Polymorphisms of CCSER1 Gene and Their Correlation with Milk Quality Traits in Gannan Yak (Bos grunniens)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval
2.2. Animal and Milk Composition Analysis
2.3. Biological Material Sampling and DNA Extraction
2.4. Genotyping
2.5. SNPs Validation
2.6. Statistical Analysis
3. Results
3.1. Genotyping Results for CCSER1 and Genetic Parameter Analysis of the Loci in Gannan Yak
3.2. Association Analysis between SNPs Genotypes and Milk Traits in Gannan Yak
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Zhang, Z.; Chu, M.; Bao, Q.; Bao, P.; Guo, X.; Liang, C.; Yan, P. Two different copy number variations of the SOX5 and SOX8 genes in yak and their association with growth traits. Animals 2022, 12, 1587. [Google Scholar] [CrossRef] [PubMed]
- Hongqiang, L.; Xiaoling, Y.; Defu, T.; Bin, X.; Weihong, L.; Zhaohui, C.; Yongqing, B.; Renqing, D.; Yaqin, G.; Peng, W.; et al. Exploring the link between microbial community structure and flavour compounds of traditional fermented yak milk in Gannan region. Food Chem. 2023, 435, 137553. [Google Scholar]
- Kang, Y.; Guo, S.; Wang, X.; Cao, M.; Pei, J.; Li, R.; Bao, P.; Wang, J.; Lamao, J.; Gongbao, D.; et al. Whole-Genome Resequencing Highlights the Unique Characteristics of Kecai Yaks. Animals 2022, 12, 2682. [Google Scholar] [CrossRef]
- Hu, L.; Lizhuang, H.; Xuliang, C.; Guo, Y.; Abraham Allan, D.; Ling, X.; Shujie, L.; Jianwei, Z. Effects of supplementary concentrate and/or rumen-protected lysine plus methionine on productive performance, milk composition, rumen fermentation, and bacterial population in Grazing, Lactating Yaks. Anim. Feed. Sci. Technol. 2023, 297, 115591. [Google Scholar]
- Jiang, J.; Chen, S.; Ren, F.; Luo, Z.; Zeng, S. Yak Milk Casein as a Functional Ingredient: Preparation and Identification of Angiotensin-I-Converting Enzyme Inhibitory Peptides. J. Dairy Res. 2007, 74, 18–25. [Google Scholar] [CrossRef]
- Pan, S.; Chen, G.; Wu, R.; Cao, X.; Liang, Z. Non-sterile Submerged Fermentation of Fibrinolytic Enzyme by Marine Bacillus subtilis Harboring Antibacterial Activity With Starvation Strategy. Front. Microbiol. 2019, 10, 1025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wolf, B. Physico-Chemical Properties of Sugar Beet Pectin-Sodium Caseinate Conjugates via Different Interaction Mechanisms. Foods 2019, 8, 192. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zhang, J.; Dai, R.; Ma, X.; Huang, C.; Ren, W.; Ma, X.; Lu, J.; Zhao, X.; Renqing, J.; et al. Comparative Study on Nutritional Characteristics and Volatile Flavor Substances of Yak Milk in Different Regions of Gannan. Foods 2023, 12, 2172. [Google Scholar] [CrossRef]
- Yang, F.; He, X.; Chen, T.; Liu, J.; Luo, Z.; Sun, S.; Qin, D.; Huang, W.; Tang, Y.; Liu, C.; et al. Peptides Isolated from Yak Milk Residue Exert Antioxidant Effects through Nrf2 Signal Pathway. Oxid. Med. Cell. Longev. 2021, 2021, 9426314. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, X.; Xiong, L.; Pei, J.; Yao, X.; Liang, C.; Bao, P.; Chu, M.; Guo, X.; Yan, P. Transcriptome Analysis Reveals the Potential Role of Long Non-coding RNAs in Mammary Gland of Yak During Lactation and Dry Period. Front. Cell. Dev. Biol. 2020, 8, 579708. [Google Scholar] [CrossRef]
