Chemical Composition and Antimicrobial Activity against the Listeria monocytogenes of Essential Oils from Seven Salvia Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Essential Oil (EO) Hydrodistillation
2.3. Gas Chromatography–Mass Spectrometry Analysis
2.4. Statistical Analysis
2.5. Listeria Monocytogenes Characterization
2.6. Antibiotic Susceptibility Test of L. monocytogenes Strains
2.7. Antimicrobial Activity of EOs against L. monocytogenes Strains
3. Results
3.1. Essential Oil Composition
3.2. Characterization of Strains and the Antibiotic Susceptibility Test
3.3. Antimicrobial Activity of the EOs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Foodborne Diseases. Available online: https://www.who.int/health-topics/foodborne-diseases#tab=tab_1 (accessed on 5 September 2023).
- Salanță, L.C.; Cropotova, J. An Update on Effectiveness and Practicability of Plant Essential Oils in the Food Industry. Plants 2022, 11, 2488. [Google Scholar] [CrossRef]
- Pieracci, Y.; Ciccarelli, D.; Giovanelli, S.; Pistelli, L.; Flamini, G.; Cervelli, C.; Mancianti, F.; Nardoni, S.; Bertelloni, F.; Ebani, V.V. Antimicrobial Activity and Composition of Five Rosmarinus (Now Salvia spp. and Varieties) Essential Oils. Antibiotics 2021, 10, 1090. [Google Scholar] [CrossRef] [PubMed]
- Seow, Y.X.; Yeo, C.R.; Chung, H.L.; Yuk, H.-G. Plant Essential Oils as Active Antimicrobial Agents. Crit. Rev. Food Sci. Nutr. 2014, 54, 625–644. [Google Scholar] [CrossRef]
- Mihai, A.L.; Popa, M.E. Essential oils utilization in food industry—A literature review. Sci. Bull. Ser. F Biotechnol. 2013, 17, 187–192. [Google Scholar]
- Drew, B.T.; González-Gallegos, J.G.; Xiang, C.L.; Kriebel, R.; Drummond, C.P.; Walker, J.B.; Sytsma, K.J. Salvia united: The greatest good for the greatest number. Taxon 2017, 66, 133–145. [Google Scholar] [CrossRef]
- Roma-Marzio, F.; Galasso, G. New combinations for two hybrids in Salvia subg. rosmarinus (Lamiaceae). Ital. Bot. 2019, 7, 31–34. [Google Scholar] [CrossRef]
- Longaray Delamare, A.P.; Moschen-Pistorello, I.T.; Artico, L.; Atti-Serafini, L.; Echeverrigaray, S. Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chem. 2007, 100, 603–608. [Google Scholar] [CrossRef]
- Ramos da Silva, L.R.; Ferreira, O.O.; Cruz, J.N.; de Jesus Pereira Franco, C.; Oliveira dos Anjos, T.; Cascaes, M.M.; Almeida da Costa, W.; Helena de Aguiar Andrade, E.; Santana de Oliveira, M. Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. Evid. Based Complement. Altern. Med. 2021, 2021, 6748052. [Google Scholar] [CrossRef]
- Assaggaf, H.M.; Naceiri Mrabti, H.; Rajab, B.S.; Attar, A.A.; Alyamani, R.A.; Hamed, M.; El Omari, N.; El Menyiy, N.; Hazzoumi, Z.; Benali, T.; et al. Chemical Analysis and Investigation of Biological Effects of Salvia officinalis Essential Oils at Three Phenological Stages. Molecules 2022, 27, 5157. [Google Scholar] [CrossRef]
- Coimbra, A.; Carvalho, F.; Duarte, A.P.; Ferreira, S. Antimicrobial activity of Thymus zygis essential oil against Listeria monocytogenes and its application as food preservative. Innov. Food Sci. Emerg. Technol. 2022, 80, 103077. [Google Scholar] [CrossRef]
- Aureli, P.; Costantini, A.; Zolea, S. Antimicrobial Activity of Some Plant Essential Oils Against Listeria monocytogenes. J. Food Prot. 1992, 55, 344–348. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Listeriosis. Available online: https://www.who.int/news-room/fact-sheets/detail/listeriosis (accessed on 5 September 2023).
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Publishing Corporation: Carol Stream, IL, USA, 1995. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on Methyl Silicon and Carbowax 20 M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Jennings, W.; Shibamoto, T. Qualitative Analysis of Flavor and Fragrance Volatiles by Glass Capillary Gas Chromatography; Elsevier: New York, NY, USA; London, UK; Sydney, Australia; Toronto, ON, Canada; San Francisco, CA, USA, 1980; Volume 26, ISBN 9780123842503. [Google Scholar]
- Masada, Y. Analysis of Essential Oils by Gas Chromatography and Mass Spectrometry; John Wiley & Sons, Inc.: New York, NY, USA, 1976; ISBN 047015019X. [Google Scholar]
- Swigar, A.A.; Silverstein, R.M. Monoterpenes: Infrared, mass, 1H NMR, and 13C NMR spectra, and Kováts indices. Flavour Fragr. J. 1981, 7, 241. [Google Scholar] [CrossRef]
- Stenhagen, E.; Abrahamsson, S.; McLafferty, F.W. Registry of Mass Spectral Data; Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Doumith, M.; Buchrieser, C.; Glaser, P.; Jacquet, C.; Martin, P. Differentiation of the Major Listeria monocytogenes Serovars by Multiplex PCR. J. Clin. Microbiol. 2004, 42, 3819–3822. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 10 September 2023).
