Validation of a Bacteriophage Hide Application to Reduce STEC in the Lairage Area of Commercial Beef Cattle Operations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Beef Facility Lairage Area and Hide Application
2.2. Hide Swab Collection
2.3. Boot Swab Collection
2.4. Hide Swab and Boot Swab Processing
2.5. Microbial Analysis
2.6. Data Analysis
3. Results and Discussion
3.1. Hide Swab Prevalence
3.2. Boot Swab Prevalence
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Rep No. | Sampling Point | Number (%) of Positive Samples | |||||||
---|---|---|---|---|---|---|---|---|---|
Salmonella | O157:H7 | O26 | O111 | O121 | O45 | O103 | O145 | ||
1 | Before | 7 (23.3) | 0 | 20 (66.7) | 1 (3.3) | 18 (60) | 16 (53.3) | 18 (60) | 2 (6.7) |
After | 16 (53.3) | 0 | 29 (96.7) | 0 | 29 (96.7) | 28 (93.3) | 29 (96.7) | 0 | |
2 | Before | 11 (36.7) | 0 | 28 (93.3) | 0 | 26 (86.7) | 17 (56.7) | 24 (80) | 2 (6.7) |
After | 15 (50) | 1 (3.3) | 30 (100) | 0 | 30 (100) | 27 (90) | 30 (100) | 9 (30) | |
3 | Before | 12 (44.8) | 0 | 25 (86.2) | 0 | 25 (86.2) | 16 (55.2) | 29 (100) | 3 (10.3) |
After | 26 (86.7) | 1 (3.3) | 30 (100) | 0 | 29 (96.7) | 28 (93.3) | 30 (100) | 9 (30) | |
4 | Before | 9 (30) | 1 (3.3) | 27 (90) | 4 (13.3) | 25 (86.2) | 29 (96.7) | 30 (100) | 1 (3.3) |
After | 17 (56.7) | 0 | 30 (100) | 6 (20) | 29 (96.7) | 30 (100) | 29 (96.7) | 6 (20) | |
5 | Before | 4 (16.7) | 0 | 20 (66.7) | 0 | 25 (86.2) | 30 (100) | 29 (96.7) | 7 (23.3) |
After | 18 (60) | 1 (3.3) | 29 (96.7) | 0 | 30 (100) | 30 (100) | 30 (100) | 6 (20) | |
Total | Before | 43 (28.9) a | 1 (0.7) a | 120 (80.5) a | 5 (3.4) a | 119 (79.9) a | 108 (72.5) a | 130 (87.2) a | 15 (10.1) a |
After | 92 (61.3) b | 3 (2) a | 148 (98.7) b | 6 (4) a | 147 (98) b | 143 (95.3) b | 148 (98.7) a | 30 (20) b |
Rep No. | Sampling Location | Number (%) of Positive Samples | |||||||
---|---|---|---|---|---|---|---|---|---|
Salmonella | O157:H7 | O26 | O111 | O121 | O45 | O103 | O145 | ||
1 | Inside | 9 (100) | 0 | 2 (33.3) | 0 | 3 (50) | 6 (66.7) | 2 (100) | 0 |
Intervention | 9 (100) | 0 | 2 (28.6) | 0 | 4 (57.1) | 3 (33.3) | 1 (85.7) | 0 | |
Outside | 9 (100) | 0 | 2 (50) | 0 | 2 (50) | 6 (66.7) | 2 (30) | 3 (33.3) | |
2 | Inside | 9 (100) | 0 | 4 (44.4) | 1 (11.1) | 7 (77.8) | 6 (75) | 1 (12.5) | 0 |
Intervention | 9 (100) | 0 | 4 (44.4) | 0 | 8 (88.9) | 5 (55.6) | 2 (100) | 0 | |
Outside | 9 (100) | 4 (44.4) | 4 (50) | 0 | 5 (62.5) | 7 (77.8) | 6 (42.1) | 2 (22.2) | |
3 | Inside | 9 (100) | 0 | 8 (88.9) | 0 | 8 (88.9) | 4 (100) | 4 (100) | 3 (75) |