- Li, H.; Xi, B.; Yang, X.; Wang, H.; He, X.; Li, W.; Gao, Y. Evaluation of change in quality indices and volatile flavor components in raw milk during refrigerated storage. LWT—Food Sci. Technol. 2022, 165, 113674. [Google Scholar] [CrossRef]
- Ghulam Mohyuddin, S.; Liang, Y.; Ni, W.; Adam Idriss Arbab, A.; Zhang, H.; Li, M.; Yang, Z.; Karrow, N.A.; Mao, Y. Polymorphisms of the IL-17A Gene Influence Milk Production Traits and Somatic Cell Score in Chinese Holstein Cows. Bioengineering 2022, 9, 448. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Meitei, N.S.; Gajbhiye, P.U.; Raftery, M.J.; Ambatipudi, K. Comparative Analysis of Milk Triglycerides Profile between Jaffarabadi Buffalo and Holstein Friesian Cow. Metabolites 2020, 10, 507. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Li, C.; Cai, W.; Liu, S.; Yin, H.; Shi, S.; Zhang, Q.; Zhang, S. Genome-Wide Association Study for Milk Protein Composition Traits in a Chinese Holstein Population Using a Single-Step Approach. Front. Genet. 2019, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.A.; Teleb, D.F.; Saad El-Deen, H.K.; Eid, J.I.; El-Ghor, A.A. Association of new SNPs at DGAT1 gene with milk quality in Egyptian Zaraibi goat breed. Anim. Biotechnol. 2022, 34, 2499–2504. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.; Wang, D.; Zhao, C.; Zhang, X.; Chen, Z.; Liu, J.; Sun, D.; Tang, H.; Wang, W.; Li, J.; et al. Longitudinal genome-wide association studies of milk production traits in Holstein cattle using whole-genome sequence data imputed from medium-density chip data. J. Dairy Sci. 2023, 106, 2535–2550. [Google Scholar] [CrossRef] [PubMed]
- Scrimieri, F.; Calhoun, E.S.; Patel, K.; Gupta, R.; Huso, D.L.; Hruban, R.H.; Kern, S.E. FAM190A rearrangements provide a multitude of individualized tumor signatures and neo-antigens in cancer. Oncotarget 2011, 2, 69–75. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, X.; Song, X.; An, Q.; Wang, D.; Zhang, Z.; Ding, X.; Yao, Z.; Wang, E.; Liu, X.; et al. Association between the copy number variation of CCSER1 gene and growth traits in Chinese Capra hircus (goat) populations. Anim. Biotechnol. 2023, 34, 1377–1383. [Google Scholar] [CrossRef]
- Smith, J.L.; Wilson, M.L.; Nilson, S.M.; Rowan, T.N.; Schnabel, R.D.; Decker, J.E.; Seabury, C.M. Genome-wide association and genotype by environment interactions for growth traits in U.S. Red Angus cattle. BMC Genom. 2022, 23, 517. [Google Scholar] [CrossRef]
- Abo-Ismail, M.K.; Lansink, N.; Akanno, E.; Karisa, B.K.; Crowley, J.J.; Moore, S.S.; Bork, E.; Stothard, P.; Basarab, J.A.; Plastow, G.S. Development and validation of a small SNP panel for feed efficiency in beef cattle. J. Anim. Sci. 2018, 96, 375–397. [Google Scholar] [CrossRef]
