A Label-Free Aptasensor for Turn-On Fluorescent Detection of Aflatoxin B1 Based on an Aggregation-Induced-Emission-Active Probe and Single-Walled Carbon Nanohorns
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Instrumentation
2.3. Fluorescent Detection of AFB1
2.4. Application
2.5. Sample Preparation for HPLC
2.6. HPLC-FLD Conditions
2.7. Statistical Analysis
3. Results and Discussion
3.1. Analytical Principle of AFB1 Determination
3.2. Method Feasibility for AFB1 Determination
3.3. Characterization of SWCNHs
3.4. Optimization of the DSAI Concentration
3.5. Optimization of the SWCNH Concentration
3.6. Sensitivity of AFB1 Detection
3.7. Selectivity of AFB1 Detection
3.8. Analysis of AFB1 in Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khlangwiset, P.; Shephard, G.; Wu, F. Aflatoxins and growth impairment: A review. Crit. Rev. Toxicol. 2011, 41, 740–755. [Google Scholar] [CrossRef] [PubMed]
- Turner, N.; Bramhmbhatt, H.; Szabo-Vezse, M.; Poma, A.; Coker, R.; Piletsky, S. Analytical methods for determination of mycotoxins: An update (2009–2014). Anal. Chim. Acta 2015, 901, 12–33. [Google Scholar] [CrossRef] [PubMed]
- Boyacioglu, D.; Gonul, M. Survey of aflatoxin contamination of dried figs grown in Turkey in 1986. Food Addit. Contam. 1990, 7, 235–237. [Google Scholar] [CrossRef] [PubMed]
- Decastelli, J.; Lai, M.; Gramaglia, A.; Monaco, C.; Nachtmann, F.; Oldano, M.; Ruffier, A.; Sezian, C.; Bandirola, M. Aflatoxins occurrence in milk and feed in Northern Italy during 2004–2005. Food Control 2007, 18, 1263–1266. [Google Scholar] [CrossRef]
- Yabe, K.; Ando, Y.; Hamasaki, T. Biosynthetic relationship among aflatoxins B1, B2, G1 and G2. Appl. Environ. Microbiol. 1988, 54, 2101–2106. [Google Scholar] [CrossRef] [PubMed]
- Steiner, W.E.; Brunschweiler, K.; Leimbacher, E.; Schneider, R. Aflatoxins and fluorescence in Brazil nuts and pistachio nuts. J. Agric. Food Chem. 1992, 40, 2453–2457. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Q.; Zhang, W. Immunoassays for aflatoxins. TrAC Trends Anal. Chem. 2009, 28, 1115–1126. [Google Scholar]
- IARC (International Agency for Research on Cancer). Some traditional medicines, some mycotoxins, naphthalene and styrene. IARC Monogr. Eval. Carcinog. Risks Hum. 2002, 82, 169–366. [Google Scholar]
- Commission Regulation. EC/1881/2006 of 19 December setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union. 2006, L364, 5. [Google Scholar]
- Ministry of Food and Drug Safety. Food Code; Ministry of Food and Drug Safety: Seoul, Republic of Korea, 2014. [Google Scholar]
- Var, I.; Kabak, B.; Gök, F. Survey of aflatoxin B 1 in helva, a traditional Turkish food, by TLC. Food Control 2007, 18, 59–62. [Google Scholar] [CrossRef]
- Cervino, C.; Asam, S.; Knopp, D.; Rychlik, M.; Niessner, R. Use of isotope-labeled aflatoxins for LC-MS/MS stable isotope dilution analysis of foods. J. Agric. Food Chem. 2008, 56, 1873–1879. [Google Scholar] [CrossRef] [PubMed]
- Khayoon, W.S.; Saad, B.; Lee, T.P.; Salleh, B. High performance liquid chromato-graphic determination of aflatoxins in chilli, peanut and rice using silica based monolithic column. Food Chem. 2012, 133, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Duan, M.; Yu, F.; Fu, X.; Gu, M.; Chi, K.; Li, M.; Xia, X.; Hu, R.; Yang, Y.; et al. Development of Aflatoxin B1 Aptamer Sensor Based on Iron Porphyrin Organic Porous Material. Food Anal. Methods 2021, 14, 537–544. [Google Scholar] [CrossRef]