Intervention | 8 (88.9) | 0 | 3 (33.3) | 0 | 7 (77.8) | 7 (77.8) | 4 (44.4) | 1 (11.1) | |
Outside | 9 (100) | 3 (33.3) | 9 (100) | 0 | 8 (88.9) | 3 (100) | 3 (100) | 0 | |
4 | Inside | 15 (100) | 0 | 13 (86.7) | 0 | 15 (100) | 15 (100) | 14 (90) | 5 (35.7) |
Intervention | 15 (100) | 0 | 9 (60) | 0 | 15 (100) | 15 (100) | 11 (95) | 9 (60) | |
Outside | 15 (100) | 5 (33.3) | 14 (93.3) | 0 | 15 (100) | 15 (100) | 12 (60) | 6 (40) | |
5 | Inside | 14 (93.3) | 0 | 12 (80) | 0 | 14 (93.3) | 14 (63.2) | 9 (89.5) | 0 |
Intervention | 14 (93.3) | 0 | 5 (33.3) | 0 | 15 (100) | 11 (73.3) | 9 (100) | 5 (33.3) | |
Outside | 15 (100) | 8 (53.3) | 13 (86.7) | 0 | 15 (100) | 15 (100) | 9 (30) | 3 (20) | |
Total | Inside | 56 (98.2) a | 0 b | 39 (72.2) a | 1 (1.9) a | 47 (87) a | 45 (88.2) ab | 30 (58.8) a | 8 (16) a |
Intervention | 55 (96.5) a | 0 b | 23 (41.8) b | 0 a | 49 (89.1) a | 41 (71.9) b | 27 (47.4) a | 15 (26.3) a | |
Outside | 57 (100) a | 20 (35.1) a | 42 (82.4) a | 0 a | 45 (88.2) a | 46 (90.2) a | 32 (62.7) a | 14 (27.5) a |
References
- Agriculture Economic Insights. U.S. Meat Consumption Trends and COVID-19. 2021. Available online: https://aei.ag/2021/04/05/u-s-meat-consumption-trends-beef-pork-poultry-pandemic (accessed on 12 March 2023).
- U.S. Department of Agriculture Economic Research Service. Cattle & Beef Sector at a Glance; 2022. Available online: https://www.ers.usda.gov/topics/animal-products/cattle-beef/sector-at-a-glance/ (accessed on 12 March 2023).
- Smith, J.L.; Fratamico, P.M.; Gunther, N.W., IV. Shiga toxin-producing Escherichia coli. Adv. Appl. Microbiol. 2014, 86, 145–197. [Google Scholar] [CrossRef] [PubMed]
- Rangel, J.M.; Sparling, P.H.; Crowe, C.; Griffin, P.M.; Swerdlow, D.L. Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg Infect Dis. 2005, 11, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.Y.; Yoon, J.; Hovde, C.J. A brief overview of Escherichia coli O157:H7 and its plasmid O157. J. Microbiol. Biotechnol. 2010, 20, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Food Safety and Inspection Service, USDA. Beef Products Contaminated with Escherichia coli O157:H7. 1999. Available online: https://www.govinfo.gov/content/pkg/FR-1999-01-19/pdf/99-1123.pdf (accessed on 27 August 2023).
- Food Safety and Inspection Service, USDA. Shiga Toxin-Producing Escherichia coli in Certain Raw Beef Products. 2012. Available online: https://www.federalregister.gov/documents/2012/05/31/2012-13283/shiga-toxin-producing-escherichia-coli-in-certain-raw-beef-products (accessed on 13 March 2023).