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Fratini, F.; Mancini, S.; Turchi, B.; Friscia, E.; Pistelli, L.; Giusti, G.; Cerri, D. A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains. Microbiol. Res. 2017, 195, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Miraglia, M.; Marvin, H.J.P.; Kleter, G.A.; Battilani, P.; Brera, C.; Coni, E.; Cubadda, F.; Croci, L.; De Santis, B.; Dekkers, S.; et al. Climate change and food safety: An emerging issue with special focus on Europe. Food Chem. Toxicol. 2009, 47, 1009–1021. [Google Scholar] [CrossRef]
- United Nations. Sustainable Development Goals. Ecol. Indic. 2016, 60, 565–573. [Google Scholar] [CrossRef]
- Krol, A.; Kokotkiewicz, A.; Gorniak, M.; Naczk, A.M.; Zabiegala, B.; Gebalski, J.; Graczyk, F.; Zaluski, D.; Bucinski, A.; Luczkiewicz, M. Evaluation of the yield, chemical composition and biological properties of essential oil from bioreactor-grown cultures of Salvia apiana microshoots. Sci. Rep. 2023, 13, 7141. [Google Scholar] [CrossRef]
- Borek, T.T.; Hochrien, J.M.; Irwin, A.N. Composition of the essential oil of white sage, Salvia apiana. Flavour Fragr. J. 2006, 21, 571–572. [Google Scholar] [CrossRef]
- Krol, A.; Kokotkiewicz, A.; Luczkiewicz, M. White Sage (Salvia apiana)–a Ritual and Medicinal Plant of the Chaparral: Plant Characteristics in Comparison with Other Salvia Species. Planta Med. 2022, 88, 604–627. [Google Scholar] [CrossRef]
- Grierson, D.S.; Afolayan, A.J. Antibacterial activity of the extracts and the essential oil from the shoots of Salvia namaensis Schinz. S. Afr. J. Sci. 2005, 101, 507–509. [Google Scholar]
- Fisher, V.L. Indigenous Salvia Species: An Investigation of the Antimicrobial Activity, Antioxidant Activity and Chemical Composition of Leaf Extracts. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2005. [Google Scholar]
- Bisio, A.; De Mieri, M.; Milella, L.; Schito, A.M.; Parricchi, A.; Russo, D.; Alfei, S.; Lapillo, M.; Tuccinardi, T.; Hamburger, M.; et al. Antibacterial and Hypoglycemic Diterpenoids from Salvia chamaedryoides. J. Nat. Prod. 2017, 80, 503–514. [Google Scholar] [CrossRef]
- World Flora Online. Available online: http://www.worldfloraonline.org/taxon/wfo-7000000318#children (accessed on 22 August 2022).
- Kamatou, G.P.P.; Makunga, N.P.; Ramogola, W.P.N.; Viljoen, A.M. South African Salvia species: A review of biological activities and phytochemistry. J. Ethnopharmacol. 2008, 119, 664–672. [Google Scholar] [CrossRef]
- Huang, X.-Y.; Jiang, Z.-T.; Tan, J.; Li, R. Geographical Origin Traceability of Red Wines Based on Chemometric Classification via Organic Acid Profiles. J. Food Qual. 2017, 2017, 2038073. [Google Scholar] [CrossRef]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Giovanelli, S.; Ruffoni, B.; D’Ascenzi, C.; Pistelli, L.; Mancianti, F. Activity of Salvia dolomitica and Salvia somalensis Essential Oils against Bacteria, Molds and Yeasts. Molecules 2018, 23, 396. [Google Scholar] [CrossRef]
- Abdallah, M.; Abu-Dahab, R.; Afifi, F. Composition of the Essential Oils from Salvia Dominica L. and Salvia Hormium L. Grown in Jordan. Jordan J. Pharm. Sci. 2013, 6, 40–47. [Google Scholar] [CrossRef]
- ISO 3526:2005; Oil of Sage, Spanish (Salvia Lavandulifolia Vahl). International Standardization Organization (ISO): Geneva, Switzerland, 2005.
