Digital Marketing and Fast-Food Intake in the UAE: The Role of Firm-Generated Content among Adult Consumers
Abstract
:1. Introduction
2. Literature Review and Hypothesis Proposal
2.1. Relationships between Firm-Generated Content (FGC), Attitudes towards Social Media Advertising (ASMA), Social Media Engagement (SME), and Online Shopping Behavior
2.2. Relationships between Attitudes towards Social Media Advertising (ASMA), Social Media Engagement (SME), Online Shopping Behavior, and Fast Food Pattern (FFP)
2.3. The Influence and Moderating Role of Word of Mouth (WOM) on Fast-Food Intake Patterns (FFP)
3. Methodology
3.1. Data Collection
3.2. Sample Design and Measurements
3.3. Data Analysis
4. Results
5. Discussion and Conclusions
5.1. Theoretical Implications
5.2. Practical Implications
5.3. Limitations and Future Lines of Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanaysha, J.R. Impact of social media marketing features on consumer’s purchase decision in the fast-food industry: Brand trust as a mediator. Int. J. Inf. Manag. Data Insights 2022, 2, 100102. [Google Scholar] [CrossRef]
- Sashi, C.M.; Brynildsen, G.; Bilgihan, A. Social media, customer engagement and advocacy. Int. J. Contemp. Hosp. Manag. 2019, 31, 1247–1272. [Google Scholar] [CrossRef]
- Trivedi, J.; Sama, R. Determinants of consumer loyalty towards celebrity-owned restaurants: The mediating role of brand love. J. Consum. Behav. 2021, 20, 748–761. [Google Scholar] [CrossRef]
- Bragg, M.A.; Pageot, Y.K.; Amico, A.; Miller, A.N.; Gasbarre, A.; Rummo, P.E.; Elbel, B. Fast food, beverage, and snack brands on social media in the United States: An examination of marketing techniques utilized in 2000 brand posts. Pediatr. Obes. 2020, 15, e12606. [Google Scholar] [CrossRef] [PubMed]
- Gaber, H.R.; Wright, L.T. Fast-food advertising in social media. A case study on Facebook in Egypt. J. Bus. Res. Retail Manag. Res. 2014, 9, 52–63. [Google Scholar]
- Daradkeh, F.M.; Hassan, T.H.; Palei, T.; Helal, M.Y.; Mabrouk, S.; Saleh, M.I.; Salem, A.E.; Elshawarbi, N.N. Enhancing Digital Presence for Maximizing Customer Value in Fast-Food Restaurants. Sustainability 2023, 15, 5690. [Google Scholar] [CrossRef]
- Kumar, V.; Choi, J.B.; Greene, M. Synergistic effects of social media and traditional marketing on brand sales: Capturing the time-varying effects. J. Acad. Mark. Sci. 2017, 45, 268–288. [Google Scholar] [CrossRef]
- Hanaysha, J.R. An examination of social media advertising features, brand engagement and purchase intention in the fast food industry. Br. Food J. 2022, 124, 4143–4160. [Google Scholar] [CrossRef]
- Azzam, Z.A.; Hamdan, A.; Ali, N.; Aggad, K. Impact of digital advertising via social media tools on the buying behavior of fast food consumers. A case of Jordan. In Artificial Intelligence (AI) and Finance; Alareeni, B.A.M., Elgedawy, I., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 461–472. [Google Scholar]
- Cabeza-Ramírez, L.J.; Sánchez-Cañizares, S.M.; Santos-Roldán, L.M.; Fuentes-García, F.J. Exploring the effectiveness of fashion recommendations made by social media influencers in the centennial generation. Text. Res. J. 2023, 93, 3240–3261. [Google Scholar] [CrossRef]
- Cabeza-Ramírez, L.J.; Sánchez-Cañizares, S.M.; Santos-Roldán, L.M.; Fuentes-García, F.J. Impact of the perceived risk in influencers’ product recommendations on their followers’ purchase attitudes and intention. Technol. Forecast. Soc. Chang. 2022, 184, 121997. [Google Scholar] [CrossRef]
- Farhat, K.; Aslam, W.; Mokhtar, S.S.M. Beyond Social Media Engagement: Holistic Digital Engagement and a Social Identity Perspective. J. Internet Commer. 2021, 20, 319–354. [Google Scholar] [CrossRef]
- Mourdoukoutas, P. McDonald’s Cannot Beat Shake Shack and Wendy’s on Gourmet Burgers. Forbes 2019. Available online: https://www.forbes.com/sites/panosmourdoukoutas/2019/04/27/mcdonalds-cannot-beat-shake-shack-and-wendys-on-gourmet-burgers/?sh=6a16750514ed (accessed on 20 September 2023).