- Zhan, S.; Hu, J.; Li, Y.; Huang, X.; Xiong, Y. Direct competitive ELISA enhanced by dynamic light scattering for the ultrasensitive detection of aflatoxin B-1 in corn samples. Food Chem. 2021, 342, 135–141. [Google Scholar] [CrossRef]
- Fabio, D.N.; Eugenio, A.; Claudio, B.; Simone, C.; Cristina, G.; Giulia, S.; Laura, A. Colour-encoded lateral flow immunoassy for the simultaneous detection of aflaxtoxin B1 and type-B fumonisins in a single test line. Talanta 2019, 192, 288–294. [Google Scholar]
- Beloglazova, N.V.; Eremin, S.A. Rapid screeing of aflatoxin B1 in beer by fluorescence polarization immunoassay. Talanta 2015, 142, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhou, M.; Wang, Y.; Liu, J. Nanozyme and aptamer-based immunosorbent assay for aflatoxin B1. J. Hazard. Mater. 2020, 399, 130–137. [Google Scholar] [CrossRef]
- He, Y.; Wen, C.Y.; Guo, Z.J.; Huang, Y.F. Noble metal nanomaterial-based aptasensors for microbial toxin detection. J. Food Drug Anal. 2020, 28, 508–520. [Google Scholar] [CrossRef]
- Gao, J.; Yao, X.; Chen, Y.; Gao, Z.; Zhang, J. Near-Infrared Light-Induced Self-Powered Aptasensing Platform for Aflatoxin B1 Based on Upconversion Nanoparticles-Doped Bi2S3 Nanorods. Anal. Chem. 2021, 93, 677–682. [Google Scholar] [CrossRef]
- Lv, L.; Cui, C.; Xie, W.C.; Sun, W.Y.; Ji, S.; Tian, J.; Guo, Z.J. A label-free aptasensor for turn-on fluorescent detection of ochratoxin A based on aggregation-induced emission probe. Methods Appl. Fluores. 2020, 8, 196–201. [Google Scholar] [CrossRef]
- Moreno, L.A.; Medrano, B.M.; Melgar, L.P. Single-Walled Carbon Nanohorns as Promising Nanotube-Derived Delivery Systems to Treat Cancer. Pharmaceutics 2020, 12, 236–302. [Google Scholar]
- Zhu, S.; Liu, Z.; Zhang, W.; Han, S.; Hu, L.; Xu, G. Nucleic acid detection using single-walled carbon nanohorns as a fluorescent sensing platform. Chem. Commun. 2011, 47, 6099–6101. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Pan, L.; Liu, Y.; Ye, Y.; Yao, S. Electrochemical sensing of nitenpyram based on the binary nanohybrid of hydroxylated multiwall carbon nanotubes/single-wall carbon nanohorns. J. Electroanal. Chem. 2020, 862, 198–203. [Google Scholar] [CrossRef]
- Hu, X.; Saravanakumar, K.; Jin, T.; Wang, M.H. Mycosynthesis, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus Talaromyces purpureogenus. Int. J. Nanomed. 2019, 14, 3427–3438. [Google Scholar] [CrossRef] [PubMed]
- Xue, N.; Wu, S.J.; Li, Z.B.; Miao, X.M. Ultrasensitive and label-free detection of ATP by using gold nanorods coupled with enzyme assisted target recycling amplification. Anal. Chim. Acta 2020, 1104, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Hong, Z.; Chen, G.; Yu, S.; Huang, R.; Fan, C. A potentiometric aptasensor for carcinoembryonic antigen (CEA) on graphene oxide nanosheets using catalytic recycling of DNase I with signal amplification. Anal. Meth. 2018, 10, 5364–5371. [Google Scholar] [CrossRef]
- Li, N.; Wang, Z.; Zhao, K.; Shi, Z.; Gu, Z.; Xu, S. Synthesis of single-wall carbon nanohorns by arc-discharge in air and their formation mechanism. Carbon 2010, 5, 1580–1585. [Google Scholar] [CrossRef]
- Wu, H.; Liu, R.; Kang, X.; Liang, C.; Lv, L.; Guo, Z. Fluorometric aptamer assay for ochratoxin A based on the use of single walled carbon nanohorns and exonuclease III-aided amplification. Microch. Acta 2018, 185, 27–32. [Google Scholar] [CrossRef]