- Bhavaniramya, S.; Vishnupriya, S.; Al-Aboody, M.S.; Vijayakumar, R.; Baskaran, D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci. Technol. 2019, 2, 49–55. [Google Scholar] [CrossRef]
- Kotan, R.; Kordali, S.; Cakir, A. Screening of Antibacterial Activities of Twenty-One Oxygenated Monoterpenes. Z. Naturforsch. C 2007, 62, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Akin, M.; Demirci, B.; Bagci, Y.; Baser, K.H.C. Antibacterial activity and composition of the essentialoils of two endemic Salvia sp. from Turkey. Afr. J. Biotechnol. 2010, 9, 2322–2327. [Google Scholar]
- Hulya, D.; Sadık, K. Chemical Composition and Antimicrobial Activity of Essential Oils of Ocimum basilicum var. album (L.) Benth, Lavandula angustifolia subsp. angustifolia, Melissa officinalis Belonging to Lamiaceae Family. J. Food Sci. Eng. 2017, 7, 461–471. [Google Scholar] [CrossRef]
- Saleh, A.; Al Kamaly, O.; Alanazi, A.S.; Noman, O. Phytochemical Analysis and Antimicrobial Activity of Rosmarinus officinalis L. Growing in Saudi Arabia: Experimental and Computational Approaches. Processes 2022, 10, 2422. [Google Scholar] [CrossRef]
- Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial Activity of Terpenes and Terpenoids Present in Essential Oils. Molecules 2019, 24, 2471. [Google Scholar] [CrossRef] [PubMed]
- Gallucci, M.N.; Oliva, M.; Casero, C.; Dambolena, J.; Luna, A.; Zygadlo, J.; Demo, M. Antimicrobial combined action of terpenes against the food-borne microorganisms Escherichia coli, Staphylococcus aureus and Bacillus cereus. Flavour Fragr. J. 2009, 24, 348–354. [Google Scholar] [CrossRef]
- Yousefi, M.; Khorshidian, N.; Hosseini, H. Potential Application of Essential Oils for Mitigation of Listeria monocytogenes in Meat and Poultry Products. Front. Nutr. 2020, 7, 577287. [Google Scholar] [CrossRef]
- Schneider, G.; Steinbach, A.; Putics, Á.; Solti-Hodován, Á.; Palkovics, T. Potential of Essential Oils in the Control of Listeria monocytogenes. Microorganisms 2023, 11, 1364. [Google Scholar] [CrossRef] [PubMed]
- Girotto, F.; Alibardi, L.; Cossu, R. Food waste generation and industrial uses: A review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef]
- Speranza, B.; Guerrieri, A.; Racioppo, A.; Bevilacqua, A.; Campaniello, D.; Corbo, M.R. Sage and Lavender Essential Oils as Potential Antimicrobial Agents for Foods. Microbiol. Res. 2023, 14, 1089–1113. [Google Scholar] [CrossRef]
- Maurya, A.; Prasad, J.; Das, S.; Dwivedy, A.K. Essential Oils and Their Application in Food Safety. Front. Sustain. Food Syst. 2021, 5, 653420. [Google Scholar] [CrossRef]
- Ni, Z.-J.; Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.-G.; Hu, F.; Wei, Z.-J. Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci. Technol. 2021, 110, 78–89. [Google Scholar] [CrossRef]
- Sharma, S.; Barkauskaite, S.; Jaiswal, A.K.; Jaiswal, S. Essential oils as additives in active food packaging. Food Chem. 2021, 343, 128403. [Google Scholar] [CrossRef] [PubMed]
- Farina, P.; Ascrizzi, R.; Bedini, S.; Castagna, A.; Flamini, G.; Macaluso, M.; Mannucci, A.; Pieracci, Y.; Ranieri, A.; Sciampagna, M.C.; et al. Chitosan and Essential Oils Combined for Beef Meat Protection against the Oviposition of Calliphora vomitoria, Water Loss, Lipid Peroxidation, and Colour Changes. Foods 2022, 11, 3994. [Google Scholar] [CrossRef] [PubMed]