- Meyerding, S.G.H.; Marpert, J.D. Modern pied pipers: Child social media influencers and junk food on YouTube—A study from Germany. Appetite 2023, 181, 106382. [Google Scholar] [CrossRef] [PubMed]
- Santiago, J.; Borges-Tiago, M.T.; Tiago, F. Is firm-generated content a lost cause? J. Bus. Res. 2022, 139, 945–953. [Google Scholar] [CrossRef]
- Otto, N.; Johnston, J.; Baumann, S. Moral Entrepreneurialism for the Hamburger: Strategies for Marketing a Contested Fast Food. Cult. Sociol. 2021, 16, 190–211. [Google Scholar] [CrossRef] [PubMed]
- Stefanik-Sidener, K. Nature, Nurture, or That Fast Food Hamburger: Media Framing of Diabetes in the New York Times from 2000 to 2010. Health Commun. 2013, 28, 351–358. [Google Scholar] [CrossRef]
- Kumar, A.; Bezawada, R.; Rishika, R.; Janakiraman, R.; Kannan, P.K. From Social to Sale: The Effects of Firm-Generated Content in Social Media on Customer Behavior. J. Mark. 2016, 80, 7–25. [Google Scholar] [CrossRef]
- Fleischhacker, S.E.; Evenson, K.R.; Rodriguez, D.A.; Ammerman, A.S. A systematic review of fast food access studies. Obes. Rev. 2011, 12, e460–e471. [Google Scholar] [CrossRef] [PubMed]
- Janssen, H.G.; Davies, I.G.; Richardson, L.D.; Stevenson, L. Determinants of takeaway and fast food consumption: A narrative review. Nutr. Res. Rev. 2018, 31, 16–34. [Google Scholar] [CrossRef]
- Smith, R.; Kelly, B.; Yeatman, H.; Boyland, E. Food Marketing Influences Children’s Attitudes, Preferences and Consumption: A Systematic Critical Review. Nutrients 2019, 11, 875. [Google Scholar] [CrossRef]
- World Health Organization. Food Marketing Exposure and Power and Their Associations with Food-Related Attitudes, Beliefs and Behaviours: A Narrative Review; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Boyland, E.J.; Whalen, R. Food advertising to children and its effects on diet: Review of recent prevalence and impact data. Pediatr. Diabetes 2015, 16, 331–337. [Google Scholar] [CrossRef]
- Effertz, T.; Teichert, T.; Tsoy, M. Fast food, ads, and taste in a Russian child’s mind. Psychol. Mark. 2019, 36, 175–187. [Google Scholar] [CrossRef]
- Henderson, J.; Coveney, J.; Ward, P.; Taylor, A. Governing childhood obesity: Framing regulation of fast food advertising in the Australian print media. Soc. Sci. Med. 2009, 69, 1402–1408. [Google Scholar] [CrossRef] [PubMed]
- Story, M.; French, S. Food Advertising and Marketing Directed at Children and Adolescents in the US. Int. J. Behav. Nutr. Phys. Act. 2004, 1, 3. [Google Scholar] [CrossRef]
- Machado, P.P.; Steele, E.M.; Levy, R.B.; da Costa Louzada, M.L.; Rangan, A.; Woods, J.; Gill, T.; Scrinis, G.; Monteiro, C.A. Ultra-processed food consumption and obesity in the Australian adult population. Nutr. Diabetes 2020, 10, 39. [Google Scholar] [CrossRef]
- Scully, M.; Dixon, H.; Wakefield, M. Association between commercial television exposure and fast-food consumption among adults. Public Health Nutr. 2009, 12, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Vukmirovic, M. The effects of food advertising on food-related behaviours and perceptions in adults: A review. Food Res. Int. 2015, 75, 13–19. [Google Scholar] [CrossRef]
- Jia, P.; Luo, M.; Li, Y.; Zheng, J.-S.; Xiao, Q.; Luo, J. Fast-food restaurant, unhealthy eating, and childhood obesity: A systematic review and meta-analysis. Obes. Rev. 2021, 22, e12944. [Google Scholar] [CrossRef]
- Lai, I.K.W. An examination of satisfaction on word of mouth regarding Portuguese foods in Macau: Applying the concept of integrated satisfaction. J. Hosp. Tour. Manag. 2020, 43, 100–110. [Google Scholar] [CrossRef]
- Hanaysha, J.R.; Pech, R.J. Brand Prestige and the Mediating Role of Word of Mouth in the Fast Food Industry. Glob. Bus. Rev. 2018, 19, 1494–1514. [Google Scholar] [CrossRef]
- Ponnaiyan, S.; Ababneh, K.I.; Prybutok, V. Determinants of fast-food restaurant service quality in the United Arab Emirates. Qual. Manag. J. 2021, 28, 86–97. [Google Scholar] [CrossRef]
- Hanaysha, J.R.; Momani, A. An exploration of social media marketing features and brand loyalty in the fast food industry. J. Content Community Commun. 2021, 14, 81–92. [Google Scholar] [CrossRef]
- Ababneh, K.I.; Ponnaiyan, S.; ElMelegy, A.R.; Prybutok, V. Determinants of customer satisfaction and behavioral intentions in fast-food restaurants among undergraduate students during the COVID-19 pandemic. Qual. Manag. J. 2022, 29, 104–124. [Google Scholar] [CrossRef]
