Degradation Product of Sea Cucumber Polysaccharide by Dielectric Barrier Discharge Enhanced the Migration of Macrophage In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Isolation and Purification of Sea Cucumber Polysaccharide
2.3. Degradation by Dielectric Barrier Discharge (DBD)
2.4. HPGPC Analysis
2.5. FTIR Spectroscopic Analysis
2.6. Analysis of Monosaccharide Composition
2.7. Measurement of Reducing End Formation in Polysaccharides Treated with DBD
2.8. RAW264.7 Cell Culture
2.9. Cell Toxicity Assay
2.10. Nitric Oxide (NO) Content Determination Assay
2.11. Measurement of the Production of Reactive Oxygen (ROS)
2.12. Cell Migration Assay
2.13. Statistical Analysis
3. Results and Discussion
3.1. The Characteristics of SP-2 after Purification
3.2. Effect of DBD Input Voltage on SP-2
3.3. Effect of DBD Treatment Time on SP-2
3.4. Effect of SP-2 Concentration on Depolymerization
3.5. The pH Changes with the Voltage Increase and Time Extension during DBD Treatment
3.6. Reducing the End Formation of SP-2 after DBD Treatment
3.7. FTIR Spectra of SP-2 Depolymerization Products
3.8. Depolymerization Product Analysis by HPLC-PAD-MS
3.9. Digestion Results of SP-2 Using the Ultrasonic or Hydrogen Peroxide Method
3.10. Effect of Oligo-SP-2 on the Proliferation of RAW264.7 Cells
3.11. Effect of Oligo-SP-2 on the NO Release of RAW264.7 Cells
3.12. Effect of Oligo-SP-2 on the ROS Release Level of RAW264.7 Cells
3.13. Effect of Oligo-SP-2 on the Migration of RAW264.7 Cells
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suzuki, N.; Kitazato, K.; Takamatsu, J.; Saito, H. Antithrombotic and Anticoagulant Activity of Depolymerized Fragment of the Glycosaminoglycan Extracted from Stichopus japonicus Selenka. Thromb. Haemost. 1991, 65, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Pan, R.; Zou, S.; He, M.; Wang, C. Oxidative degradation of the sulfated polysaccharide isolated from sea cucumber Holothuria nobilis. Process Biochem. 2015, 50, 294–301. [Google Scholar] [CrossRef]
- Aquino, A.; Jorge, J.A.; Terenzi, H.F.; Polizeli, M.d.L.T.M. Studies on a thermostable α-amylase from the thermophilic fungus Scytalidium thermophilum. Appl. Microbiol. Biotechnol. 2003, 61, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-F.; Zhou, D.-Y.; Liang, Z.-Y. A new polysaccharide from leaf of Ginkgo biloba L. Fitoterapia 2009, 80, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Ye, X.; Guo, X.; Liao, N.; Yin, X.; Hu, Y.; Sun, Y.; Liu, D.; Chen, S. Depolymerization of fucosylated chondroitin sulfate from sea cucumber, Pearsonothuria graeffei, via 60Co irradiation. Carbohydr. Polym. 2013, 93, 604–614. [Google Scholar] [CrossRef]
- Sun, L.; Wang, C.; Shi, Q.; Ma, C. Preparation of different molecular weight polysaccharides from Porphyridium cruentum and their antioxidant activities. Int. J. Biol. Macromol. 2009, 45, 42–47. [Google Scholar] [CrossRef]
- Wu, M.; Xu, S.; Zhao, J.; Kang, H.; Ding, H. Free-radical depolymerization of glycosaminoglycan from sea cucumber Thelenata ananas by hydrogen peroxide and copper ions. Carbohydr. Polym. 2010, 80, 1116–1124. [Google Scholar] [CrossRef]