Species | Accession Number |
---|---|
Salvia apiana Jeps. | 2020-0612/0001 |
Salvia aurita L.f. | 2020-0686/0001 |
Salvia chamaedryoides Cav. | 2020-0640/0001 |
Salvia dolomitica Codd | 2020-0681/0001 |
Salvia dominica L. | 2020-0671/0001 |
Salvia officinalis subsp. lavandulifolia (Vahl) Gams | 2020-0675/0001 |
Salvia namaensis Schinz | 2020-0685/0001 |
Compounds | l.r.i 1 | Class | Relative Abundance ± Standard Deviation (n = 3) | ||||||
---|---|---|---|---|---|---|---|---|---|
S. apiana | S. aurita | S. chamaedryoides | S. dolomitica | S. dominica | S. namaensis | S. officinalis subsp. lavandulifolia | |||
tricyclene | 922 | mh | - 2 | - | - | - | - | 0.2 ± 0.00 | - |
α-pinene | 933 | mh | 2.7 ± 0.01 | 3.3 ± 0.03 | 5.6 ± 0.46 | 1.5 ± 0.04 | 2.2 ± 0.08 | 5.4 ± 0.41 | 1.5 ± 0.05 |
camphene | 948 | mh | 3.2 ± 0.16 | 0.3 ± 0.01 | 3.5 ± 0.30 | 0.7 ± 0.04 | 1.0 ± 0.04 | 9.1 ± 1.63 | 3.0 ± 0.04 |
sabinene | 973 | mh | - | - | 3.1 ± 0.20 | - | - | - | - |
β-pinene | 977 | mh | 1.1 ± 0.02 | 1.1 ± 0.04 | 2.2 ± 0.16 | 0.3 ± 0.01 | 0.8 ± 0.01 | 1.0 ± 0.14 | 0.9 ± 0.01 |
myrcene | 991 | mh | 0.5 ± 0.06 | 0.2 ± 0.01 | 0.3 ± 0.03 | 0.4 ± 0.02 | 0.8 ± 0.01 | 0.3 ± 0.04 | 0.4 ± 0.02 |
p-mentha-1(7),8-diene | 1004 | mh | - | 0.2 ± 0.02 | - | - | - | - | - |
α-phellandrene | 1006 | mh | - | - | - | - | 0.2 ± 0.01 | - | - |
δ-3-carene | 1011 | mh | 1.3 ± 0.05 | - | - | 2.1 ± 0.06 | 2.5 ± 0.04 | 0.1 ± 0.01 | - |
α-terpinene | 1017 | mh | - | - | - | - | 0.1 ± 0.02 | - | - |
p-cymene | 1025 | mh | 0.3 ± 0.02 | 0.6 ± 0.03 | - | 0.5 ± 0.02 | - | 0.6 ± 0.11 | 0.4 ± 0.00 |
sylvestrene | 1027 | mh | - | - | - | - | 0.2 ± 0.02 | - | - |
limonene | 1029 | mh | 2.1 ± 0.40 | 1.7 ± 0.23 | 1.8 ± 0.10 | 3.0 ± 0.12 | 3.7 ± 0.16 | 0.8 ± 0.09 | 1.2 ± 0.01 |
β-phellandrene | 1029 | mh | - | 4.1 ± 0.32 | - | - | - | - | - |
1,8-cineole | 1031 | om | 28.0 ± 3.81 | 0.3 ± 0.02 | 5.2 ± 0.03 | 6.7 ± 0.22 | 9.3 ± 0.09 | 15.2 ± 5.54 | 5.2 ± 0.14 |
(Z)-β-ocimene | 1036 | mh | 0.6 ± 0.12 | 0.8 ± 0.01 | - | 0.5 ± 0.01 | 1.3 ± 0.03 | 1.5 ± 0.27 | - |
(E)-β-ocimene | 1047 | mh | - | 0.1 ± 0.00 | 0.2 ± 0.01 | - | 0.2 ± 0.01 | - | - |
γ-terpinene | 1058 | mh | 0.2 ± 0.05 | - | 0.1 ± 0.01 | 0.1 ± 0.00 | 0.4 ± 0.03 | 0.1 ± 0.01 | - |
cis-sabinene hydrate | 1066 | om | - | - | 0.2 ± 0.01 | - | - | - | - |
terpinolene | 1089 | mh | 0.3 ± 0.04 | - | - | - | - | - | - |
trans-sabinene hydrate | 1098 | om | - | - | 0.1 ± 0.02 | - | - | - | - |
linalool | 1101 | om | 0.3 ± 0.03 | - | - | - | - | - | - |
α-thujone | 1107 | om | - | - | - | - | - | - | 0.9 ± 0.05 |
β-thujone | 1117 | om | - | - | - | - | - | - | 0.2 ± 0.00 |
cis-p-menth-2-en-1-ol | 1122 | om | - | 0.1 ± 0.01 | - | - | - | - | - |
trans-p-menth-2-en-1-ol | 1139 | om | - | 0.1 ± 0.01 | - | - | - | - | - |
trans-pinocarveol | 1139 | om | - | - | 0.1 ± 0.01 | - | - | - | - |
camphor | 1145 | om | 46.3 ± 1.75 | 0.7 ± 0.02 | 0.9 ± 0.05 | - | - | 21.8 ± 4.71 | 7.3 ± 0.01 |
borneol | 1165 | om | 0.5 ± 0.03 | - | 8.0 ± 0.06 | 2.5 ± 0.08 | 3.7 ± 0.01 | 3.0 ± 0.45 | 1.2 ± 0.07 |
4-terpineol | 1177 | om | 0.5 ± 0.06 | 0.2 ± 0.00 | 0.4 ± 0.01 | 0.3 ± 0.01 | 0.3 ± 0.00 | 0.5 ± 0.08 | - |
cryptone | 1186 | nt | - | 0.1 ± 0.01 | - | - | - | - | - |
α-terpineol | 1191 | om | - | - | - | - | 0.2 ± 0.01 | - | 0.4 ± 0.02 |
