The Identification of Fritillaria Species Using Hyperspectral Imaging with Enhanced One-Dimensional Convolutional Neural Networks via Attention Mechanism
Abstract
:1. Introduction
- We propose three feature optimization modules for a 1DCNN: the channel attention module (CAM), the spectral attention module (SAM), and the joint channel–spectral attention module (CSAM). The CAM enhances classification-relevant spectral features and suppresses irrelevant ones by modeling the interdependence between convolution feature channels. The SAM selectively attends to informative spectral features while ignoring uninformative ones. The CSAM combines channel and spectral attention mechanisms to optimize feature mapping and fuse the output of the two modules. With the help of these attention modules, 1DCNNs can effectively select informative spectral bands and generate optimized features.
- The 1DCNN network that uses the proposed attention mechanism is explored as an end-to-end approach to the identification of Fritillaria. To the best of our knowledge, this is the first time that an attention-based 1DCNN has been applied to the identification of Fritillaria. With the data collected on Fritillaria, the CSAM–1DCNN maintained remarkable classification accuracies of 98.97% and 99.35% under both VNIR and SWIR lenses, respectively, for binary classification between Fritillariae Cirrhosae Bulbus (FCB) and other non-FCB species. Additionally, for eight-category classification among Fritillaria species, it still achieved a high level of precision, with an extraordinary accuracy of 97.64% and 98.39%, respectively.
- Our findings illustrated the great potential of the attention mechanism in enhancing the performance of the vanilla 1DCNN method. Nowadays, research on the application of the attention mechanism in the analysis of medicinal and edible plants using hyperspectral imaging remains limited. Consequently, our study provides new references for other HSI-related quality controls of herbal medicines, expecting to further improve its performance.
2. Materials and Methods
2.1. Samples Preparation
2.2. Hyperspectral Imaging System Acquisition
2.3. Data Preprocessing
2.4. Basic Architecture of a 1DCNN Model
2.5. Attention Mechanism
2.5.1. Channel Attention Module
2.5.2. Spectral Attention Module
2.5.3. Joint Channel and Spectral Attention Module
2.6. Proposed CSAM–1DCNN
3. Results and Discussion
3.1. Experimental Settings
3.2. Classification Results of FCB and Non-FCB
3.2.1. Spectral Profiles of FCB and Non-FCB
3.2.2. Classification Performance Based on Machine Learning and an 1DCNN
3.2.3. Effectiveness of the CAM, SAM, and CSAM
3.3. Classification Results of Fritillaria Commodity Specifications
3.3.1. Spectral Profiles of Fritillaria Commodity Specifications
3.3.2. Classification Performance Based on Classical Algorithms
3.3.3. Effectiveness of the 1DCNN and Various Attention Mechanisms
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bi, J.; Fang, H.; Zhang, J.; Lu, L.; Gu, X.; Zheng, Y. A review on the application, phytochemistry and pharmacology of Polygonatum odoratum, an edible medicinal plant. J. Future Foods 2023, 3, 240–251. [Google Scholar] [CrossRef]
- Saleem, H.; Khurshid, U.; Tousif, M.I.; Anwar, S.; Ali, N.A.A.; Mahomoodally, M.F.; Ahemad, N. A comprehensive review on the botany, traditional uses, phytochemistry, pharmacology and toxicity of Anagallis arvensis (L).: A wild edible medicinal food plant. Food Biosci. 2022, 52, 102328. [Google Scholar] [CrossRef]
