzó, Maria Simona Chiş, Anca Corina Fǎrcaş, Sonia Ancuţa Socaci, Pilar Codoñer-Franch, Purificación García-Segovia, and Marta Igual. 2023. "Sensory Evaluation, Physico-Chemical Properties, and Aromatic Profile of Pasteurised Orange Juice with Resistant Maltodextrin" Foods 12, no. 21: 4025. https://doi.org/10.3390/foods12214025
APA StyleArilla, E., Martínez-Monzó, J., Chiş, M. S., Fǎrcaş, A. C., Socaci, S. A., Codoñer-Franch, P., García-Segovia, P., & Igual, M. (2023). Sensory Evaluation, Physico-Chemical Properties, and Aromatic Profile of Pasteurised Orange Juice with Resistant Maltodextrin. Foods, 12(21), 4025. https://doi.org/10.3390/foods12214025