myrtenol | 1197 | om | - | - | 0.1 ± 0.01 | - | - | - | - |
bornyl acetate | 1286 | om | 0.5 ± 0.11 | - | 9.2 ± 0.30 | - | - | 4.0 ± 1.16 | - |
δ-eIemene | 1338 | sh | - | - | 0.1 ± 0.02 | - | - | - | - |
α-cubebene | 1350 | sh | - | - | - | 0.2 ± 0.01 | 0.3 ± 0.00 | - | - |
eugenol | 1357 | pp | - | - | - | - | 0.1 ± 0.01 | - | - |
α-ylangene | 1371 | sh | - | 0.1 ± 0.01 | - | - | - | - | - |
isoledene | 1373 | sh | - | - | - | 0.3 ± 0.02 | 0.2 ± 0.01 | - | - |
α-copaene | 1376 | sh | - | 0.4 ± 0.01 | - | 2.0 ± 0.04 | 1.7 ± 0.00 | 0.3 ± 0.04 | 0.5 ± 0.01 |
(Z)-jasmone | 1397 | nt | - | - | - | - | 0.2 ± 0.01 | - | - |
α-gurjunene | 1410 | sh | - | - | - | 0.7 ± 0.01 | 0.6 ± 0.02 | 0.1 ± 0.02 | 0.4 ± 0.02 |
cis-α-bergamotene | 1416 | sh | - | - | - | - | - | - | 0.1 ± 0.00 |
β-caryophyllene | 1419 | sh | - | 3.9 ± 0.12 | 9.9 ± 0.68 | 12.0 ± 0.17 | 19.9 ± 0.26 | 0.3 ± 0.08 | 3.0 ± 0.09 |
β-copaene | 1429 | sh | - | 0.2 ± 0.00 | - | 0.3 ± 0.00 | 0.2 ± 0.02 | - | - |
γ-maaliene | 1430 | sh | - | 0.1 ± 0.00 | - | 0.6 ± 0.05 | 0.5 ± 0.01 | - | 0.2 ± 0.00 |
β-gurjunene | 1433 | sh | - | - | - | 0.3 ± 0.02 | 0.1 ± 0.01 | - | - |
α-maaliene | 1438 | sh | - | 0.2 ± 0.01 | - | 0.9 ± 0.03 | 0.7 ± 0.00 | - | 0.2 ± 0.01 |
α-guaiene | 1439 | sh | - | - | - | - | - | 0.3 ± 0.10 | - |
aromadendrene | 1442 | sh | - | 2.1 ± 0.03 | - | 7.6 ± 0.00 | 6.3 ± 0.06 | - | 1.9 ± 0.02 |
guaia-6,9-diene | 1443 | sh | 0.3 ± 0.09 | - | 3.3 ± 0.23 | - | - | - | - |
isogermacrene D | 1451 | sh | - | - | 0.2 ± 0.01 | - | - | - | - |
selina-5,11-diene | 1452 | sh | - | 0.2 ± 0.01 | - | 1.0 ± 0.01 | 0.7 ± 0.01 | - | 0.1 ± 0.00 |
α-humulene | 1453 | sh | - | 3.5 ± 0.11 | 0.4 ± 0.03 | 1.3 ± 0.02 | 2.0 ± 0.02 | - | 9.7 ± 0.55 |
alloaromadendrene | 1460 | sh | - | - | - | 0.8 ± 0.01 | 0.6 ± 0.02 | - | 0.1 ± 0.01 |
α-elemene | 1462 | sh | - | - | - | 0.2 ± 0.00 | 0.1 ± 0.01 | - | - |
cis-muurola-4(14),5-diene | 1463 | sh | - | - | - | 0.1 ± 0.01 | 0.1 ± 0.00 | - | - |
γ-gurjunene | 1469 | sh | - | - | - | 0.2 ± 0.01 | 0.2 ± 0.02 | - | - |
trans-cadina-1(6),4-diene | 1474 | sh | - | - | - | 0.3 ± 0.01 | 0.4 ± 0.03 | - | - |
γ-muurolene | 1477 | sh | - | 1.4 ± 0.01 | - | 0.7 ± 0.01 | 0.5 ± 0.02 | - | 0.2 ± 0.00 |
germacrene D | 1481 | sh | - | - | 0.4 ± 0.06 | - | - | 0.1 ± 0.02 | - |
α-amorphene | 1482 | sh | - | 0.1 ± 0.02 | - | - | - | - | - |
ar-curcumene | 1483 | sh | - | - | - | - | - | - | 1.9 ± 0.03 |
β-selinene | 1486 | sh | - | 0.4 ± 0.00 | - | 0.4 ± 0.01 | 0.3 ± 0.03 | 0.1 ± 0.04 | - |
δ-selinene | 1491 | sh | - | - | - | 0.3 ± 0.00 | 0.3 ± 0.01 | - | - |
valencene | 1493 | sh | - | 1.0 ± 0.02 | - | - | - | 0.4 ± 0.11 | - |
viridiflorene | 1495 | sh | - | - | - | 3.3 ± 0.01 | 4.1 ± 0.06 | - | 1.3 ± 0.05 |
bicyclogermacrene | 1496 | sh | - | - | 0.1 ± 0.01 | 0.7 ± 0.08 | - | - | - |
eremophilene | 1499 | sh | - | - | - | 0.7 ± 0.00 | 0.7 ± 0.03 | - | - |
α-muurolene | 1500 | sh | - | 0.3 ± 0.01 | - | 0.8 ± 0.01 | 0.8 ± 0.02 | 0.2 ± 0.06 | 0.2 ± 0.00 |
β-bisabolene | 1509 | sh | 0.1 ± 0.04 | - | - | - | - | - | - |
trans-γ-cadinene | 1514 | sh | 0.3 ± 0.14 | 1.1 ± 0.01 | - | 4.5 ± 0.10 | 4.0 ± 0.01 | 0.8 ± 0.30 | 1.5 ± 0.03 |
cubebol | 1515 | os | - | 0.2 ± 0.01 | - | - | - | - | - |
trans-calamenene | 1524 | sh | - | 1.6 ± 0.09 | - | 1.4 ± 0.06 | 0.2 ± 0.04 | 0.9 ± 0.19 | - |