- Taghdisia, S.M.; Danesh, N.M.; Ramezanic, M.; Abnous, K. A new amplifified fluorescent aptasensor based on hairpin structure of G-quadruplex oligonucleotide-Aptamer chimera and silica nanoparticles for sensitive detection of aflatoxin B1 in the grape juice. Food Chem. 2018, 268, 342–346. [Google Scholar] [CrossRef]
- Chen, G.; Jiang, Z.; Bai, J.; Wang, H.; Zhang, S.; Pei, Y. Isolation, Structure Determination, In Vivo/Vitro Assay and Docking Study of a Xanthone with antitumor activity from Fungus Penicillium oxalicum. Rec. Nat. Prod. 2015, 9, 184–189. [Google Scholar]
- Wang, B.; Chen, Y.; Wu, Y.; Weng, B.; Liu, Y.; Lu, Z.; Li, C.M.; Yu, C. Aptamer induced assembly of fluorescent nitrogen-doped carbon dots on gold nanoparticles for sensitive detection of AFB1. Biosens. Bioelectron. 2016, 78, 23–30. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, D.; Li, Y.; Ma, S.; Wang, M.; You, T. Hairpin DNA assisted dual-ratiometric electrochemical aptasensor with high reliability and anti-interference ability for simultaneous detection of aflatoxin B1 and ochratoxin A. Biosens. Bioelectron. 2021, 174, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.X.; Li, M.Y.; Zhang, Z.H.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jin, H.L.; et al. Usnic acid suppresses cervical cancer cell proliferation by inhibiting PD-L1 expression and enhancing T-lymphocyte tumor-killing activity. Phytother. Res. 2021, 35, 3916–3935. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, D.; Zhu, C.; Shen, X.; Liu, Y.; You, T. Sensitivity programmable ratiometric electrochemical aptasensor based on signal engineering for the detection of aflatoxin B1 in peanut. J. Hazard. Mater. 2020, 387, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Khabbaz, H.; Dadmehr, M.; Ganjali, M.R.; Mohamadnejad, J. Aptamer-based Colorimetric and Chemiluminescence Detection of Aflatoxin B1 in Foods Samples. Acta Chim. Slov. 2015, 62, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Gang, C.; Han, Y.; Yuan, F.; Wang, A.; Li, X.; Deng, S.; Lin, Z.; Jiao, X.; Li, Y.; Ning, L. Extract of Ilex rotunda Thunb alleviates experimental colitis-associated cancer via suppressing inflammation-induced miR-31-5p/YAP overexpression. Phytomedicine 2019, 62, 103–109. [Google Scholar]
- Chen, J.; Wen, J.; Zhuang, L.; Zhou, S. An enzyme-free catalytic DNA circuit for amplified detection of aflatoxin B1 using gold nanoparticles as colorimetric indicators. Nanoscale 2016, 8, 9791–9797. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Ren, C.; Wang, C.; An, K.; Cui, H.; Hao, N.; Wang, K. Gold nanoparticles mediated designing of versatile aptasensor for colorimetric/electrochemical dual-channel detection of aflatoxin B1. Biosens. Bioelectron. 2020, 166, 305–311. [Google Scholar] [CrossRef]
- Chen, L.; Wen, F.; Li, M.; Guo, X.; Li, S.; Zheng, N.; Wang, J. A simple aptamer-based fluorescent assay for the detection of Aflatoxin B1 in infant rice cereal. Food Chem. 2017, 215, 377–382. [Google Scholar] [CrossRef]
- Joo, M.; Baek, S.H.; Cheon, S.A.; Chun, H.S.; Choi, S.W.; Park, T.J. Development of aflatoxin B1 aptasensor based on wide-range fluorescence detection using graphene oxide quencher. Colloid Surf. B. 2017, 154, 27–32. [Google Scholar] [CrossRef]
- Guo, Z.; Lv, L.; Cui, C.; Wang, Y.; Ji, S.; Fang, J.; Yuan, M.; Yu, H. Detection of aflatoxin B(1)with a new label-free fluorescent aptasensor based on exonuclease I and SYBR Gold. Anal. Methods 2020, 12, 2928–2933. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Guo, Z.J.; Xie, W.C.; Sun, W.Y.; Ji, S.; Tian, J.; Lv, L. A label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection based on aggregation-induced emission probe. Anal. Biochem. 2019, 578, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Wang, H.; Li, H.; Wang, S.; Li, X.; Xu, B.; Tian, W. A label-free aptasensor for turn-on fluorescent detection of ATP based on AIE-active probe and water-soluble carbon nanotubes. Sens. Actuators B. 2016, 230, 556–558. [Google Scholar] [CrossRef]
