Development of an Innovative Optoelectronic Nose for Detecting Adulteration in Quince Seed Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Oil Sample Preparation
2.2. Sensor Array Development
2.3. Color Information Extraction from Sensor Arrays
2.4. Finding the Optimal Exposure Time for Sensor Array
2.5. Feature Selection and Classification
3. Results and Discussion
3.1. Sensor Array Interpretation
3.2. Adulteration Detection in Quince Seed Oils
3.3. Classification Optimization and Accuracy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mišina, I.; Sipeniece, E.; Rudzińska, M.; Grygier, A.; Radzimirska-Graczyk, M.; Kaufmane, E.; Segliņa, D.; Lācis, G.; Górnaś, P. Associations between oil yield and profile of fatty acids, sterols, squalene, carotenoids, and tocopherols in seed oil of selected japanese quince genotypes during fruit development. Eur. J. Lipid Sci. Technol. 2020, 122, 1900386. [Google Scholar] [CrossRef]
- Urbanavičiūtė, I.; Rubinskiene, M.; Viškelis, P. The fatty acid composition and quality of oils from post-industrial waste of quince Chaenomeles japonica. Chem. Biodivers. 2019, 16, e1900352. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, A.; Chakraborty, S.K.; Mahanti, N.K.; Varghese, C. Advanced techniques in edible oil authentication: A systematic review and critical analysis. Crit. Rev. Food Sci. Nutr. 2023, 63, 873–901. [Google Scholar] [CrossRef]
- Li, J.; Sun, L.; Li, R. Nondestructive detection of frying times for soybean oil by NIR-spectroscopy technology with Adaboost-SVM (RBF). Optik 2020, 206, 164248. [Google Scholar] [CrossRef]
- Momeny, M.; Neshat, A.A.; Jahanbakhshi, A.; Mahmoudi, M.; Ampatzidis, Y.; Radeva, P. Grading and fraud detection of saffron via learning-to-augment incorporated Inception-v4 CNN. Food Control 2023, 147, 109554. [Google Scholar] [CrossRef]
- Tan, C.H.; Kong, I.; Irfan, U.; Solihin, M.I.; Pui, L.P. edible oils adulteration: A review on regulatory compliance and its detection technologies. J. Oleo Sci. 2021, 70, 1343–1356. [Google Scholar] [CrossRef]
- Mohan, H.K.S.V.; Malcolm, A.A. Non-Destructive Evaluation of Adulteration in Edible Oil Using Capacitance. In Proceedings of the 2022 IEEE Industrial Electronics and Applications Conference (IEACon), Virtual Conference, 3–4 October 2022; IEEE: Piscataway, NJ, USA, 2022. [Google Scholar]
- Huang, Z.-M.; Xin, J.-X.; Sun, S.-S.; Li, Y.; Wei, D.-X.; Zhu, J.; Wang, X.-L.; Wang, J.; Yao, Y.-F. Rapid identification of adulteration in edible vegetable oils based on low-field nuclear magnetic resonance relaxation fingerprints. Foods 2021, 10, 3068. [Google Scholar] [CrossRef] [PubMed]
- Muhammed Shafi, K.T.; Jha, A.K.; Akhtar, M.J. Nondestructive technique for detection of adulteration in edible oils using planar RF sensor. In Proceedings of the 2016 IEEE MTT-S International Microwave and RF Conference (IMaRC), New Delhi, India, 5–9 December 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- Conrado, J.A.M.; Sequinel, R.; Dias, B.C.; Silvestre, M.; Batista, A.D.; Petruci, J.F.d.S. Chemical QR Code: A simple and disposable paper-based optoelectronic nose for the identification of olive oil odor. Food Chem. 2021, 350, 129243. [Google Scholar] [CrossRef]
- Zarezadeh, M.R.; Aboonajmi, M.; Varnamkhasti, M.G.; Azarikia, F. Olive oil classification and fraud detection using e-nose and ultrasonic system. Food Anal. Methods 2021, 14, 2199–2210. [Google Scholar] [CrossRef]