- Brashears, M.M.; Chaves, B.D. The diversity of beef safety: A global reason to strengthen our current systems. Meat Sci. 2017, 132, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Sargent, J.M.; Amezcua, M.R.; Rajic, A.A.; Waddell, R.L. Pre-harvest Interventions to Reduce the Shedding of E. coli O157 in the Faeces of Weaned Domestic Ruminants: A systematic Review. Zoonoses Public Health 2007, 54, 260–277. [Google Scholar] [CrossRef] [PubMed]
- Smith, B.A.; Fazil, A.; Lammerding, A.M. A risk assessment model for Escherichia coli O157:H7 in ground beef and beef cuts in Canada: Evaluating the effects of interventions. Food Control 2013, 29, 364–381. [Google Scholar] [CrossRef]
- Moye, Z.D.; Woolston, J.; Sulakvelidze, A. Bacteriophage Applications for food production and processing. Viruses 2018, 10, 205. [Google Scholar] [CrossRef] [PubMed]
- Sulakvelidze, A. Using lytic bacteriophages to eliminate or significantly reduce contamination of food by foodborne bacterial pathogens. J. Sci. Food Agric. 2013, 93, 3137–3146. [Google Scholar] [CrossRef] [PubMed]
- Lavilla, M.; Domingo-Calap, P.; Sevilla-Navarro, S.; Lasagabaster, A. Natural Killers: Opportunities and challenges for the use of bacteriophages in microbial food safety from the one health perspective. Foods 2023, 12, 552. [Google Scholar] [CrossRef]
- Arthur, T.M.; Kalchayanand, N.; Agga, G.E.; Wheeler, T.L.; Koohmaraie, M. Evaluation of bacteriophage application to cattle in lairage at beef processing plants to reduce Escherichia coli O157:H7 prevalence on hides and carcasses. Foodborne Pathog. Dis. 2017, 14, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Loneragan, G.H.; Brashears, M.M. Pre-harvest interventions to reduce carriage of E. coli O157 by harvest-ready feedlot cattle. Meat Sci. 2005, 71, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Arm & Hammer Animal and Food Production. Finalyse. Available online: https://ahfoodchain.com/en/segments/food-production/products/finalyse (accessed on 13 February 2023).
- Arm & Hammer Animal and Food Production. Research Notes–Finalyse Reduces Escherichia coli O157:H7 on Cattle Hides in Five Minutes. Available online: https://ahfoodchain.com/-/media/spd/files/product-literature/food-safety/finalyse/research/finalyse_ecoli5minreduction_rnotes_web.pdf (accessed on 13 February 2023).
- Food Safety and Inspection Service, USDA. Ante-Mortem Livestock Inspection-Revision 3. Available online: https://www.fsis.usda.gov/policy/fsis-directives/6100.1 (accessed on 15 March 2023).
- Food Safety and Inspection Service, USDA. Component 1: Requiring Incoming Flocks Be Tested for Salmonella before Entering an Establishment. Available online: https://www.fsis.usda.gov/inspection/inspection-programs/inspection-poultry-products/reducing-salmonella-poultry/proposed-0 (accessed on 15 March 2023).
- Hygiena. BAX® System Real-Time PCR Assay Salmonella. Available online: https://www.hygiena.com/wp-content/uploads/2020/09/BAX-Q7-Assay-Kit-Insert-Salmonella-RT-English.pdf (accessed on 22 February 2023).
- Hygiena. BAX® System Real-Time PCR Assay E. coli O157:H7 Exact. Available online: https://www.hygiena.com/wp-content/uploads/2021/04/BAX-Q7-Assay-Kit-Insert-Ecoli-Exact-EN.pdf (accessed on 15 March 2023).