- Pechmann, C.; Catlin, J.R. The effects of advertising and other marketing communications on health-related consumer behaviors. Curr. Opin. Psychol. 2016, 10, 44–49. [Google Scholar] [CrossRef]
- Norman, J.; Kelly, B.; Boyland, E.; McMahon, A.-T. The Impact of Marketing and Advertising on Food Behaviours: Evaluating the Evidence for a Causal Relationship. Curr. Nutr. Rep. 2016, 5, 139–149. [Google Scholar] [CrossRef]
- Deshpande, B.; Kaur, P.; Ferraris, A.; Yahiaoui, D.; Dhir, A. The dark side of advertising: Promoting unhealthy food consumption. Eur. J. Mark. 2023. ahead-of-print. [Google Scholar] [CrossRef]
- Thiemann, L.; Roman-Alcalá, A. Fast Food Sovereignty: Contradiction in Terms or Logical Next Step? J. Agric. Environ. Ethics 2019, 32, 813–834. [Google Scholar] [CrossRef]
- Al-Haifi, A.R.; Bumaryoum, N.Y.; Al-Awadhi, B.A.; Alammar, F.A.; Ashkanani, R.H.; Al-Hazzaa, H.M. The influence of gender, media, and internet usage on adolescents’ fast food perception and fluid intake. J. Health Popul. Nutr. 2023, 42, 77. [Google Scholar] [CrossRef]
- Reddy, G.; van Dam, R.M. Food, culture, and identity in multicultural societies: Insights from Singapore. Appetite 2020, 149, 104633. [Google Scholar] [CrossRef] [PubMed]
- Khalid, H.; Lodhi, R.N.; Mahmood, Z. Exploring inside the box: A cross-cultural examination of stimuli affecting fast food addiction. Br. Food J. 2019, 121, 6–21. [Google Scholar] [CrossRef]
- Bagozzi, R.P.; Wong, N.; Abe, S.; Bergami, M. Cultural and Situational Contingencies and the Theory of Reasoned Action: Application to Fast Food Restaurant Consumption. J. Consum. Psychol. 2000, 9, 97–106. [Google Scholar] [CrossRef]
- Sawada, R.; Sato, W.; Toichi, M.; Fushiki, T. Fat Content Modulates Rapid Detection of Food: A Visual Search Study Using Fast Food and Japanese Diet. Front. Psychol. 2017, 8, 1033. [Google Scholar] [CrossRef]
- Gallus, S.; Borroni, E.; Stival, C.; Kaur, S.; Davoli, S.; Lugo, A.; Effertz, T.; Garattini, S.; Scaglioni, S. Food advertising during children’s television programmes in Italy. Public Health Nutr. 2021, 24, 4663–4670. [Google Scholar] [CrossRef]
- Pereira, B.T.F. A Publicidade das Marcas de Fast Food No Brasil: Uma Análise dos Recursos Criativos. Ph.D. Thesis, Universidade Fernando Pessoa (Portugal), Porto, Portugal, 2017. [Google Scholar]
- Vandevijvere, S.; Molloy, J.; Hassen de Medeiros, N.; Swinburn, B. Unhealthy food marketing around New Zealand schools: A national study. Int. J. Public Health 2018, 63, 1099–1107. [Google Scholar] [CrossRef]
- Boateng, H.; Okoe, A.F. Determinants of Consumers’ Attitude towards Social Media Advertising. J. Creat. Commun. 2015, 10, 248–258. [Google Scholar] [CrossRef]
- Cuesta-Valiño, P.; Rodríguez, P.G.; Núñez-Barriopedro, E. Perception of Advertisements for Healthy Food on Social Media: Effect of Attitude on Consumers’ Response. Int. J. Environ. Res. Public Health 2020, 17, 6463. [Google Scholar] [CrossRef] [PubMed]
- Eagle, L.; Brennan, R. Beyond advertising: In-home promotion of “fast food”. Young Consum. 2007, 8, 278–288. [Google Scholar] [CrossRef]
- Chung, A.; Zorbas, C.; Riesenberg, D.; Sartori, A.; Kennington, K.; Ananthapavan, J.; Backholer, K. Policies to restrict unhealthy food and beverage advertising in outdoor spaces and on publicly owned assets: A scoping review of the literature. Obes. Rev. 2022, 23, e13386. [Google Scholar] [CrossRef] [PubMed]
- Collaborators, G.O. Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N. Engl. J. Med. 2017, 377, 13–27. [Google Scholar] [CrossRef]
- Poulis, A.; Rizomyliotis, I.; Konstantoulaki, K. Do firms still need to be social? Firm generated content in social media. Inf. Technol. People 2019, 32, 387–404. [Google Scholar] [CrossRef]
- Ma, Z.; Gu, B. The influence of firm-Generated video on user-Generated video: Evidence from China. Int. J. Eng. Bus. Manag. 2022, 14, 18479790221118628. [Google Scholar] [CrossRef]
- Nisar, T.M.; Prabhakar, G. Trains and Twitter: Firm generated content, consumer relationship management and message framing. Transp. Res. Part A: Policy Pract. 2018, 113, 318–334. [Google Scholar] [CrossRef]
- McShane, L.; Pancer, E.; Poole, M.; Deng, Q. Emoji, Playfulness, and Brand Engagement on Twitter. J. Interact. Mark. 2021, 53, 96–110. [Google Scholar] [CrossRef]
- Chan, F.F.Y.; Lowe, B. Placing products in humorous scenes: Its impact on brand perceptions. Eur. J. Mark. 2021, 55, 649–670. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, X.; Wang, W.; Shafi, M. The effects of firm-generated content on different social media platforms on viral marketing. J. Consum. Mark. 2023, 40, 651–662. [Google Scholar] [CrossRef]