- Xu, L.; Yu, X.; Liu, L.; Zhang, R. A novel method for qualitative analysis of edible oil oxidation using an electronic nose. Food Chem. 2016, 202, 229–235. [Google Scholar] [CrossRef]
- Huang, L.; Wang, M.; Liu, H. Identification of adulterated extra virgin olive oil by colorimetric sensor array. Food Anal. Methods 2021, 15, 647–657. [Google Scholar] [CrossRef]
- Somvanshi, S.B.; Ulloa, A.M.; Zhao, M.; Liang, Q.; Barui, A.K.; Lucas, A.; Jadhav, K.; Allebach, J.P.; Stanciu, L.A. Microfluidic paper-based aptasensor devices for multiplexed detection of pathogenic bacteria. Biosens. Bioelectron. 2022, 207, 114214. [Google Scholar] [CrossRef] [PubMed]
- Biabi, H.; Mehdizadeh, S.A.; Salmi, M.S. Design and implementation of a smart system for water management of lilium flower using image processing. Comput. Electron. Agric. 2019, 160, 131–143. [Google Scholar] [CrossRef]
- Zhao, P.; Patamia, E.D.; Andrew, T.L. Strategies to combat the fouling and surface texture issues associated with fabric-based colorimetric sensors. Sens. Actuators B Chem. 2023, 377, 133099. [Google Scholar] [CrossRef]
- Xu, W.; He, Y.; Li, J.; Deng, Y.; Zhou, J.; Xu, E.; Ding, T.; Wang, W.; Liu, D. Olfactory visualization sensor system based on colorimetric sensor array and chemometric methods for high precision assessing beef freshness. Meat Sci. 2022, 194, 108950. [Google Scholar] [CrossRef]
- Nie, W.; Chen, Y.; Zhang, H.; Liu, J.; Peng, Z.; Li, Y. A novel colorimetric sensor array for real-time and on-site monitoring of meat freshness. Anal. Bioanal. Chem. 2022, 414, 6017–6027. [Google Scholar] [CrossRef]
- Mantovani, R.G.; Rossi, A.L.; Vanschoren, J.; Bischl, B.; De Carvalho, A.C. Effectiveness of random search in SVM hyper-parameter tuning. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; IEEE: Piscataway, NJ, USA, 2015. [Google Scholar]
- Stighezza, M.; Bianchi, V.; De Munari, I. FPGA implementation of an ant colony optimization based SVM algorithm for state of charge estimation in li-ion batteries. Energies 2021, 14, 7064. [Google Scholar] [CrossRef]
- Sampaio, P.S.; Castanho, A.; Almeida, A.S.; Oliveira, J.; Brites, C. Identification of rice flour types with near-infrared spectroscopy associated with PLS-DA and SVM methods. Eur. Food Res. Technol. 2020, 246, 527–537. [Google Scholar] [CrossRef]
- Bordbar, M.M.; Tashkhourian, J.; Hemmateenejad, B. Qualitative and quantitative analysis of toxic materials in adulterated fruit pickle samples by a colorimetric sensor array. Sens. Actuators B Chem. 2018, 257, 783–791. [Google Scholar] [CrossRef]
- Bordbar, M.M.; Tashkhourian, J.; Hemmateenejad, B. Structural elucidation and ultrasensitive analyses of volatile organic compounds by paper-based nano-optoelectronic noses. ACS Sens. 2019, 4, 1442–1451. [Google Scholar] [CrossRef]
- Suslick, K.S. An optoelectronic nose: “seeing” smells by means of colorimetric sensor arrays. MRS Bull. 2004, 29, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Chen, H.; Bai, X.; Huang, Y.; Li, H.; Long, W.; Lan, W.; She, Y.; Fu, H. Visual classification for sesame oil adulteration detection and quantification of compounds used as adulterants using flavor compounds targeted array sensor in combination with DD-SIMCA and PLS. Sens. Actuators B Chem. 2022, 357, 131335. [Google Scholar] [CrossRef]