- Xue, T.T.; Yang, Y.G.; Tang, Z.S.; Duan, J.A.; Song, Z.X.; Hu, X.H.; Yang, H.D.; Xu, H.B. Evaluation of antioxidant, enzyme inhibition, nitric oxide production inhibitory activities and chemical profiles of the active extracts from the medicinal and edible plant: Althaea officinalis. Food Res. Int. 2022, 156, 111166. [Google Scholar] [CrossRef]
- Wu, F.; Zhou, L.W.; Yang, Z.L.; Bau, T.; Li, T.H.; Dai, Y.C. Resource diversity of Chinese macrofungi: Edible, medicinal and poisonous species. Fungal Divers. 2019, 98, 1–76. [Google Scholar] [CrossRef]
- Boy, H.I.A.; Rutilla, A.J.H.; Santos, K.A.; Ty, A.M.T.; Alicia, I.Y.; Mahboob, T.; Tangpoong, J.; Nissapatorn, V. Recommended medicinal plants as source of natural products: A review. Digit. Chin. Med. 2018, 1, 131–142. [Google Scholar] [CrossRef]
- Djiazet, S.; Mezajoug Kenfack, L.B.; Serge Ngangoum, E.; Ghomdim Nzali, H.; Tchiégang, C. Indigenous spices consumed in the food habits of the populations living in some countries of Sub-Saharan Africa: Utilisation value, nutritional and health potentials for the development of functional foods and drugs: A review. Food Res. Int. 2022, 157, 111280. [Google Scholar] [CrossRef]
- Liu, R.H. Health-promoting components of fruits and vegetables in the diet. Adv. Nutr. 2013, 4, 384S–392S. [Google Scholar] [CrossRef]
- Costa, L.D.; Trindade, R.P.; da Silva Cardoso, P.; Colauto, N.B.; Linde, G.A.; Otero, D.M. Pachira aquatica (Malvaceae): An unconventional food plant with food, technological, and nutritional potential to be explored. Food Res. Int. 2022, 164, 112354. [Google Scholar] [CrossRef]
- Day, P.D.; Berger, M.; Hill, L.; Fay, M.F.; Leitch, A.R.; Leitch, I.J.; Kelly, L.J. Evolutionary relationships in the medicinally important genus Fritillaria L.(Liliaceae). Mol. Phylogenet. Evol. 2014, 80, 11–19. [Google Scholar] [CrossRef]
- Eshaghi, M.; Shiran, B.; Fallahi, H.; Ravash, R.; Ðeri, B.B. Identification of genes involved in steroid alkaloid biosynthesis in Fritillaria imperialis via de novo transcriptomics. Genomics 2019, 111, 1360–1372. [Google Scholar] [CrossRef]
- Nile, S.H.; Su, J.; Wu, D.; Wang, L.; Hu, J.; Sieniawska, E.; Kai, G. Fritillaria thunbergii Miq. (Zhe Beimu): A review on its traditional uses, phytochemical profile and pharmacological properties. Food Chem. Toxicol. 2021, 153, 112289. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Wang, Y.Q.; Wang, Q.Q.; Wang, L.; Zhang, Q.Y.; Tu, P.F. Steroidal alkaloids from the bulbs of Fritillaria unibracteata var. wabuensis and their anti-inflammatory activities. Phytochemistry 2023, 209, 113640. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, Y.; Liu, A.; Rong, L.; Wang, J. Two-dimensional correlation spectroscopy reveals the underlying compositions for FT-NIR identification of the medicinal bulbs of the genus Fritillaria. J. Mol. Struct. 2018, 1155, 681–686. [Google Scholar] [CrossRef]
- Xin, G.Z.; Hu, B.; Shi, Z.Q.; Lam, Y.C.; Dong, T.T.X.; Li, P.; Yao, Z.P.; Tsim, K.W. Rapid identification of plant materials by wooden-tip electrospray ionization mass spectrometry and a strategy to differentiate the bulbs of Fritillaria. Anal. Chim. Acta 2014, 820, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Z.; Yang, J.; Lv, G. Complete chloroplast genome of seven Fritillaria species, variable DNA markers identification and phylogenetic relationships within the genus. PLoS ONE 2018, 13, e0194613. [Google Scholar] [CrossRef]
- Luo, D.; Liu, Y.; Wang, Y.; Zhang, X.; Huang, L.; Duan, B. Rapid identification of Fritillariae Cirrhosae Bulbus and its adulterants by UPLC-ELSD fingerprint combined with chemometrics methods. Biochem. Syst. Ecol. 2018, 76, 46–51. [Google Scholar] [CrossRef]