- Tyrväinen, O.; Karjaluoto, H.; Ukpabi, D. Understanding the Role of Social Media Content in Brand Loyalty: A Meta-Analysis of User-Generated Content Versus Firm-Generated Content. J. Interact. Mark. 2023, 58, 400–413. [Google Scholar] [CrossRef]
- Cheng, M.; Liu, J.; Qi, J.; Wan, F. Differential effects of firm generated content on consumer digital engagement and firm performance: An outside-in perspective. Ind. Mark. Manag. 2021, 98, 41–58. [Google Scholar] [CrossRef]
- Pansari, A.; Kumar, V. Customer engagement: The construct, antecedents, and consequences. J. Acad. Mark. Sci. 2017, 45, 294–311. [Google Scholar] [CrossRef]
- Rehman, S.U.; Bhatti, A.; Mohamed, R.; Ayoup, H. The moderating role of trust and commitment between consumer purchase intention and online shopping behavior in the context of Pakistan. J. Glob. Entrep. Res. 2019, 9, 43. [Google Scholar] [CrossRef]
- Javadi, M.H.M.; Dolatabadi, H.R.; Nourbakhsh, M.; Poursaeedi, A.; Asadollahi, A.R. An analysis of factors affecting on online shopping behavior of consumers. Int. J. Mark. Stud. 2012, 4, 81. [Google Scholar]
- Lim, Y.J.; Osman, A.; Salahuddin, S.N.; Romle, A.R.; Abdullah, S. Factors Influencing Online Shopping Behavior: The Mediating Role of Purchase Intention. Procedia Econ. Financ. 2016, 35, 401–410. [Google Scholar] [CrossRef]
- Dessart, L. Social media engagement: A model of antecedents and relational outcomes. J. Mark. Manag. 2017, 33, 375–399. [Google Scholar] [CrossRef]
- Menon, B. Determinants of online purchase intention, towards firm generated content in Facebook. Int. J. Appl. Mark. Manag. 2017, 2, 47–56. [Google Scholar]
- Mukherjee, K.; Banerjee, N. Social networking sites and customers’ attitude towards advertisements. J. Res. Interact. Mark. 2019, 13, 477–491. [Google Scholar] [CrossRef]
- Kamboj, S. Applying uses and gratifications theory to understand customer participation in social media brand communities. Asia Pac. J. Mark. Logist. 2020, 32, 205–231. [Google Scholar] [CrossRef]
- Buchanan, L.; Kelly, B.; Yeatman, H. Exposure to digital marketing enhances young adults’ interest in energy drinks: An exploratory investigation. PLoS ONE 2017, 12, e0171226. [Google Scholar] [CrossRef]
- Cheung, M.F.Y.; To, W.M. The influence of the propensity to trust on mobile users’ attitudes toward in-app advertisements: An extension of the theory of planned behavior. Comput. Hum. Behav. 2017, 76, 102–111. [Google Scholar] [CrossRef]
- Zadeh, A.H.; Farhang, M.; Zolfagharian, M.; Hofacker, C.F. Predicting value cocreation behavior in social media via integrating uses and gratifications paradigm and theory of planned behavior. J. Res. Interact. Mark. 2023, 17, 195–214. [Google Scholar] [CrossRef]
- Qin, Y.S. Fostering brand–consumer interactions in social media: The role of social media uses and gratifications. J. Res. Interact. Mark. 2020, 14, 337–354. [Google Scholar] [CrossRef]
- Santoso, I.; Wijana, S.; Ismawati, A.; Sunarharum, W.B. Relationship between Hedonic Hunger and Health Interest on Habit and Sodium Intake Patterns in Food Consumption. Int. J. Food Sci. 2019, 2019, 9517140. [Google Scholar] [CrossRef]
- Boakes, R.A. Performance on learning to associate a stimulus with positive reinforcement. In Operant-Pavlovian Interactions; Routledge: Abingdon-on-Thames, UK, 2021; pp. 67–101. [Google Scholar]
- Harris, J.L.; Fleming-Milici, F. Food marketing to adolescents and young adults: Skeptical but still under the influence. In The Psychology of Food Marketing and Overeating; Routledge: Abingdon-on-Thames, UK, 2019; pp. 25–43. [Google Scholar]
- Sama, R. Impact of Media Advertisements on Consumer Behaviour. J. Creat. Commun. 2019, 14, 54–68. [Google Scholar] [CrossRef]
- Burt, S.; Sparks, L. E-commerce and the retail process: A review. J. Retail. Consum. Serv. 2003, 10, 275–286. [Google Scholar] [CrossRef]
- Lăzăroiu, G.; Neguriţă, O.; Grecu, I.; Grecu, G.; Mitran, P.C. Consumers’ Decision-Making Process on Social Commerce Platforms: Online Trust, Perceived Risk, and Purchase Intentions. Front. Psychol. 2020, 11, 890. [Google Scholar] [CrossRef] [PubMed]
- Dirsehan, T.; Cankat, E. Role of mobile food-ordering applications in developing restaurants’ brand satisfaction and loyalty in the pandemic period. J. Retail. Consum. Serv. 2021, 62, 102608. [Google Scholar] [CrossRef]