- Adade, S.Y.-S.S.; Lin, H.; Jiang, H.; Haruna, S.A.; Barimah, A.O.; Zareef, M.; Agyekum, A.A.; Johnson, N.A.N.; Hassan, M.; Li, H.; et al. Fraud detection in crude palm oil using SERS combined with chemometrics. Food Chem. 2022, 388, 132973. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.K.; Lim, H.-J.; Shin, D.-H.; Kim, C.R.; Kim, M.-J.; Chun, J.; Shin, E.-C. Compositions of fatty acids and phytosterols of plant-based oils and their associations with anti-oxidative capacity: Application of principal component analysis. Hortic. Environ. Biotechnol. 2015, 56, 561–567. [Google Scholar] [CrossRef]
- Aghili, N.S.; Rasekh, M.; Karami, H.; Azizi, V.; Gancarz, M. Detection of fraud in sesame oil with the help of artificial intelligence combined with chemometrics methods and chemical compounds characterization by gas chromatography–mass spectrometry. LWT 2022, 167, 113863. [Google Scholar] [CrossRef]
- Lu, C.H.; Li, B.Q.; Jing, Q.; Pei, D.; Huang, X.Y. A classification and identification model of extra virgin olive oil adulterated with other edible oils based on pigment compositions and support vector machine. Food Chem. 2023, 420, 136161. [Google Scholar] [CrossRef]
PCs | Box Constraint | Kernel Scale | Kernel Function | Data Standardization | Classification Error (%) |
---|---|---|---|---|---|
1 | 447.66 | 0.27376 | Gaussian | True | 37.18 |
2 | 0.001255 | 11.292 | Gaussian | False | 6.41 |
3 | 993.06 | - | Polynomial of order 4 | True | 2.56 |
4 | 177.69 | - | Linear | False | 2.56 |
5 | 0.48491 | - | Polynomial of order 2 | True | 1.28 |
PQ | Su10:Q90 | Su20:Q80 | Su30:Q70 | Su40:Q60 | Su50:Q50 | PSu | Se10:Q90 | Se20:Q80 | Se30:Q70 | Se40:Q60 | Se50:Q50 | PSu | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PQ | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Su10:Q90 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Su20:Q80 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Su30:Q70 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Su40:Q60 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Su50:Q50 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
PSu | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
Se10:Q90 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 |
Se20:Q80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 |
Se30:Q70 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
Se40:Q60 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
Se50:Q50 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 |
PSe | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehdizadeh, S.A.; Noshad, M.; Chaharlangi, M.; Ampatzidis, Y. Development of an Innovative Optoelectronic Nose for Detecting Adulteration in Quince Seed Oil. Foods 2023, 12, 4350. https://doi.org/10.3390/foods12234350
Mehdizadeh SA, Noshad M, Chaharlangi M, Ampatzidis Y. Development of an Innovative Optoelectronic Nose for Detecting Adulteration in Quince Seed Oil. Foods. 2023; 12(23):4350. https://doi.org/10.3390/foods12234350
Chicago/Turabian StyleMehdizadeh, Saman Abdanan, Mohammad Noshad, Mahsa Chaharlangi, and Yiannis Ampatzidis. 2023. "Development of an Innovative Optoelectronic Nose for Detecting Adulteration in Quince Seed Oil" Foods 12, no. 23: 4350. https://doi.org/10.3390/foods12234350
APA StyleMehdizadeh, S. A., Noshad, M., Chaharlangi, M., & Ampatzidis, Y. (2023). Development of an Innovative Optoelectronic Nose for Detecting Adulteration in Quince Seed Oil. Foods, 12(23), 4350. https://doi.org/10.3390/foods12234350