- Guo, Z.J.; Tian, J.; Cui, C.B.; Wang, Y.; Yang, H.; Yuan, M.; Yu, H.S. A label-free aptasensor for turn-on fluorescent detection of ochratoxin a based on SYBR gold and single walled carbon nanohorns. Food Control 2021, 123, 249–305. [Google Scholar] [CrossRef]
- Li, A.; Tang, L.; Song, D.; Song, S.; Ma, W.; Xu, L.; Kuang, H.; Wu, X.; Liu, L.; Chen, X.; et al. A SERS-active sensor based on heterogeneous gold nanostar core–silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1. Nanoscale 2016, 8, 1873–1878. [Google Scholar] [CrossRef] [PubMed]
- Kong, D.; Liu, L.; Song, S.; Suryoprabowo, S.; Li, A.; Kuang, H.; Wang, L.; Xu, C. A gold nanoparticle-based semi-quantitative and quantitative ultrasensitive paper sensor for the detection of twenty mycotoxins. Nanoscale 2016, 8, 5245–5253. [Google Scholar] [CrossRef]
- Gell, R.M.; Carbone, I. HPLC quantitation of aflatoxin B-1 from fungal mycelium culture. J. Microbiol. Meth. 2019, 158, 14–17. [Google Scholar] [CrossRef]
Method Applied | Linear Range | LOD | Reference |
---|---|---|---|
SERS method | 1–1000 pg/mL | 0.48 pg/mL | [46] |
Electrochemical method | 0.05–20 ng/mL | 0.016 ng/mL | [35] |
Immunochromatographic method | / | 0.25 ng/mL | [47] |
HPLC method | 10–80 ng/mL | 0.035 ng/mL | [48] |
Colorimetric method | 25–84.38 ng/mL | 2.19 ng/mL | [36] |
Fluorescence method | 4.5–300 ng/mL | 4.5 ng/mL | [41] |
Fluorescence method | 5–500 ng/mL | 1.83 ng/mL | This work |
Sample Number | Added (ng/mL) | Detected (ng/mL) Mean ± SD (n = 3) Present Assay HPLC | RSD (%) Present Assay HPLC | Recovery (%) Present Assay HPLC | |||
---|---|---|---|---|---|---|---|
1 | 10 | 10.9 ± 2.8 | 9.8 ± 1.7 | 3.1 | 2.1 | 109.0 | 98.0 |
2 | 20 | 18.5 ± 1.6 | 20.2 ± 2.4 | 4.6 | 3.2 | 92.5 | 101.0 |
3 | 50 | 46.9 ± 0.9 | 51.3 ± 1.1 | 2.9 | 1.2 | 93.8 | 102.6 |
4 | 100 | 109.6 ± 3.7 | 98.7 ± 4.2 | 5.6 | 4.9 | 109.6 | 98.7 |
5 | 200 | 182.6 ± 5.9 | 192.3 ± 3.9 | 3.2 | 3.7 | 91.3 | 96.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Lv, L.; Niu, M.; Zhang, D.; Guo, Z. A Label-Free Aptasensor for Turn-On Fluorescent Detection of Aflatoxin B1 Based on an Aggregation-Induced-Emission-Active Probe and Single-Walled Carbon Nanohorns. Foods 2023, 12, 4332. https://doi.org/10.3390/foods12234332
Yang H, Lv L, Niu M, Zhang D, Guo Z. A Label-Free Aptasensor for Turn-On Fluorescent Detection of Aflatoxin B1 Based on an Aggregation-Induced-Emission-Active Probe and Single-Walled Carbon Nanohorns. Foods. 2023; 12(23):4332. https://doi.org/10.3390/foods12234332
Chicago/Turabian StyleYang, Huanhuan, Lei Lv, Mengyu Niu, Dongjie Zhang, and Zhijun Guo. 2023. "A Label-Free Aptasensor for Turn-On Fluorescent Detection of Aflatoxin B1 Based on an Aggregation-Induced-Emission-Active Probe and Single-Walled Carbon Nanohorns" Foods 12, no. 23: 4332. https://doi.org/10.3390/foods12234332
APA StyleYang, H., Lv, L., Niu, M., Zhang, D., & Guo, Z. (2023). A Label-Free Aptasensor for Turn-On Fluorescent Detection of Aflatoxin B1 Based on an Aggregation-Induced-Emission-Active Probe and Single-Walled Carbon Nanohorns. Foods, 12(23), 4332. https://doi.org/10.3390/foods12234332