- Beach, J.C.; Murano, E.A.; Accuf, G.R. Prevalence of Salmonella and Campylobacter in beef cattle from transport to slaughter. J. Food Prot. 2002, 65, 1687–1693. [Google Scholar] [CrossRef] [PubMed]
- Brichta-Harhay, D.M.; Guerini, M.N.; Aurthur, T.M.; Bosilevac, J.M.; Kalchayanand, N.; Shackelford, S.D.; Wheeler, T.L.; Koohmaraie, M. Salmonella and Escherichia coli O157:H7 contamination on hides and carcasses of cull cattle presented for slaughter in the United States: An evaluation of prevalence and bacterial loads by immunomagnetic separation and direct plating methods. Appl. Environ. Microbiol. 2008, 74, 6289–6297. [Google Scholar] [CrossRef] [PubMed]
- Flach, M.G.; Dogan, O.B.; Miller, M.F.; Sanchez-Plata, M.X.; Brashears, M.M. Comparison of three pre-harvest sampling strategies to monitor pathogens in cattle lairage areas. J. Food Prot. 2023. submitted. [Google Scholar]
Pathogen | Contrast | OR | 95% CI | p-Value |
---|---|---|---|---|
Salmonella | After–Before | 3.96 | 2.38–6.66 | <0.001 |
E. coli O26 | After–Before | 35.5 | 5.71–1460 | <0.001 |
E. coli O121 | After–Before | 18.4 | 4.51–162 | <0.001 |
E. coli O45 | After–Before | 8.99 | 3.62–26.9 | <0.001 |
E. coli O103 | After–Before | 21.5 | 3.32–901 | 0.003 |
E. coli O145 | After–Before | 2.34 | 1.16–4.91 | 0.012 |
Pathogen | Contrast | OR | 95% CI | p-Value |
---|---|---|---|---|
Salmonella | Intervention–Inside | 0.49 | 0.01–9.75 | 1.00 |
Intervention–Outside | 0 | 0–5.31 | 0.50 | |
Outside–Inside | 0 | 0–39.00 | 1.00 | |
E. coli O157:H7 | Intervention–Inside | 0 | 0–inf | 1.00 |
Intervention–Outside | 0 | 0–0.14 | <0.001 | |
Outside–Inside | 0 | 0–0.14 | <0.001 | |
E. coli O26 | Intervention–Inside | 0.28 | 0.11–0.66 | <0.05 |
Intervention–Outside | 0.16 | 0.06–0.41 | <0.001 | |
Outside–Inside | 0.56 | 0.19–1.55 | 0.25 | |
E. coli O121 | Intervention–Inside | 1.23 | 0.32–4.72 | 0.78 |
Intervention–Outside | 1.09 | 0.27–4.40 | 1.00 | |
Outside–Inside | 0.90 | 0.23–3.38 | 1.00 | |
E. coli O45 | Intervention–Inside | 0.34 | 0.10–1.04 | 0.05 |
Intervention–Outside | 0.28 | 0.07–0.90 | 0.03 | |
Outside–Inside | 0.82 | 0.18–3.47 | 1.00 | |
E. coli O103 | Intervention–Inside | 0.63 | 0.27–1.44 | 0.25 |
Intervention–Outside | 0.54 | 0.23–1.23 | 0.12 | |
Outside–Inside | 0.85 | 0.35–2.03 | 0.84 | |
E. coli O145 | Intervention–Inside | 1.86 | 0.66–5.65 | 0.24 |
Intervention–Outside | 0.94 | 0.37–2.42 | 1.00 | |
Outside–Inside | 0.51 | 0.16–1.48 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Flach, M.G.; Dogan, O.B.; Miller, M.F.; Sanchez-Plata, M.X.; Brashears, M.M. Validation of a Bacteriophage Hide Application to Reduce STEC in the Lairage Area of Commercial Beef Cattle Operations. Foods 2023, 12, 4349. https://doi.org/10.3390/foods12234349
Flach MG, Dogan OB, Miller MF, Sanchez-Plata MX, Brashears MM. Validation of a Bacteriophage Hide Application to Reduce STEC in the Lairage Area of Commercial Beef Cattle Operations. Foods. 2023; 12(23):4349. https://doi.org/10.3390/foods12234349
Chicago/Turabian StyleFlach, Makenzie G., Onay B. Dogan, Mark F. Miller, Marcos X. Sanchez-Plata, and Mindy M. Brashears. 2023. "Validation of a Bacteriophage Hide Application to Reduce STEC in the Lairage Area of Commercial Beef Cattle Operations" Foods 12, no. 23: 4349. https://doi.org/10.3390/foods12234349
APA StyleFlach, M. G., Dogan, O. B., Miller, M. F., Sanchez-Plata, M. X., & Brashears, M. M. (2023). Validation of a Bacteriophage Hide Application to Reduce STEC in the Lairage Area of Commercial Beef Cattle Operations. Foods, 12(23), 4349. https://doi.org/10.3390/foods12234349