- Wang, L.; Liu, L.F.; Wang, J.Y.; Shi, Z.Q.; Chang, W.Q.; Chen, M.L.; Yin, Y.H.; Jiang, Y.; Li, H.J.; Li, P.; et al. A strategy to identify and quantify closely related adulterant herbal materials by mass spectrometry-based partial least squares regression. Anal. Chim. Acta 2017, 977, 28–35. [Google Scholar] [CrossRef]
- Liu, X.; Ming, T.W.; Gaun, T.K.W.; Xiong, H.; Er Bu, A.G.A.; Xie, H.; Xu, Y.; Ye, B. Research on 90-day subchronic toxicities of the ethanol extract from the cultivated Fritillaria cirrhosa bulbs by oral administration in Sprague-Dawley rats. Regul. Toxicol. Pharmacol. 2023, 139, 105342. [Google Scholar] [CrossRef]
- Cunningham, A.; Brinckmann, J.; Pei, S.J.; Luo, P.; Schippmann, U.; Long, X.; Bi, Y.F. High altitude species, high profits: Can the trade in wild harvested Fritillaria cirrhosa (Liliaceae) be sustained? J. Ethnopharmacol. 2018, 223, 142–151. [Google Scholar] [CrossRef]
- An, Y.l.; Wei, W.l.; Guo, D.A. Application of Analytical Technologies in the Discrimination and Authentication of Herbs from Fritillaria: A Review. Crit. Rev. Anal. Chem. 2022, 1–22. [Google Scholar] [CrossRef]
- Li, H.J.; Jiang, Y.; Li, P. Characterizing distribution of steroidal alkaloids in Fritillaria spp. and related compound formulas by liquid chromatography–mass spectrometry combined with hierarchial cluster analysis. J. Chromatogr. A 2009, 1216, 2142–2149. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Zhang, M.F.; Xue, J.; Dong, R.; Du, Y.P.; Zhang, X.H. Chloroplast genomic resources for phylogeny and DNA barcoding: A case study on Fritillaria. Sci. Rep. 2018, 8, 1184. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xie, H.; Ren, J.; Chen, Y.; Li, X.; Chen, X.; Chan, T.W.D. Metabolomic approach for rapid differentiation of Fritillaria bulbs by matrix-assisted laser desorption/ionization mass spectrometry and multivariate statistical analysis. J. Pharm. Biomed. Anal. 2020, 185, 113177. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hou, H.; Ren, Q.; Hu, H.; Yang, T.; Li, X. Natural drug sources for respiratory diseases from Fritillaria: Chemical and biological analyses. Chin. Med. 2021, 16, 40. [Google Scholar] [CrossRef]
- Wang, C.Z.; Ni, M.; Sun, S.; Li, X.L.; He, H.; Mehendale, S.R.; Yuan, C.S. Detection of adulteration of notoginseng root extract with other panax species by quantitative HPLC coupled with PCA. J. Agric. Food Chem. 2009, 57, 2363–2367. [Google Scholar] [CrossRef]
- Jiang, H.; Jiang, X.; Ru, Y.; Chen, Q.; Li, X.; Xu, L.; Zhou, H.; Shi, M. Rapid and non-destructive detection of natural mildew degree of postharvest Camellia oleifera fruit based on hyperspectralimaging. Infrared Phys. Technol. 2022, 123, 104169. [Google Scholar] [CrossRef]
- Yu, J.; Hermann, M.; Smith, R.; Tomm, H.; Metwally, H.; Kolwich, J.; Liu, C.; Le Blanc, J.Y.; Covey, T.R.; Ross, A.C.; et al. Hyperspectral Visualization-Based Mass Spectrometry Imaging by LMJ-SSP: A Novel Strategy for Rapid Natural Product Profiling in Bacteria. Anal. Chem. 2023, 95, 2020–2028. [Google Scholar] [CrossRef]
- Long, W.; Wang, S.R.; Suo, Y.; Chen, H.; Bai, X.; Yang, X.; Zhou, Y.P.; Yang, J.; Fu, H. Fast and non-destructive discriminating the geographical origin of Hangbaiju by hyperspectral imaging combined with chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 284, 121786. [Google Scholar] [CrossRef]
- Elyan, E.; Vuttipittayamongkol, P.; Johnston, P.; Martin, K.; McPherson, K.; Moreno-García, C.F.; Jayne, C.; Sarker, M.K. Computer vision and machine learning for medical image analysis: Recent advances, challenges, and way forward. Artif. Intell. Surg. 2022, 2, 24–45. [Google Scholar] [CrossRef]
- ElMasry, G.; Sun, D.W. Principles of hyperspectral imaging technology. In Hyperspectral Imaging for Food Quality Analysis and Control; Academic Press: Cambridge, MA, USA, 2010; pp. 3–43. [Google Scholar]