- Yu, Z.; Sun, Y.; Zhang, G.; Zhang, C. Degradation of DEET in aqueous solution by water falling film dielectric barrier discharge: Effect of three operating modes and analysis of the mechanism and degradation pathway. Chem. Eng. J. 2017, 317, 90–102. [Google Scholar] [CrossRef]
- Scholtz, V.; Pazlarova, J.; Souskova, H.; Khun, J.; Julak, J. Nonthermal plasma—A tool for decontamination and disinfection. Biotechnol. Adv. 2015, 33, 1108–1119. [Google Scholar] [CrossRef]
- Sheng, X.; Zhang, N.; Song, S.; Li, M.; Liang, H.; Zhang, Y.; Wang, Y.; Ji, A. Morphological transformation and proliferation of rat astrocytes as induced by sulfated polysaccharides from the sea cucumber Stichopus japonicus. Neurosci. Lett. 2011, 503, 37–42. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, B.; Sun, Y.; Ai, C.; Wu, S.; Wang, L.; Song, S.; Liu, X. Sulfated polysaccharide from sea cucumber modulates the gut microbiota and its metabolites in normal mice. Int. J. Biol. Macromol. 2018, 120, 502–512. [Google Scholar] [CrossRef]
- Zheng, W.; Zhou, L.; Lin, L.; Cai, Y.; Sun, H.; Zhao, L.; Gao, N.; Yin, R.; Zhao, J. Physicochemical Characteristics and Anticoagulant Activities of the Polysaccharides from Sea Cucumber Pattalus mollis. Mar. Drugs 2019, 17, 198. [Google Scholar] [CrossRef]
- Hasegawa, M.; Isogai, A.; Onabe, F.; Usuda, M.; Atalla, R.H. Characterization of cellulose–chitosan blend films. J. Appl. Polym. Sci. 1992, 45, 1873–1879. [Google Scholar] [CrossRef]
- Pi, J.; Li, T.; Liu, J.; Su, X.; Wang, R.; Yang, F.; Bai, H.; Jin, H.; Cai, J. Detection of lipopolysaccharide induced inflammatory responses in RAW264.7 macrophages using atomic force microscope. Micron 2014, 65, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gisterå, A.; Hansson, G.K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 2017, 13, 368–380. [Google Scholar] [CrossRef]
- Hamdan, D.I.; El-Shiekh, R.A.; El-Sayed, M.A.; Khalil, H.M.A.; Mousa, M.R.; Al-Gendy, A.A.; El-Shazly, A.M. Phytochemical characterization and anti-inflammatory potential of Egyptian Murcott mandarin cultivar waste (stem, leaves and peel). Food Funct. 2020, 11, 8214–8236. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, J.; Zhang, Y.; Liu, W.; Yang, S.; Yang, J. Stichopus japonicus Polysaccharide Stimulates Osteoblast Differentiation through Activation of the Bone Morphogenetic Protein Pathway in MC3T3-E1 Cells. J. Agric. Food Chem. 2021, 69, 2576–2584. [Google Scholar] [CrossRef]
- Staub, A. Removeal of protein-Sevag method. Methods Carbohydr. Chem. 1965, 5, 5–6. [Google Scholar]
- Yang, J.; Yi, M.; Pan, J.; Zhao, J.; Sun, L.; Lin, X.; Cao, Y.; Huang, L.; Zhu, B.; Yu, C. Sea urchin (Strongylocentrotus intermedius) polysaccharide enhanced BMP-2 induced osteogenic differentiation and its structural analysis. J. Funct. Foods 2015, 14, 519–528. [Google Scholar] [CrossRef]
- Li, D.; Huang, Y.; Wang, K.-X.; Dong, X.-P.; Yu, D.; Ge, L.-H.; Zhou, D.-Y.; Yu, C.-X. Microstructural characteristics of turbot (Scophthalmus maximus) muscle: Effect of salting and processing. Int. J. Food Prop. 2018, 21, 1291–1302. [Google Scholar] [CrossRef]
- Ladner, Y.D.; Alini, M.; Armiento, A.R. The Dimethylmethylene Blue Assay (DMMB) for the Quantification of Sulfated Glycosaminoglycans. In Cartilage Tissue Engineering; Stoddart, M.J., Della Bella, E., Armiento, A.R., Eds.; Springer US: New York, NY, USA, 2023; pp. 115–121. [Google Scholar]