- Patel, K.; Scrimieri, F.; Ghosh, S.; Zhong, J.; Kim, M.S.; Ren, Y.R.; Morgan, R.A.; Iacobuzio-Donahue, C.A.; Pandey, A.; Kern, S.E. FAM190A deficiency creates a cell division defect. Am. J. Pathol. 2013, 183, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.U.; Park, J.T. Functional evaluation of alternative splicing in the FAM190A gene. Genes. Genom. 2018, 41, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, Y.; Li, Q.; Wang, J.; Cheng, J.; Xue, J.; Shi, J. The chemical composition and nitrogen distribution of Chinese yak (Maiwa) milk. Int. J. Mol. Sci. 2011, 12, 4885–4895. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhou, Y.; Zheng, X.; Guo, J.; Duan, H.; Zhou, S.; Yan, W. Yak Milk: Nutritional Value, Functional Activity, and Current Applications. Foods 2023, 12, 2090. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.N.; Ren, F.Z.; Jiang, L.; Ma, Z.L.; Qiao, H.J.; Zeng, S.S.; Gan, B.Z.; Guo, H.Y. Fatty acid profile of yak milk from the Qinghai-Tibetan Plateau in different seasons and for different parities. J. Dairy Sci. 2011, 94, 1724–1731. [Google Scholar] [CrossRef]
- Din, J.N.; Newby, D.E.; Flapan, A.D. Omega 3 fatty acids and cardiovascular disease--fishing for a natural treatment. BMJ 2004, 328, 30–35. [Google Scholar] [CrossRef]
- Moatsou, G.; Sakkas, L. Sheep milk components: Focus on nutritional advantages and biofunctional potential. Small Rumin. Res. 2019, 180, 86–99. [Google Scholar] [CrossRef]
- Mao, X.-Y.; Cheng, X.; Wang, X.; Wu, S.-J. Free-radical-scavenging and anti-inflammatory effect of yak milk casein before and after enzymatic hydrolysis. Food Chem. 2011, 126, 484–490. [Google Scholar] [CrossRef]
- Wang, P.; Liu, H.; Wen, P.; Zhang, H.; Guo, H.; Ren, F. The composition, size and hydration of yak casein micelles. Int. Dairy J. 2013, 31, 107–110. [Google Scholar] [CrossRef]
- Yang, M.; Shi, Y.; Liang, Q. Effect of microbial transglutaminase crosslinking on the functional properties of yak caseins: A comparison with cow caseins. Dairy Sci. Technol. 2015, 96, 39–51. [Google Scholar] [CrossRef]
- Hong, J.; Li, X.; Jiang, M.; Hong, R. Co-expression Mechanism Analysis of Different Tachyplesin I-Resistant Strains in Pseudomonas aeruginosa Based on Transcriptome Sequencing. Front. Microbiol. 2022, 13, 871290. [Google Scholar] [CrossRef] [PubMed]
- Clancey, E.; Kiser, J.N.; Moraes, J.G.N.; Dalton, J.C.; Spencer, T.E.; Neibergs, H.L. Genome-wide association analysis and gene set enrichment analysis with SNP data identify genes associated with 305-day milk yield in Holstein dairy cows. Anim. Genet. 2019, 50, 254–258. [Google Scholar] [CrossRef]
- Gu, X.; Huang, S.; Zhu, Z.; Ma, Y.; Yang, X.; Yao, L.; Guo, X.; Zhang, M.; Liu, W.; Qin, L.; et al. Genome-wide association of single nucleotide polymorphism loci and candidate genes for frogeye leaf spot (Cercospora sojina) resistance in soybean. BMC Plant. Biol. 2021, 21, 588. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Han, L.; Yu, Q.; Gao, Y.; Song, R.; Zhao, S. Phosphoproteomic analysis of longissimus lumborum of different altitude yaks. Meat Sci. 2020, 162, 108019. [Google Scholar] [CrossRef] [PubMed]
- Mohan, M.S.; O’Callaghan, T.F.; Kelly, P.; Hogan, S.A. Milk fat: Opportunities, challenges and innovation. Crit. Rev. Food Sci. Nutr. 2020, 61, 2411–2433. [Google Scholar] [CrossRef] [PubMed]