- Jain, N.K.; Kaul, D.; Sanyal, P. What drives customers towards mobile shopping? An integrative technology continuance theory perspective. Asia Pac. J. Mark. Logist. 2022, 34, 922–943. [Google Scholar] [CrossRef]
- Chopdar, P.K.; Korfiatis, N.; Sivakumar, V.J.; Lytras, M.D. Mobile shopping apps adoption and perceived risks: A cross-country perspective utilizing the Unified Theory of Acceptance and Use of Technology. Comput. Hum. Behav. 2018, 86, 109–128. [Google Scholar] [CrossRef]
- Kimmel, A.J.; Kitchen, P.J. WOM and social media: Presaging future directions for research and practice. In Word of Mouth and Social Media; Routledge: Abingdon-on-Thames, UK, 2016; pp. 4–19. [Google Scholar]
- Shamhuyenhanzva, R.M.; van Tonder, E.; Roberts-Lombard, M.; Hemsworth, D. Factors influencing Generation Y consumers’ perceptions of eWOM credibility: A study of the fast-food industry. Int. Rev. Retail Distrib. Consum. Res. 2016, 26, 435–455. [Google Scholar] [CrossRef]
- Buttle, F.A. Word of mouth: Understanding and managing referral marketing. J. Strateg. Mark. 1998, 6, 241–254. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Pandey, N.; Pandey, N.; Mishra, A. Mapping the electronic word-of-mouth (eWOM) research: A systematic review and bibliometric analysis. J. Bus. Res. 2021, 135, 758–773. [Google Scholar] [CrossRef]
- Soren, A.A.; Chakraborty, S. The formation of habit and word-of-mouth intention of over-the-top platforms. J. Retail. Consum. Serv. 2023, 75, 103460. [Google Scholar] [CrossRef]
- Ferguson, P.P. Word of Mouth: What We Talk about When We Talk about Food; University of California Press: Oakland, CA, USA, 2014; Volume 50. [Google Scholar]
- Gupta, V.; Sajnani, M. Risk and benefit perceptions related to wine consumption and how it influences consumers’ attitude and behavioural intentions in India. Br. Food J. 2020, 122, 2569–2585. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Liu, C. Motives for Employees Communicate Positive Electronic Word of Mouth (eWOM) on Social Network Sites: Exploring Moderating Mechanisms. Australas. Mark. J. 2021, 30, 60–73. [Google Scholar] [CrossRef]
- Li, S.; Jaharuddin, N.S. Influences of background factors on consumers’ purchase intention in China’s organic food market: Assessing moderating role of word-of-mouth (WOM). Cogent Bus. Manag. 2021, 8, 1876296. [Google Scholar] [CrossRef]
- Chang, J.-H.; Wang, S.-H. Different levels of destination expectation: The effects of online advertising and electronic word-of-mouth. Telemat. Inform. 2019, 36, 27–38. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Dash, G.; Paul, J. CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technol. Forecast. Soc. Change 2021, 173, 121092. [Google Scholar] [CrossRef]
- Becker, J.-M.; Klein, K.; Wetzels, M. Hierarchical Latent Variable Models in PLS-SEM: Guidelines for Using Reflective-Formative Type Models. Long Range Plan. 2012, 45, 359–394. [Google Scholar] [CrossRef]
- Rajput, A.; Gahfoor, R.Z. Satisfaction and revisit intentions at fast food restaurants. Future Bus. J. 2020, 6, 13. [Google Scholar] [CrossRef]
- Moniruzzaman, S.; Al-Muaalemi, M.A. Sampling techniques for quantitative research. In Principles of Social Research Methodology; Islam, M.R., Khan, N.A., Baikady, R., Eds.; Springer Nature: Singapore, 2022; pp. 221–234. [Google Scholar]
- Bornstein, M.H.; Jager, J.; Putnick, D.L. Sampling in developmental science: Situations, shortcomings, solutions, and standards. Dev. Rev. 2013, 33, 357–370. [Google Scholar] [CrossRef]
- Stratton, S.J. Population Research: Convenience Sampling Strategies. Prehospital Disaster Med. 2021, 36, 373–374. [Google Scholar] [CrossRef]
- Can, L.; Kaya, N. Social Networking Sites Addiction and the Effect of Attitude towards Social Network Advertising. Procedia Soc. Behav. Sci. 2016, 235, 484–492. [Google Scholar] [CrossRef]
- Korgaonkar, P.; Becerra, E.; Londoño, J.C. Why is Social Network Site Advertising Ineffective? Seeking Answers Using a Holistic Theoretical Framework, Multi-Platform Approach. J. Promot. Manag. 2023, 1–30. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.F.; Sarstedt, M.; Ringle, C.M. Rethinking some of the rethinking of partial least squares. Eur. J. Mark. 2019, 53, 566–584. [Google Scholar] [CrossRef]
- Hair, J.; Alamer, A. Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Res. Methods Appl. Linguist. 2022, 1, 100027. [Google Scholar] [CrossRef]
- Ringle, C.M.; Wende, S.; Becker, J.-M. SmartPLS 4. Oststeinbek: SmartPLS. Available online: https://www.smartpls.com (accessed on 13 July 2022).