- Vasefi, F.; MacKinnon, N.; Farkas, D.L. Hyperspectral and multispectral imaging in dermatology. In Imaging in Dermatology; Academic Press: Cambridge, MA, USA, 2016; pp. 187–201. [Google Scholar]
- Alimohammadi, F.; Rasekh, M.; Afkari Sayyah, A.H.; Abbaspour-Gilandeh, Y.; Karami, H.; Sharabiani, V.R.; Fioravanti, A.; Gancarz, M.; Findura, P.; Kwaśniewski, D. Hyperspectral imaging coupled with multivariate analysis and artificial intelligence to the classification of maize kernels. Int. Agrophysics 2022, 36, 83–91. [Google Scholar] [CrossRef]
- Lowe, A.; Harrison, N.; French, A.P. Hyperspectral image analysis techniques for the detection and classification of the early onset of plant disease and stress. Plant Methods 2017, 13, 80. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Wang, C.; Jiang, Z. Proxy-based deep learning framework for spectral–spatial hyperspectral image classification: Efficient and robust. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5501115. [Google Scholar] [CrossRef]
- Xie, W.; Zhang, J.; Lei, J.; Li, Y.; Jia, X. Self-spectral learning with GAN based spectral–spatial target detection for hyperspectral image. Neural Netw. 2021, 142, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Generative adversarial networks for hyperspec-tral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5046–5063. [Google Scholar] [CrossRef]
- Haut, J.M.; Paoletti, M.E.; Plaza, J.; Plaza, A.; Li, J. Hyperspectral image classification using 600random occlusion data augmentation. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1751–1755. [Google Scholar] [CrossRef]
- Yu, Z.; Fang, H.; Zhangjin, Q.; Mi, C.; Feng, X.; He, Y. Hyperspectral imaging technology combined with deep learning for hybrid okra seed identification. Biosyst. Eng. 2021, 212, 46–61. [Google Scholar] [CrossRef]
- Wong, C.Y.; Gilbert, M.E.; Pierce, M.A.; Parker, T.A.; Palkovic, A.; Gepts, P.; Magney, T.S.; Buckley, T.N. Hyperspectral remote sensing for phenotyping the physiological drought response of common and tepary bean. Plant Phenomics 2023, 5, 0021. [Google Scholar] [CrossRef]
- Ru, C.; Li, Z.; Tang, R. A hyperspectral imaging approach for classifying geographical origins of rhizoma atractylodis macrocephalae using the fusion of spectrum-image in VNIR and SWIR ranges (VNIR-SWIR-FuSI). Sensors 2019, 19, 2045. [Google Scholar] [CrossRef]
- Han, Q.; Li, Y.; Yu, L. Classification of glycyrrhiza seeds by near infrared hyperspectral imaging technology. In Proceedings of the 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS), Shenzhen, China, 9–11 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 141–145. [Google Scholar]
- Wang, L.; Li, J.; Qin, H.; Xu, J.; Zhang, X.; Huang, L. Selecting near-infrared hyperspectral wave-lengths based on one-way ANOVA to identify the origin of Lycium barbarum. In Proceedings of the 2019 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS), Shenzhen, China, 9–11 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 122–125. [Google Scholar]
- Yao, K.; Sun, J.; Tang, N.; Xu, M.; Cao, Y.; Fu, L.; Zhou, X.; Wu, X. Nondestructive detection for Panax notoginseng powder grades based on hyperspectral imaging technology combined with CARS-PCA and MPA-LSSVM. J. Food Process Eng. 2021, 44, e13718. [Google Scholar] [CrossRef]
- Liu, D.; Sun, D.W.; Zeng, X.A. Recent advances in wavelength selection techniques for hyper-spectral image processing in the food industry. Food Bioprocess Technol. 2014, 7, 307–323. [Google Scholar] [CrossRef]
- Xie, C.; Chu, B.; He, Y. Prediction of banana color and firmness using a novel wavelengths selection method of hyperspectral imaging. Food Chem. 2018, 245, 132–140. [Google Scholar] [CrossRef]