- Gusakov, A.V.; Kondratyeva, E.G.; Sinitsyn, A.P. Comparison of two methods for assaying reducing sugars in the determination of carbohydrase activities. Int. J. Anal. Chem. 2011, 2011, 283658. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Cui, M.; Wang, Y.; Zhang, M.; Li, F.; Liu, K. Isolation, structure identification and anti-inflammatory activity of a polysaccharide from Phragmites rhizoma. Int. J. Biol. Macromol. 2020, 161, 810–817. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Wang, H.; Zheng, W.; Gao, Y.; Wang, M.; Zhang, Y.; Gao, Q. Charaterization and immunomodulatory activities of polysaccharide isolated from Pleurotus eryngii. Int. J. Biol. Macromol. 2016, 92, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Kogelschatz, U. Filamentary, patterned, and diffuse barrier discharges. IEEE Trans. Plasma Sci. 2002, 30, 1400–1408. [Google Scholar] [CrossRef]
- Al-Wraikat, M.; Liu, Y.; Wu, L.; Ali, Z.; Li, J. Structural Characterization of Degraded Lycium barbarum L. Leaves’ Polysaccharide Using Ascorbic Acid and Hydrogen Peroxide. Polymers 2022, 14, 1404. [Google Scholar]
- Kornev, J.; Yavorovsky, N.; Preis, S.; Khaskelberg, M.; Isaev, U.; Chen, B.-N. Generation of active oxidant species by pulsed dielectric barrier discharge in water-air mixtures. Ozone: Sci. Eng. 2006, 28, 207–215. [Google Scholar] [CrossRef]
- Feng, J.; Zheng, Z.; Luan, J.; Zhang, J.; Wang, L. Degradation of diuron in aqueous solution by ozonation. J. Environ. Sci. Health Part B 2008, 43, 576–587. [Google Scholar] [CrossRef]
- Jiang, B.; Zheng, J.; Qiu, S.; Wu, M.; Zhang, Q.; Yan, Z.; Xue, Q. Review on electrical discharge plasma technology for wastewater remediation. Chem. Eng. J. 2014, 236, 348–368. [Google Scholar] [CrossRef]
- Xue, S.; Wu, C.; Pu, S.; Hou, Y.; Tong, T.; Yang, G.; Qin, Z.; Wang, Z.; Bao, J. Direct Z-Scheme charge transfer in heterostructured MoO3/g-C3N4 photocatalysts and the generation of active radicals in photocatalytic dye degradations. Environ. Pollut. 2019, 250, 338–345. [Google Scholar] [CrossRef]
- Park, H.-R.; Hwang, D.; Suh, H.-J.; Yu, K.-W.; Kim, T.Y.; Shin, K.-S. Antitumor and antimetastatic activities of rhamnogalacturonan-II-type polysaccharide isolated from mature leaves of green tea via activation of macrophages and natural killer cells. Int. J. Biol. Macromol. 2017, 99, 179–186. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, L.; Lu, H.; Song, S.; Luo, Y. Comparison of postmortem changes in ATP-related compounds, protein degradation and endogenous enzyme activity of white muscle and dark muscle from common carp (Cyprinus carpio) stored at 4 °C. LWT 2017, 78, 317–324. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Y.; Zhu, R.; Yu, J.; Lu, W.; Pan, C.; Yao, W.; Gao, X. Structure characterization, chemical and enzymatic degradation, and chain conformation of an acidic polysaccharide from Lycium barbarum L. Carbohydr. Polym. 2016, 147, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, X.; Liu, C.; Li, J. The degradation, antioxidant and antimutagenic activity of the mucilage polysaccharide from Dioscorea opposita. Carbohydr. Polym. 2016, 150, 227–231. [Google Scholar] [CrossRef]