- Aburumman, O.J.; Omar, K.; Al Shbail, M.; Aldoghan, M. How to deal with the results of PLS-SEM? In Proceedings of the Explore Business, Technology Opportunities and Challenges after the COVID-19 Pandemic, Cham, Switerland, 13 July 2022; pp. 1196–1206. [Google Scholar]
- Rigdon, E.E.; Sarstedt, M.; Ringle, C.M. On Comparing Results from CB-SEM and PLS-SEM. Five Perspectives and Five Recommendations. Mark. ZFP J. Res. Manag. 2017, 39, 4–16. [Google Scholar] [CrossRef]
- Sarstedt, M.; Hair, J.F.; Cheah, J.-H.; Becker, J.-M.; Ringle, C.M. How to Specify, Estimate, and Validate Higher-Order Constructs in PLS-SEM. Australas. Mark. J. 2019, 27, 197–211. [Google Scholar] [CrossRef]
- Hair, J., Jr.; Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM); Sage Publications: New York, NY, USA, 2021. [Google Scholar]
- Werts, C.E.; Linn, R.L.; Jöreskog, K.G. Intraclass Reliability Estimates: Testing Structural Assumptions. Educ. Psychol. Meas. 1974, 34, 25–33. [Google Scholar] [CrossRef]
- Dijkstra, T.K.; Henseler, J. Consistent Partial Least Squares Path Modeling. MIS Q. 2015, 39, 297–316. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. Testing measurement invariance of composites using partial least squares. Int. Mark. Rev. 2016, 33, 405–431. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2023. [Google Scholar]
- Gold, A.H.; Malhotra, A.; Segars, A.H. Knowledge Management: An Organizational Capabilities Perspective. J. Manag. Inf. Syst. 2001, 18, 185–214. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Academic Press: Cambdridge, MA, USA, 2013. [Google Scholar]
- Enneking, U.; Neumann, C.; Henneberg, S. How important intrinsic and extrinsic product attributes affect purchase decision. Food Qual. Prefer. 2007, 18, 133–138. [Google Scholar] [CrossRef]
- Symmank, C. Extrinsic and intrinsic food product attributes in consumer and sensory research: Literature review and quantification of the findings. Manag. Rev. Q. 2019, 69, 39–74. [Google Scholar] [CrossRef]
- Alhammadi, K.; Santos-Roldán, L.; Cabeza-Ramírez, L.J. A Theoretical Framework on the Determinants of Food Purchasing Behavior of the Elderly: A Bibliometric Review with Scientific Mapping in Web of Science. Foods 2021, 10, 688. [Google Scholar] [CrossRef] [PubMed]
- Sicilia, M.; Delgado-Ballester, E.; Palazon, M. The need to belong and self-disclosure in positive word-of-mouth behaviours: The moderating effect of self–brand connection. J. Consum. Behav. 2016, 15, 60–71. [Google Scholar] [CrossRef]
- Cabeza-Ramírez, L.J.; Fuentes-García, F.J.; Cano-Vicente, M.C.; González-Mohino, M. How Generation X and Millennials Perceive Influencers’ Recommendations: Perceived Trustworthiness, Product Involvement, and Perceived Risk. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 1431–1449. [Google Scholar] [CrossRef]
- Wang, J.-J.; Wang, L.-Y.; Wang, M.-M. Understanding the effects of eWOM social ties on purchase intentions: A moderated mediation investigation. Electron. Commer. Res. Appl. 2018, 28, 54–62. [Google Scholar] [CrossRef]
- Ramadan, Z. Examining the dilution of the consumer-brand relationship on Facebook: The saturation issue. Qual. Mark. Res. Int. J. 2017, 20, 335–353. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, L.; Zhu, J.; Gao, L.; Wang, Y. Growing fast food consumption and obesity in Asia: Challenges and implications. Soc. Sci. Med. 2021, 269, 113601. [Google Scholar] [CrossRef]
- Hojjat, T.A.; Hojatt, R. Economics of Obesity; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Brown, H.; Xiang, H.; Albani, V.; Goffe, L.; Akhter, N.; Lake, A.; Sorrell, S.; Gibson, E.; Wildman, J. No new fast-food outlets allowed! Evaluating the effect of planning policy on the local food environment in the North East of England. Soc. Sci. Med. 2022, 306, 115126. [Google Scholar] [CrossRef] [PubMed]
- Taillie, L.S.; Reyes, M.; Colchero, M.A.; Popkin, B.; Corvalán, C. An evaluation of Chile’s Law of Food Labeling and Advertising on sugar-sweetened beverage purchases from 2015 to 2017: A before-and-after study. PLoS Med. 2020, 17, e1003015. [Google Scholar] [CrossRef]
- Cornelsen, L.; Mazzocchi, M.; Smith, R.D. Fat tax or thin subsidy? How price increases and decreases affect the energy and nutrient content of food and beverage purchases in Great Britain. Soc. Sci. Med. 2019, 230, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Niebylski, M.L.; Redburn, K.A.; Duhaney, T.; Campbell, N.R. Healthy food subsidies and unhealthy food taxation: A systematic review of the evidence. Nutrition 2015, 31, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Luo, J. Wearable technology applications in healthcare: A literature review. Online J. Nurs. Inf. (Healthc. Inf. Manag. Syst. Soc.) 2019, 23. Available online: https://www.himss.org/resources/wearable-technology-applications-healthcare-literature-review (accessed on 20 September 2023).