δ-cadinene | 1524 | sh | 1.0 ± 0.44 | 0.5 ± 0.09 | - | 5.1 ± 0.05 | 6.5 ± 0.00 | 1.7 ± 0.35 | 3.0 ± 0.04 |
selina-3,7(11)-diene | 1530 | sh | - | 1.5 ± 0.07 | - | - | - | - | - |
cubenene | 1533 | sh | - | - | - | 0.4 ± 0.01 | 0.5 ± 0.02 | - | 0.1 ± 0.00 |
α-cadinene | 1537 | sh | - | - | - | 0.3 ± 0.00 | 0.2 ± 0.01 | - | - |
α-calacorene | 1543 | sh | - | 0.2 ± 0.01 | - | 0.3 ± 0.00 | - | - | 0.1 ± 0.01 |
elemol | 1550 | os | - | - | 0.2 ± 0.02 | - | - | - | - |
germacrene B | 1556 | sh | - | 0.2 ± 0.00 | 0.2 ± 0.03 | - | - | - | - |
ledol | 1560 | os | - | - | - | 0.4 ± 0.01 | 0.4 ± 0.01 | - | 0.2 ± 0.00 |
β-calacorene | 1563 | sh | - | 0.1 ± 0.00 | - | - | - | - | - |
(E)-nerolidol | 1564 | os | - | - | - | 0.2 ± 0.01 | 0.5 ± 0.03 | 5.2 ± 2.21 | - |
maaliol | 1566 | os | - | 0.2 ± 0.01 | - | - | - | - | - |
palustrol | 1568 | os | - | - | - | - | - | - | 0.3 ± 0.01 |
spathulenol | 1577 | os | - | 1.9 ± 0.04 | 0.9 ± 0.04 | 1.3 ± 0.04 | 0.8 ± 0.08 | - | 3.5 ± 0.04 |
caryophyllene oxide | 1582 | os | - | 16.3 ± 0.05 | 18.2 ± 0.76 | 7.6 ± 0.03 | 4.1 ± 0.09 | 0.5 ± 0.18 | 0.9 ± 0.09 |
globulol | 1583 | os | - | 0.6 ± 0.11 | - | 0.6 ± 0.12 | 1.1 ± 0.07 | 0.5 ± 0.20 | 1.3 ± 0.10 |
furopelargone A | 1588 | os | - | - | 1.7 ± 0.18 | - | - | - | - |
β-copaen-4α-ol | 1590 | os | - | - | 0.5 ± 0.04 | - | - | - | - |
viridiflorol | 1592 | os | - | 0.8 ± 0.02 | - | 0.3 ± 0.00 | 0.2 ± 0.00 | - | 0.5 ± 0.01 |
cis-β-elemenone | 1593 | os | - | 0.4 ± 0.02 | - | - | - | - | - |
guaiol | 1596 | os | - | - | - | - | - | - | 0.2 ± 0.01 |
rosifoliol | 1602 | os | - | 0.4 ± 0.02 | - | 1.2 ± 0.03 | 1.2 ± 0.05 | - | 0.4 ± 0.01 |
humulene oxide II | 1608 | os | - | 9.9 ± 0.00 | 0.3 ± 0.01 | 0.7 ± 0.01 | 0.3 ± 0.01 | 0.1 ± 0.06 | 2.3 ± 0.05 |
1,10-di-epi-cubenol | 1615 | os | - | 0.4 ± 0.01 | - | 0.3 ± 0.02 | 0.3 ± 0.02 | - | - |
1-epi-cubenol | 1627 | os | - | 2.6 ± 0.15 | 2.0 ± 0.07 | 1.9 ± 0.00 | 1.1 ± 0.01 | 3.3 ± 1.53 | - |
juneol | 1628 | os | - | - | - | - | - | - | 3.9 ± 0.17 |
γ-eudesmol | 1631 | os | - | 1.7 ± 0.24 | - | 1.0 ± 0.02 | 0.3 ± 0.01 | 0.8 ± 0.45 | - |
caryophylla-4(14),8(15)-dien-5-ol (unidentified isomer 1) | 1633 | os | - | 2.4 ± 0.16 | - | - | - | - | - |
caryophylla-4(14),8(15)-dien-5-ol (unidentified isomer 2) | 1633 | os | - | 3.2 ± 0.06 | 2.0 ± 0.17 | 0.8 ± 0.09 | - | - | - |
hinesol | 1636 | os | - | - | - | 0.3 ± 0.03 | - | - | - |
τ-cadinol | 1641 | os | 3.1 ± 1.42 | 1.8 ± 0.06 | 0.4 ± 0.03 | 4.1 ± 0.07 | 4.1 ± 0.09 | 9.9 ± 3.45 | - |
1,3a-ethano(1H)inden-4-ol, octahydro-2,2,4,7a-tetramethyl | 1648 | os | - | - | - | - | - | - | 1.9 ± 0.13 |
β-eudesmol | 1649 | os | 2.0 ± 0.85 | 0.9 ± 0.08 | - | 2.0 ± 0.09 | 0.5 ± 0.03 | 4.1 ± 1.99 | - |
α-muurolol | 1651 | os | - | - | - | 0.3 ± 0.04 | 0.3 ± 0.02 | - | - |
α-eudesmol | 1654 | os | 0.2 ± 0.08 | 0.8 ± 0.00 | - | 3.8 ± 0.03 | 1.6 ± 0.04 | 4.3 ± 2.12 | - |
α-cadinol | 1655 | os | 0.6 ± 0.38 | 1.2 ± 0.06 | - | 1.9 ± 0.16 | 1.7 ± 0.13 | 0.5 ± 0.22 | 0.8 ± 0.01 |
pogostole | 1655 | os | - | 1.1 ± 0.02 | - | - | - | - | - |
cis-calamenen-10-ol | 1658 | os | - | 0.5 ± 0.10 | - | - | - | - | - |
trans-calamenen-10-ol | 1667 | os | - | 0.3 ± 0.02 | - | - | - | - | - |
bulnesol | 1668 | os | 0.2 ± 0.05 | - | - | - | - | 0.9 ± 0.49 | 2.4 ± 0.06 |