- Wu, J.; Li, P.; Tao, D.; Zhao, H.; Sun, R.; Ma, F.; Zhang, B. Effect of solution plasma process with hydrogen peroxide on the degradation and antioxidant activity of polysaccharide from Auricularia auricula. Int. J. Biol. Macromol. 2018, 117, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Cheung, Y.-C.; Yin, J.; Wu, J.-Y. Effect of polysaccharide chain conformation on ultrasonic degradation of curdlan in alkaline solution. Carbohydr. Polym. 2018, 195, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Zhang, J.; Zhang, T. Immunomodulatory activities of polysaccharides from Ganoderma on immune effector cells. Food Chem. 2021, 340, 127933. [Google Scholar] [CrossRef] [PubMed]
- Ham, Y.-M.; Ko, Y.-J.; Song, S.-M.; Kim, J.; Kim, K.-N.; Yun, J.-H.; Cho, J.-H.; Ahn, G.; Yoon, W.-J. Anti-inflammatory effect of litsenolide B2 isolated from Litsea japonica fruit via suppressing NF-κB and MAPK pathways in LPS-induced RAW264.7 cells. J. Funct. Foods 2015, 13, 80–88. [Google Scholar] [CrossRef]
- Sales-Neto, J.M.d.; da Silva, J.S.d.F.; Carvalho, D.C.M.; Lima, É.d.A.; Cavalcante-Silva, L.H.A.; Lettnin, A.P.; Votto, A.P.d.S.; Vasconcelos, U.; Rodrigues-Mascarenhas, S. Patulin inhibits LPS-induced nitric oxide production by suppressing MAPKs signaling pathway. Nat. Prod. Res. 2022, 36, 5879–5883. [Google Scholar] [CrossRef]
- Sul, O.-J.; Ra, S.W. Quercetin Prevents LPS-Induced Oxidative Stress and Inflammation by Modulating NOX2/ROS/NF-kB in Lung Epithelial Cells. Molecules 2021, 26, 6949. [Google Scholar] [CrossRef]
- Wright, J.G.; Christman, J.W. The Role of Nuclear Factor Kappa B in the Pathogenesis of Pulmonary Diseases: Implications for Therapy. Am. J. Respir. Med. 2003, 2, 211–219. [Google Scholar] [CrossRef]
SP-2 | Voltage (V) 5 min, 5 mg/mL | Time (min) 70 V, 5 mg/mL | Concentration (mg/mL) 5 min, 70 V | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
60 | 70 | 80 | 90 | 3 | 5 | 7 | 9 | 1 | 3 | 5 | |
MW (kDa) | 38.02 | 19.95 | 6.76 | 3.98 | 30.20 | 19.95 | 20.89 | 2.75 | 35.33 | 21.36 | 6.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, S.; Cai, H.; Yi, M.; Dong, L.; Yang, J. Degradation Product of Sea Cucumber Polysaccharide by Dielectric Barrier Discharge Enhanced the Migration of Macrophage In Vitro. Foods 2023, 12, 4079. https://doi.org/10.3390/foods12224079
Cheng S, Cai H, Yi M, Dong L, Yang J. Degradation Product of Sea Cucumber Polysaccharide by Dielectric Barrier Discharge Enhanced the Migration of Macrophage In Vitro. Foods. 2023; 12(22):4079. https://doi.org/10.3390/foods12224079
Chicago/Turabian StyleCheng, Shiwen, Han Cai, Meng Yi, Liang Dong, and Jingfeng Yang. 2023. "Degradation Product of Sea Cucumber Polysaccharide by Dielectric Barrier Discharge Enhanced the Migration of Macrophage In Vitro" Foods 12, no. 22: 4079. https://doi.org/10.3390/foods12224079
APA StyleCheng, S., Cai, H., Yi, M., Dong, L., & Yang, J. (2023). Degradation Product of Sea Cucumber Polysaccharide by Dielectric Barrier Discharge Enhanced the Migration of Macrophage In Vitro. Foods, 12(22), 4079. https://doi.org/10.3390/foods12224079