- Molinari, C.E.; Casadio, Y.S.; Hartmann, B.T.; Livk, A.; Bringans, S.; Arthur, P.G.; Hartmann, P.E. Proteome mapping of human skim milk proteins in term and preterm milk. J. Proteome Res. 2012, 11, 1696–1714. [Google Scholar] [CrossRef]
- Ji, X.; Li, X.; Ma, Y.; Li, D. Differences in proteomic profiles of milk fat globule membrane in yak and cow milk. Food Chem. 2016, 221, 1822–1827. [Google Scholar] [CrossRef]
- Tarun Pal, S.; Shalini, A.; Mihir, S. Yak milk and milk products: Functional, bioactive constituents and therapeutic potential. Int. Dairy J. 2023, 142, 105637. [Google Scholar]
- Wang, X.; Yang, Q.; Zhang, S.; Zhang, X.; Pan, C.; Chen, H.; Zhu, H.; Lan, X. Genetic Effects of Single Nucleotide Polymorphisms in the Goat GDF9 Gene on Prolificacy: True or False Positive? Animals 2019, 9, 886. [Google Scholar] [CrossRef]
- Jiang, H.; Chai, Z.-X.; Cao, H.-W.; Zhang, C.-F.; Zhu, Y.; Zhang, Q.; Xin, J.-W. Genome-wide identification of SNPs associated with body weight in yak. BMC Genom. 2022, 23, 833. [Google Scholar] [CrossRef]
- Fang, L.; Cai, W.; Liu, S.; Canela-Xandri, O.; Gao, Y.; Jiang, J.; Rawlik, K.; Li, B.; Schroeder, S.G.; Rosen, B.D.; et al. Comprehensive analyses of 723 transcriptomes enhance genetic and biological interpretations for complex traits in cattle. Genome Res. 2020, 30, 790–801. [Google Scholar] [CrossRef] [PubMed]
- Casas, E.; White, S.N.; Riley, D.G.; Smith, T.P.; Brenneman, R.A.; Olson, T.A.; Johnson, D.D.; Coleman, S.W.; Bennett, G.L.; Chase, C.C. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle. J. Anim. Sci. 2005, 83, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Tokuhiro, S.; Yamada, R.; Chang, X.; Suzuki, A.; Kochi, Y.; Sawada, T.; Suzuki, M.; Nagasaki, M.; Ohtsuki, M.; Ono, M.; et al. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat. Genet. 2003, 35, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Soemedi, R.; Cygan, K.J.; Rhine, C.L.; Wang, J.; Bulacan, C.; Yang, J.; Bayrak-Toydemir, P.; McDonald, J.; Fairbrother, W.G. Pathogenic variants that alter protein code often disrupt splicing. Nat. Genet. 2017, 49, 848–855. [Google Scholar] [CrossRef]
- Li, C.; Wang, M.; Cai, W.; Liu, S.; Zhou, C.; Yin, H.; Sun, D.; Zhang, S. Genetic Analyses Confirm SNPs in HSPA8 and ERBB2 are Associated with Milk Protein Concentration in Chinese Holstein Cattle. Genes 2019, 10, 104. [Google Scholar] [CrossRef]
- Yang, L.; Min, X.; Zhu, Y.; Hu, Y.; Yang, M.; Yu, H.; Li, J.; Xiong, X. Polymorphisms of SORBS1 Gene and Their Correlation with Milk Fat Traits of Cattleyak. Animals 2021, 11, 3461. [Google Scholar] [CrossRef]
SNPs | Primer Sequence (5′–3′) | Product Size |
---|---|---|
g.183,843A>G | F: TAACAGAACGGGCAGGTAGC | 633 bp |
R: AAATCAGCATACCTTTGGCAGG | ||
g.222,717C>G | F: AATAAATGATGTCGCCAATA | 317 bp |
R: CTGCGTAGAATACAAAAGAAT | ||
g.388,723G>T | F: AGCACCTTCTTCTTACTCAT | 404 bp |
R: ATTGTTCTGCTGCTGGGATT |
SNPs | Position | Genotypic Frequencies | Allelic Frequencies | He | Ne | PIC | p Value | |||
---|---|---|---|---|---|---|---|---|---|---|
g.183,843A>G | Exon | AA | AG | GG | A | G | 0.490 | 1.960 | 0.370 | 0.793 |
0.179 | 0.500 | 0.321 | 0.429 | 0.571 | ||||||