14-hydroxy-9-epi-(E)-caryophyllene | 1670 | os | - | 6.6 ± 0.30 | 2.3 ± 0.01 | 1.4 ± 0.13 | 0.2 ± 0.00 | - | 0.8 ± 0.03 |
cadalene | 1674 | sh | - | 0.4 ± 0.03 | - | 0.2 ± 0.01 | - | 0.1 ± 0.07 | - |
aromadendrene epoxide II | 1680 | os | - | 0.2 ± 0.00 | - | - | - | - | - |
α-bisabolol | 1685 | os | 1.3 ± 0.64 | 1.5 ± 0.07 | - | - | - | 0.2 ± 0.05 | - |
(Z,E)-farnesol | 1689 | os | - | - | - | - | - | - | 3.1 ± 0.00 |
juniper camphor | 1694 | os | - | 0.4 ± 0.01 | - | - | - | - | - |
benzyl benzoate | 1763 | nt | - | 5.4 ± 0.01 | - | - | - | - | - |
hexahydrofarnesylacetone | 1845 | ac | - | 0.3 ± 0.01 | - | - | - | - | - |
isopimara-9(11),15-diene | 1907 | dh | - | - | - | - | 0.1 ± 0.02 | - | - |
epi-manool | 2056 | od | - | 0.3 ± 0.01 | - | - | - | - | 13.4 ± 1.16 |
abietadiene | 2078 | dh | - | - | 0.1 ± 0.01 | - | - | - | - |
kolavelool | 2079 | od | - | - | - | - | - | - | 0.2 ± 0.04 |
phytol | 2112 | od | - | 0.3 ± 0.05 | - | - | - | - | - |
methyl sandaracopimarate | 2252 | od | - | - | 0.5 ± 0.06 | - | - | - | - |
methyl isopimarate | 2289 | od | - | - | 0.1 ± 0.02 | - | - | - | - |
abietal | 2314 | od | - | - | 3.5 ± 0.26 | - | - | - | - |
methyl dehydroabietate | 2359 | od | - | - | 0.6 ± 0.08 | - | - | - | - |
methyl abietate | 2377 | od | - | - | 6.9 ± 0.62 | - | - | - | - |
abietol | 2389 | od | - | - | 0.6 ± 0.19 | - | - | - | - |
methyl neoabietate | 2431 | od | - | - | 0.8 ± 0.11 | - | - | - | - |
Chemical classes | S. apiana | S. aurita | S. chamaedryoides | S. dolomitica | S. dominica | S. namaensis | S. officinalis subsp. lavandulifolia | ||
Monoterpene hydrocarbons (mh) | 12.3 ± 0.26 | 12.3 ± 0.21 | 16.8 ± 1.25 | 9.2 ± 0.29 | 13.3 ± 0.35 | 19.1 ± 2.68 | 7.4 ± 0.09 | ||
Oxygenated monoterpenes (om) | 76.1 ± 5.40 | 1.4 ± 0.02 | 24.3 ± 0.14 | 9.5 ± 0.30 | 13.4 ± 0.09 | 44.6 ± 11.94 | 15.3 ± 0.28 | ||
Sesquiterpene hydrocarbons (sh) | 1.7 ± 0.71 | 19.4 ± 0.35 | 14.6 ± 1.05 | 48.0 ± 0.18 | 52.7 ± 0.35 | 5.5 ± 1.38 | 24.5 ± 0.78 | ||
Oxygenated sesquiterpenes (os) | 7.3 ± 3.41 | 56.4 ± 0.41 | 28.6 ± 1.28 | 30.1 ± 0.77 | 18.7 ± 0.52 | 30.3 ± 12.91 | 22.2 ± 0.26 | ||
Diterpene hydrocarbons (dh) | - | - | 0.1 ± 0.01 | - | 0.1 ± 0.02 | - | - | ||
Oxygenated diterpenes (od) | - | 0.6 ± 0.06 | 13.1 ± 1.32 | - | - | - | 13.6 ± 1.20 | ||
Apocarotenoids (ac) | - | 0.3 ± 0.01 | - | - | - | - | - | ||
Phenylpropanoids (pp) | - | - | - | - | 0.1 ± 0.01 | - | - | ||
Other non-terpene derivatives (nt) | - | 5.5 ± 0.01 | - | - | 0.2 ± 0.01 | - | - | ||
Total identified (%) | 97.5 ± 1.02 | 95.7 ± 0.05 | 97.4 ± 0.12 | 96.7 ± 0.00 | 98.5 ± 0.05 | 99.4 ± 0.33 | 83.0 ± 0.53 | ||
EO hydrodistillation yield (% w/w) | 0.98 ± 0.26 | 0.32 ± 0.02 | 0.35 ± 0.09 | 0.3 ± 0.18 | 1.04 ± 0.01 | 0.32 ± 0.13 | 0.48 ± 0.01 |
Essential Oils | Microrganism | Code | MIC a | MIC b | MIC c | MIC Mode | MIC mg/mL | MBC a | MBC b | MBC c | MBC Mode | MBC mg/mL |
---|---|---|---|---|---|---|---|---|---|---|---|---|
S. apiana | L. monocytogenes | 55 | 1:32 | 1:32 | 1:32 | 1:32 | 27.26 | 1:8 | 1:16 | 1:16 | 1:16 | 54.52 |
L. monocytogenes | 559 | 1:32 | 1:32 | 1:32 | 1:32 | 27.26 | 1:16 | 1:16 | 1:16 | 1:16 | 54.52 | |
L. monocytogenes | ATCC 7644 | 1:32 | 1:32 | 1:32 | 1:32 | 27.26 | 1:16 | 1:16 | 1:16 | 1:16 | 54.52 | |
S. aurita | L. monocytogenes | 55 | 1:128 | 1:128 | 1:128 | 1:128 | 5.57 | 1:64 | 1:64 | 1:64 | 1:64 | 11.14 |