- Wan, G.; Liu, G.; He, J.; Luo, R.; Cheng, L.; Ma, C. Feature wavelength selection and model development for rapid determination of myoglobin content in nitrite-cured mutton using hyperspectral imaging. J. Food Eng. 2020, 287, 110090. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef]
- Jogin, M.; Mohana; Madhulika, M.S.; Divya, G.D.; Meghana, R.K.; Apoorva, S. Feature extraction using convolution neural networks (CNN) and deep learning. In Proceedings of the 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT), Bangalore, India, 18–19 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 2319–2323. [Google Scholar]
- Zhang, M.; Li, W.; Du, Q.; Gao, L.; Zhang, B. Feature extraction for classification of hyperspectral and LiDAR data using patch-to-patch CNN. IEEE Trans. Cybern. 2018, 50, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Vibhute, A.D.; Mali, S.; Patil, C. A systematic review on hyperspectral imaging tech- nology with a machine and deep learning methodology for agricultural applications. Ecol. Inform. 2022, 69, 101678. [Google Scholar] [CrossRef]
- Yoon, J. Hyperspectral imaging for clinical applications. BioChip J. 2022, 16, 1–12. [Google Scholar] [CrossRef]
- Aviara, N.A.; Liberty, J.T.; Olatunbosun, O.S.; Shoyombo, H.A.; Oyeniyi, S.K. Potential application of hyperspectral imaging in food grain quality inspection, evaluation and control during bulk storage. J. Agric. Food Res. 2022, 8, 100288. [Google Scholar] [CrossRef]
- Su, X.; Wang, Y.; Mao, J.; Chen, Y.; Yin, A.; Zhao, B.; Zhang, H.; Liu, M. A Review of Pharma-ceutical Robot based on Hyperspectral Technology. J. Intell. Robot. Syst. 2022, 105, 75. [Google Scholar] [CrossRef]
- Xiao, Q.; Bai, X.; Gao, P.; He, Y. Application of convolutional neural network-based feature extraction and data fusion for geographical origin identification of radix astragali by visible/short- wave near-infrared and near infrared hyperspectral imaging. Sensors 2020, 20, 4940. [Google Scholar] [CrossRef]
- Li, Y.; Ma, B.; Li, C.; Yu, G. Accurate prediction of soluble solid content in dried Hami jujube using SWIR hyperspectral imaging with comparative analysis of models. Comput. Electron. Agric. 2022, 193, 106655. [Google Scholar] [CrossRef]
- He, J.; Zhang, C.; Zhou, L.; He, Y. Simultaneous determination of five micro-components in Chrysanthemum morifolium (Hangbaiju) using near-infrared hyperspectral imaging coupled with deep learning with wavelength selection. Infrared Phys. Technol. 2021, 116, 103802. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, W.; Zhou, L.; Cheng, H.; Ye, X.; He, Y. Developing deep learning based regression approaches for determination of chemical compositions in dry black goji berries (Lycium ruthenicum Murr.) using near-infrared hyperspectral imaging. Food Chem. 2020, 319, 126536. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, Z.; Peng, D.; Qin, Y. Understanding and learning discriminant features based on multiattention 1DCNN for wheelset bearing fault diagnosis. IEEE Trans. Ind. Inform. 2019, 16, 5735–5745. [Google Scholar] [CrossRef]
- Jia, B.; Wang, W.; Ni, X.; Lawrence, K.C.; Zhuang, H.; Yoon, S.C.; Gao, Z. Essential processing methods of hyperspectral images of agricultural and food products. Chemom. Intell. Lab. Syst. 2020, 198, 103936. [Google Scholar] [CrossRef]
- Tan, W.; Sun, L.; Yang, F.; Che, W.; Ye, D.; Zhang, D.; Zou, B. Study on bruising degree classification of apples using hyperspectral imaging and GS-SVM. Optik 2018, 154, 581–592. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. In The Handbook of Brain Theory and Neural Networks; MIT Press: Cambridge, MA, USA, 1995; Volume 3361. [Google Scholar]