- Alexander, L.; Christensen, S.M.; Richardson, L.; Ingersoll, A.B.; Burridge, K.; Golden, A.; Karjoo, S.; Cortez, D.; Shelver, M.; Bays, H.E. Nutrition and physical activity: An Obesity Medicine Association (OMA) Clinical Practice Statement 2022. Obes. Pillars 2022, 1, 100005. [Google Scholar] [CrossRef]
- Rowbotham, S.; McKinnon, M.; Marks, L.; Hawe, P. Research on media framing of public policies to prevent chronic disease: A narrative synthesis. Soc. Sci. Med. 2019, 237, 112428. [Google Scholar] [CrossRef]
- Cawley, J.; Susskind, A.; Willage, B. The Impact of Information Disclosure on Consumer Behavior: Evidence from a Randomized Field Experiment of Calorie Labels on Restaurant Menus. J. Policy Anal. Manag. 2020, 39, 1020–1042. [Google Scholar] [CrossRef]
- Kraak, V.I.; Englund, T.; Misyak, S.; Serrano, E.L. A novel marketing mix and choice architecture framework to nudge restaurant customers toward healthy food environments to reduce obesity in the United States. Obes. Rev. 2017, 18, 852–868. [Google Scholar] [CrossRef]
- Nastasoiu, A.; Vandenbosch, M. Competing with loyalty: How to design successful customer loyalty reward programs. Bus. Horiz. 2019, 62, 207–214. [Google Scholar] [CrossRef]
- Creel, J.S.; Sharkey, J.R.; McIntosh, A.; Anding, J.; Huber, J.C. Availability of healthier options in traditional and nontraditional rural fast-food outlets. BMC Public Health 2008, 8, 395. [Google Scholar] [CrossRef] [PubMed]
- Baltes, S.; Ralph, P. Sampling in software engineering research: A critical review and guidelines. Empir. Softw. Eng. 2022, 27, 94. [Google Scholar] [CrossRef]
- Potvin Kent, M.; Pauzé, E.; Bagnato, M.; Guimarães, J.S.; Pinto, A.; Remedios, L.; Pritchard, M.; L’Abbé, M.R.; Mulligan, C.; Vergeer, L.; et al. Food and beverage advertising expenditures in Canada in 2016 and 2019 across media. BMC Public Health 2022, 22, 1458. [Google Scholar] [CrossRef] [PubMed]
Criteria | Levels | % |
---|---|---|
Gender | Men | 53.7 |
Women | 46.3 | |
Age | 18–24 | 29.4 |
25–34 | 32.7 | |
35–44 | 31.4 | |
45–65 | 4.9 | |
More than 65 | 1.6 | |
Level of studies | Preparatory | 7.9 |
High school | 34.7 | |
University | 57.1 | |
Other | 0.3 | |
Laboral activity | Student | 22.1 |
Self-employed | 13.4 | |
Employed | 53 | |
Unemployed | 11.5 | |
Income level [Arab Emirates Dirham (AED) by year] | 1000–4999 | 24.8 |
5000–9999 | 14.2 | |
10,000–19,999 | 15.2 | |
20,000–29,999 | 25.4 | |
30,000–40,000 | 15.8 | |
More 40,000 | 4.6 | |
Nationality | United Arab Emirates | 88.4 |
Other | 11.6 |
Constructs/Items | Loading (λ) | Composite Reliability | AVE | Scale Adapted from |
---|---|---|---|---|
Firm-generated content (FGC) | 0.981 | 0.944 | [15,18] | |
FGC1. The content generated by the company (web, social media) about its products is very attractive | 0.970 | |||
FGC2. The content generated by the company (web, social media) meets my expectations | 0.970 | |||
FGC3. The content generated by the company (web, social media) satisfies me | 0.975 | |||
Social media engagement (SME) | 0.970 | 0.916 | [12] | |
SME1. I participate in the restaurant’s social media through “like”, “comment”, and “share” | 0.957 | |||
SME2. I like to participate in the social media of the fast-food restaurant | 0.948 | |||
SME3. I interact with the social media of the fast- food restaurant | 0.965 | |||
Online shopping behavior (OSB) | 0.959 | 0.886 | [62] | |
OSB1. I frequently buy fast food online because it is convenient for me | 0.937 | |||
OSB2. I consider online shopping for fast food to be compatible with my lifestyle | 0.945 | |||
OSB2. Online shopping simplifies my day-to-day purchases, especially food | 0.942 | |||
Attitude towards social media advertising (ASMA) | 0.956 | 0.880 | [100,101] | |
ASMA1. In your opinion, social media advertisements are entertaining | 0.956 | |||
ASMA2. In your opinion, social media advertisements are annoying (Reversed question) | 0.915 | |||
ASMA3. In your opinion, social media advertisements are useful | 0.942 | |||
Word of mouth (WOM) | 0.977 | 0.934 | [31] | |