g.222,717C>G | Intron | CC | CG | GG | C | G | 0.498 | 1.994 | 0.374 | 0.030 |
0.321 | 0.414 | 0.265 | 0.528 | 0.472 | ||||||
g.388,723G>T | Intron | GG | GT | TT | G | T | 0.499 | 1.996 | 0.375 | 0.513 |
0.259 | 0.525 | 0.216 | 0.522 | 0.478 |
SNPs g.183,843A>G | |||||||
---|---|---|---|---|---|---|---|
Genotype | Casein/% | Protein/% | Fat/% | SNF/% | Lactose/% | Acidity/° T | TS/% |
AA | 4.10 ± 0.25 | 4.92 ± 0.34 | 5.12 ± 2.09 b | 11.27 ± 0.38 | 4.97 ± 0.14 ab | 12.44 ± 1.15 | 16.57 ± 2.58 |
AG | 4.11 ± 0.28 | 4.93 ± 0.38 | 5.82 ± 2.06 a | 11.28 ± 0.46 | 4.96 ± 0.16 b | 12.53 ± 1.25 | 16.90 ± 2.43 |
GG | 4.05 ± 0.33 | 4.83 ± 0.45 | 4.97 ± 1.84 b | 11.23 ± 0.55 | 5.03 ± 0.16 a | 12.15 ± 1.41 | 16.49 ± 2.85 |
p-Value | p = 0.453 | p = 0.351 | p = 0.042 | p = 0.826 | p = 0.047 | p = 0.268 | p = 0.652 |
SNPs g.222,717C>G | |||||||
Genotype | Casein/% | Protein/% | Fat/% | SNF/% | Lactose/% | Acidity/° T | TS/% |
CC | 3.99 ± 0.32 b | 4.75 ± 0.41 b | 5.12 ± 1.97 | 11.13 ± 0.49 b | 5.02 ± 0.15 | 12.01 ± 1.18 b | 16.77 ± 2.86 |
CG | 4.14 ± 0.24 a | 5.00 ± 0.34 a | 5.26 ± 2.14 | 11.37 ± 0.38 a | 4.96 ± 0.16 | 12.71 ± 1.14 a | 16.49 ± 2.09 |
GG | 4.12 ± 0.30 a | 4.92 ± 0.42 a | 5.98 ± 2.53 | 11.25 ± 0.54 ab | 4.98 ± 0.16 | 12.33 ± 1.50 ab | 16.99 ± 2.95 |
p-Value | p = 0.020 | p = 0.002 | p = 0.069 | p = 0.024 | p = 0.083 | p = 0.012 | p = 0.607 |
SNPs g.388,723G>T | |||||||
Genotype | Casein/% | Protein/% | Fat/% | SNF/% | Lactose/% | Acidity/° T | TS/% |
GG | 4.02 ± 0.32 b | 4.82 ± 0.43 b | 5.37 ± 1.97 | 11.25 ± 0.47 | 5.03 ± 0.17 | 12.20 ± 1.25 | 16.31 ± 2.09 |
GT | 4.09 ± 0.27 ab | 4.90 ± 0.36 ab | 5.51 ± 2.09 | 11.24 ± 0.47 | 4.98 ± 0.15 | 12.39 ± 1.26 | 16.78 ± 2.68 |
TT | 4.17 ± 0.31 a | 5.00 ± 0.42 a | 5.28 ± 2.03 | 11.32 ± 0.49 | 4.94 ± 0.14 | 12.61 ± 1.40 | 17.00 ± 2.90 |
p-Value | p = 0.038 | p = 0.043 | p = 0.852 | p = 0.761 | p = 0.582 | p = 0.375 | p = 0.406 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Zhang, J.; Ma, X.; Ma, R.; Shen, J.; Liu, M.; Yu, D.; Feng, F.; Huang, C.; Ma, X.; et al. Polymorphisms of CCSER1 Gene and Their Correlation with Milk Quality Traits in Gannan Yak (Bos grunniens). Foods 2023, 12, 4318. https://doi.org/10.3390/foods12234318
Yang G, Zhang J, Ma X, Ma R, Shen J, Liu M, Yu D, Feng F, Huang C, Ma X, et al. Polymorphisms of CCSER1 Gene and Their Correlation with Milk Quality Traits in Gannan Yak (Bos grunniens). Foods. 2023; 12(23):4318. https://doi.org/10.3390/foods12234318
Chicago/Turabian StyleYang, Guowu, Juanxiang Zhang, Xiaoyong Ma, Rong Ma, Jinwei Shen, Modian Liu, Daoning Yu, Fen Feng, Chun Huang, Xiaoming Ma, and et al. 2023. "Polymorphisms of CCSER1 Gene and Their Correlation with Milk Quality Traits in Gannan Yak (Bos grunniens)" Foods 12, no. 23: 4318. https://doi.org/10.3390/foods12234318
APA StyleYang, G., Zhang, J., Ma, X., Ma, R., Shen, J., Liu, M., Yu, D., Feng, F., Huang, C., Ma, X., La, Y., Guo, X., Yan, P., & Liang, C. (2023). Polymorphisms of CCSER1 Gene and Their Correlation with Milk Quality Traits in Gannan Yak (Bos grunniens). Foods, 12(23), 4318. https://doi.org/10.3390/foods12234318