- Nalepa, J. Recent advances in multi- and hyperspectral image analysis. Sensors 2021, 21, 6002. [Google Scholar] [CrossRef]
- Grosjean, M.; Amann, B.J.F.; Butz, C.F.; Rein, B.; Tylmann, W. Hyperspectral imaging: A novel, non-destructive method for investigating sub-annual sediment structures and composition. PAGES News 2014, 22, 10–11. [Google Scholar] [CrossRef]
- Bauriegel, E.; Giebel, A.; Herppich, W.B. Hyperspectral and chlorophyll fluorescence imaging to analyse the impact of Fusarium culmorum on the photosynthetic integrity of infected wheat ears. Sensors 2011, 11, 3765–3779. [Google Scholar] [CrossRef]
Lenses | Other Fritillaria Except FCB | Fritillariae Cirrhosa Bulbus | ||||||
---|---|---|---|---|---|---|---|---|
FTB | FPB | FUB | FHB | BMR | SongBei | QingBei | LuBei | |
VNIR | 4041 | 4344 | 4497 | 3919 | 4696 | 6355 | 4556 | 6423 |
SWIR | 4105 | 4317 | 4399 | 3887 | 4571 | 6235 | 4271 | 5643 |
Type | Kernel | Channel | Steide | Padding | Output |
---|---|---|---|---|---|
Input | 1 × 288 | ||||
BN1 | 1 × 288 | ||||
Conv-1/pooling | 9 × 1 | 16 | 1 | Yes | 16 × 144 |
CPA | 1 × 2 | 1 | 1 | No | 16 × 144 |
BN2 | 16 × 144 | ||||
Conv-2/pooling | 7 × 16 | 16 | 1 | Yes | 16 × 72 |
CPA | 1 × 2 | 1 | 1 | No | 16 × 72 |
BN3 | 16 × 72 | ||||
Conv-3/pooling | 5 × 16 | 32 | 1 | Yes | 32 × 36 |
CPA | 1 × 2 | 1 | 1 | No | 32 × 36 |
BN4 | 32 × 36 | ||||
Conv-4/pooling | 3 × 32 | 64 | 1 | Yes | 64 × 18 |
CPA | 1 × 2 | 1 | 1 | No | 64 × 18 |
BN5 | 64 × 18 | ||||
Conv-5/pooling | 3 × 64 | 64 | 1 | Yes | 64 × 9 |
BN6 | 64 × 9 | ||||
Conv-6/pooling | 3 × 64 | 32 | 1 | Yes | 32 × 4 |
Fc1 | 64 | ||||
Fc2 | 32 | ||||
Fc3 | 16 | ||||
Fc4 | 8 |
Models | VNIR Lens | SWIR Lens |
---|---|---|
SVM | 85.40 ± 0.63 | 88.42 ± 0.78 |
MLP | 84.96 ± 1.02 | 87.29 ± 1.41 |
RF | 85.39 ± 0.89 | 86.80 ± 0.77 |
1DCNN | 93.82 ± 1.44 | 94.21 ± 1.78 |
Models | VNIR Lens | SWIR Lens |
---|---|---|
SVM | 44.15 ± 2.36 | 51.39 ± 1.98 |
MLP | 46.73 ± 1.49 | 53.29 ± 1.69 |
RF | 44.73 ± 0.88 | 54.92 ± 1.02 |
Lenses | 1DCNN | 1DCNN+CAM | 1DCNN+PAM | 1DCNN+CPAM | |
---|---|---|---|---|---|
VNIR | Accuracy | 92.88 | 95.33 | 96.45 | 98.39 |
Precision | 92.80 | 95.24 | 96.18 | 98.28 | |
Sensitivity | 92.40 | 94.89 | 96.31 | 98.31 | |
SWIR | Accuracy | 91.31 | 94.88 | 95.52 | 97.28 |
Precision | 92.20 | 95.45 | 95.79 | 97.64 | |
Sensitivity | 91.39 | 95.06 | 95.70 | 97.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Xu, Z.; Wei, Y.; Wang, T.; Zhao, Y.; Xu, H.; Mao, X.; Huang, L. The Identification of Fritillaria Species Using Hyperspectral Imaging with Enhanced One-Dimensional Convolutional Neural Networks via Attention Mechanism. Foods 2023, 12, 4153. https://doi.org/10.3390/foods12224153
Hu H, Xu Z, Wei Y, Wang T, Zhao Y, Xu H, Mao X, Huang L. The Identification of Fritillaria Species Using Hyperspectral Imaging with Enhanced One-Dimensional Convolutional Neural Networks via Attention Mechanism. Foods. 2023; 12(22):4153. https://doi.org/10.3390/foods12224153
Chicago/Turabian StyleHu, Huiqiang, Zhenyu Xu, Yunpeng Wei, Tingting Wang, Yuping Zhao, Huaxing Xu, Xiaobo Mao, and Luqi Huang. 2023. "The Identification of Fritillaria Species Using Hyperspectral Imaging with Enhanced One-Dimensional Convolutional Neural Networks via Attention Mechanism" Foods 12, no. 22: 4153. https://doi.org/10.3390/foods12224153
APA StyleHu, H., Xu, Z., Wei, Y., Wang, T., Zhao, Y., Xu, H., Mao, X., & Huang, L. (2023). The Identification of Fritillaria Species Using Hyperspectral Imaging with Enhanced One-Dimensional Convolutional Neural Networks via Attention Mechanism. Foods, 12(22), 4153. https://doi.org/10.3390/foods12224153