WOM1. My friends and family make recommendations about this fast-food restaurant. | 0.970 | |||
WOM2. They have given me positive comments about this fast-food restaurant | 0.965 | |||
WOM3. They have told me about their experience with this fast-food restaurant | 0.964 | |||
Fast-food pattern (FFP) | 0.958 | 0.920 | [73] | |
FFP2. Eating fast-food is an act I do without thinking | 0.961 | |||
FFP3. I find it very difficult to avoid fast-food | 0.958 |
ASMA | FGC | WOM | WOM ASMA | SME | OSB | |
---|---|---|---|---|---|---|
FGC | 0.598 | |||||
WOM | 0.877 | 0.693 | ||||
WOM ASMA | 0.780 | 0.451 | 0.837 | |||
SME | 0.671 | 0.799 | 0.756 | 0.521 | ||
OSB | 0.873 | 0.664 | 0.848 | 0.658 | 0.745 | |
FFP | 0.898 | 0.594 | 0.861 | 0.741 | 0.682 | 0.849 |
Hypotheses | Suggested | Path | T Value | Confidence Interval | |
---|---|---|---|---|---|
Effect | Coefficient (β) | ||||
5.0% | 95.0% | ||||
H1: FGC → ASMA | (+) | 0.571 *** | 11.295 | 0.482 | 0.649 Sig |
H2: FGC → SME | (+) | 0.604 *** | 13.159 | 0.526 | 0.677 Sig |
H3: FGC → OSB | (+) | 0.249 *** | 4.923 | 0.165 | 0.332 Sig |
H4: ASMA → SME | (+) | 0.290 *** | 6.495 | 0.218 | 0.363 Sig |
H5: ASMA → OSB | (+) | 0.676 *** | 14.878 | 0.600 | 0.752 Sig |
H6: ASMA → FFP | (+) | 0.381 *** | 3.903 | 0.218 | 0.540 Sig |
H7: OSB → FFP | (+) | 0.230 ** | 2.635 | 0.085 | 0.372 Sig |
H8: WOM → FFP | (+) | 0.247 ** | 2.497 | 0.084 | 0.408 Sig |
H9: WOM ASMA → FFP | (+) | −0.028 ns | 1.122 | −0.069 | 0.012 |
Adjusted R2 | Q2 | Direct Effect | Correlation | Variance | Effect Size (f2) | |
---|---|---|---|---|---|---|
Explained | ||||||
ASMA | 0.323 | 0.272 | ||||
H1: FGC | 0.571 | 0.571 | 32.6% | 0.483 | ||
SME | 0.647 | 0.585 | ||||
H2: FGC | 0.604 | 0.770 | 46.5% | 0.702 | ||
H4: ASMA | 0.290 | 0.635 | 18.4% | 0.162 | ||
OSB | 0.709 | 0.621 | ||||
H3: FGC | 0.249 | 0.634 | 15.8% | 0.144 | ||
H5: ASMA | 0.676 | 0.818 | 55.3% | 1.066 | ||
FFP | 0.744 | 0.666 | ||||
H7: OSB | 0.230 | 0.787 | 18.1% | 0.056 | ||
H8: WOM | 0.247 | 0.809 | 20.0% | 0.043 | ||
H6: ASMA | 0.381 | 0.829 | 31.6% | 0.130 | ||
H9: WOM ASMA | −0.028 | −0.709 | 2.00% | 0.006 |
Coefficient | Bootstrap 95% CI | ||||
---|---|---|---|---|---|
Point Estimate | Percentile | BC | |||
Individual indirect effects | |||||
FGC -> ASMA -> SME | 0.166 *** | 0.115 | 0.223 | 0.117 | 0.226 |
FGC -> ASMA -> OSB | 0.386 *** | 0.307 | 0.465 | 0.308 | 0.466 |
FGC-> ASMA -> FFP | 0.217 *** | 0.121 | 0.317 | 0.124 | 0.320 |
FGC -> OSB -> FFP | 0.057 ** | 0.021 | 0.096 | 0.024 | 0.101 |
FGC -> ASMA -> OSB ->FFP | 0.089 ** | 0.031 | 0.153 | 0.035 | 0.158 |
ASMA -> OSB -> FFP | 0.156 ** | 0.056 | 0.259 | 0.059 | 0.260 |
Total indirect effect | |||||
(FGC -> SME) | 0.166 *** | 0.115 | 0.223 | 0.117 | 0.226 |
(FGC -> OSB) | 0.386 *** | 0.307 | 0.465 | 0.308 | 0.466 |
(FGC -> FFP) | 0.363 *** | 0.273 | 0.455 | 0.276 | 0.458 |
(ASMA -> FFP) | 0.156 ** | 0.056 | 0.259 | 0.059 | 0.260 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali-Alsaadi, A.A.; Cabeza-Ramírez, L.J.; Sántos-Roldán, L.; Loor-Zambrano, H.Y. Digital Marketing and Fast-Food Intake in the UAE: The Role of Firm-Generated Content among Adult Consumers. Foods 2023, 12, 4089. https://doi.org/10.3390/foods12224089
Ali-Alsaadi AA, Cabeza-Ramírez LJ, Sántos-Roldán L, Loor-Zambrano HY. Digital Marketing and Fast-Food Intake in the UAE: The Role of Firm-Generated Content among Adult Consumers. Foods. 2023; 12(22):4089. https://doi.org/10.3390/foods12224089
Chicago/Turabian StyleAli-Alsaadi, Ali Ahmed, L. Javier Cabeza-Ramírez, Luna Sántos-Roldán, and Halder Yandry Loor-Zambrano. 2023. "Digital Marketing and Fast-Food Intake in the UAE: The Role of Firm-Generated Content among Adult Consumers" Foods 12, no. 22: 4089. https://doi.org/10.3390/foods12224089
APA StyleAli-Alsaadi, A. A., Cabeza-Ramírez, L. J., Sántos-Roldán, L., & Loor-Zambrano, H. Y. (2023). Digital Marketing and Fast-Food Intake in the UAE: The Role of Firm-Generated Content among Adult Consumers. Foods, 12(22), 4089. https://doi.org/10.3390/foods12224089