L. monocytogenes | 559 | 1:128 | 1:128 | 1:128 | 1:128 | 5.57 | 1:64 | 1:32 | 1:64 | 1:64 | 11.14 | |
L. monocytogenes | ATCC 7644 | 1:128 | 1:128 | 1:256 | 1:128 | 5.57 | 1:64 | 1:64 | 1:64 | 1:64 | 11.14 | |
S. chamaedryoides | L. monocytogenes | 55 | 1:256 | 1:256 | 1:256 | 1:256 | 3.13 | 1:64 | 1:128 | 1:64 | 1:64 | 12.50 |
L. monocytogenes | 559 | 1:256 | 1:256 | 1:256 | 1:256 | 3.13 | 1:64 | 1:64 | 1:64 | 1:64 | 12.50 | |
L. monocytogenes | ATCC 7644 | 1:256 | 1:256 | 1:256 | 1:256 | 3.13 | 1:64 | 1:64 | 1:128 | 1:64 | 12.50 | |
S. dolomitica | L. monocytogenes | 55 | 1:128 | 1:128 | 1:128 | 1:128 | 6.12 | 1:64 | 1:64 | 1:32 | 1:64 | 12.23 |
L. monocytogenes | 559 | 1:128 | 1:128 | 1:128 | 1:128 | 6.12 | 1:64 | 1:64 | 1:32 | 1:64 | 12.23 | |
L. monocytogenes | ATCC 7644 | 1:128 | 1:128 | 1:128 | 1:128 | 6.12 | 1:64 | 1:64 | 1:64 | 1:64 | 12.23 | |
S. dominica | L. monocytogenes | 55 | 1:64 | 1:64 | 1:64 | 1:64 | 12.31 | 1:64 | 1:32 | 1:32 | 1:32 | 24.61 |
L. monocytogenes | 559 | 1:64 | 1:64 | 1:64 | 1:64 | 12.31 | 1:64 | 1:32 | 1:32 | 1:32 | 24.61 | |
L. monocytogenes | ATCC 7644 | 1:64 | 1:64 | 1:64 | 1:64 | 12.31 | 1:32 | 1:32 | 1:32 | 1:32 | 24.61 | |
S. namaensis | L. monocytogenes | 55 | 1:32 | 1:32 | 1:32 | 1:32 | 28.34 | 1:16 | 1:32 | 1:32 | 1:32 | 28.34 |
L. monocytogenes | 559 | 1:32 | 1:32 | 1:32 | 1:32 | 28.34 | 1:16 | 1:16 | 1:32 | 1:16 | 56.68 | |
L. monocytogenes | ATCC 7644 | 1:64 | 1:64 | 1:64 | 1:64 | 14.17 | 1:16 | 1:32 | 1:8 | 1:16 | 56.68 | |
S. officinalis subsp. lavandulifolia | L. monocytogenes | 55 | 1:128 | 1:128 | 1:128 | 1:128 | 5.92 | 1:32 | 1:64 | 1:64 | 1:64 | 11.84 |
L. monocytogenes | 559 | 1:128 | 1:128 | 1:128 | 1:128 | 5.92 | 1:64 | 1:64 | 1:64 | 1:64 | 11.84 | |
L. monocytogenes | ATCC 7644 | 1:128 | 1:128 | 1:128 | 1:128 | 5.92 | 1:64 | 1:64 | 1:32 | 1:64 | 11.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bozzini, M.F.; Pieracci, Y.; Ascrizzi, R.; Najar, B.; D’Antraccoli, M.; Ciampi, L.; Peruzzi, L.; Turchi, B.; Pedonese, F.; Alleva, A.; et al. Chemical Composition and Antimicrobial Activity against the Listeria monocytogenes of Essential Oils from Seven Salvia Species. Foods 2023, 12, 4235. https://doi.org/10.3390/foods12234235
Bozzini MF, Pieracci Y, Ascrizzi R, Najar B, D’Antraccoli M, Ciampi L, Peruzzi L, Turchi B, Pedonese F, Alleva A, et al. Chemical Composition and Antimicrobial Activity against the Listeria monocytogenes of Essential Oils from Seven Salvia Species. Foods. 2023; 12(23):4235. https://doi.org/10.3390/foods12234235
Chicago/Turabian StyleBozzini, Maria Francesca, Ylenia Pieracci, Roberta Ascrizzi, Basma Najar, Marco D’Antraccoli, Luca Ciampi, Lorenzo Peruzzi, Barbara Turchi, Francesca Pedonese, Alice Alleva, and et al. 2023. "Chemical Composition and Antimicrobial Activity against the Listeria monocytogenes of Essential Oils from Seven Salvia Species" Foods 12, no. 23: 4235. https://doi.org/10.3390/foods12234235
APA StyleBozzini, M. F., Pieracci, Y., Ascrizzi, R., Najar, B., D’Antraccoli, M., Ciampi, L., Peruzzi, L., Turchi, B., Pedonese, F., Alleva, A., Flamini, G., & Fratini, F. (2023). Chemical Composition and Antimicrobial Activity against the Listeria monocytogenes of Essential Oils from Seven Salvia Species. Foods, 12(23), 4235. https://doi.org/10.3390/foods12234235