Consumer Expectation and Perception of Farmed Rainbow Trout (Oncorhynchus mykiss) Fed with Insect Meal (Tenebrio molitor)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Fish Sample
2.3. Sensory Analysis
2.4. Consumer Acceptance
2.4.1. Participants
2.4.2. Questionnaire
2.5. Statistical Analysis
3. Results and Discussion
3.1. Sensory Analysis
3.2. Consumer Acceptance and Perception
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture 2022; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Galappaththi, E.K.; Ichien, S.T.; Hyman, A.A.; Aubrac, C.J.; Ford, J.D. Climate change adaptation in aquaculture. Rev. Aquac. 2020, 12, 2160–2176. [Google Scholar] [CrossRef]
- Benito, J.; Alonso, P. Influencia Del Cambio Climático En La Acuicultura. Foro Rec. Mar. Ac. Rías Gal. 2010, 12, 709–718. [Google Scholar]
- General Fisheries Commission for the Mediterranean Scientific Advisory Committee. General Fisheries Commission for the Mediterranean Scientific Advisory Committee Twelfth Session Climate Change Implications for Fisheries and Aquaculture: Overview of Current Scientific Knowledge; General Fisheries Commission for The Mediterranean Commission Générale Des Pêches Pour La Méditerranée: Rome, Italy, 2009. [Google Scholar]
- Malcorps, W.; Palmer, R. El Enigma de La Sostenibilidad de Los Alimentos Para Camarones: Sustitución de Harina de Pescado. Rev. Glob. Aquacolture 2019, 4, 1–5. [Google Scholar]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-year retrospective review of global aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef]
- Kok, B.; Malcorps, W.; Tlusty, M.F.; Eltholth, M.M.; Auchterlonie, N.A.; Little, D.C.; Harmsen, R.; Newton, R.W.; Davies, S.J. Fish as feed: Using economic allocation to quantify the Fish In: Fish Out ratio of major fed aquaculture species. Aquaculture 2020, 528, 735474. [Google Scholar] [CrossRef]
- Gasco, L.; Acuti, G.; Bani, P.; Dalle Zotte, A.; Danieli, P.P.; De Angelis, A.; Fortina, R.; Marino, R.; Parisi, G.; Piccolo, G.; et al. Insect and fish by-products as sustainable alternatives to conventional animal proteins in animal nutrition. Ital. J. Anim. Sci. 2020, 19, 360–372. [Google Scholar] [CrossRef]
- Albrektsen, S.; Mundheim, H.; Aksnes, A. Growth, feed efficiency, digestibility and nutrient distribution in Atlantic cod (Gadus morhua) fed two different fish meal qualities at three dietary levels of vegetable protein sources. Aquaculture 2006, 261, 626–640. [Google Scholar] [CrossRef]
- DE Francesco, M.; Parisi, G.; Pérez-Sánchez, J.; Gómez-Réqueni, P.; Médale, F.; Kaushik, S.; Mecatti, M.; Poli, B. Effect of high-level fish meal replacement by plant proteins in gilthead sea bream (Sparus aurata) on growth and body/fillet quality traits. Aquac. Nutr. 2007, 13, 361–372. [Google Scholar] [CrossRef]
- Barroso, F.G.; de Haro, C.; Sánchez-Muros, M.-J.; Venegas, E.; Martínez-Sánchez, A.; Pérez-Bañón, C. The potential of various insect species for use as food for fish. Aquaculture 2014, 422–423, 193–201. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed. Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Ravzanaadii, N.; Kim, S.-H.; Choi, W.-H.; Hong, S.-J.; Kim, N.-J. Nutritional Value of Mealworm, Tenebrio molitor as Food Source. Int. J. Ind. Èntomol. 2012, 25, 93–98. [Google Scholar] [CrossRef]
- Pietras, M.; Orczewska-Dudek, S.; Szczurek, W.; Pieszka, M. Effect of dietary lupine seeds (Lupinus luteus L.) and different insect larvae meals as protein sources in broiler chicken diet on growth performance, carcass, and meat quality. Livest. Sci. 2021, 250, 104537. [Google Scholar] [CrossRef]
- Gasco, L.; Biasato, I.; Dabbou, S.; Schiavone, A.; Gai, F. Animals Fed Insect-Based Diets: State-of-the-Art on Digestibility, Performance and Product Quality. Animals 2019, 9, 170. [Google Scholar] [CrossRef]
- Iaconisi, V.; Secci, G.; Sabatino, G.; Piccolo, G.; Gasco, L.; Papini, A.M.; Parisi, G. Effect of mealworm (Tenebrio molitor L.) larvae meal on amino acid composition of gilthead sea bream (Sparus aurata L.) and rainbow trout (Oncorhynchus mykiss W.) fillets. Aquaculture 2019, 513, 734403. [Google Scholar] [CrossRef]
- Rema, P.; Saravanan, S.; Armenjon, B.; Motte, C.; Dias, J. Graded Incorporation of Defatted Yellow Mealworm (Tenebrio molitor) in Rainbow Trout (Oncorhynchus mykiss) Diet Improves Growth Performance and Nutrient Retention. Animals 2019, 9, 187. [Google Scholar] [CrossRef]
- Melenchón, F.; Larrán, A.; de Mercado, E.; Hidalgo, M.; Cardenete, G.; Barroso, F.; Fabrikov, D.; Lourenço, H.; Pessoa, M.; Tomás-Almenar, C. Potential use of black soldier fly (Hermetia illucens) and mealworm (Tenebrio molitor) insectmeals in diets for rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. 2021, 27, 491–505. [Google Scholar] [CrossRef]
- Fabrikov, D.; Barroso, F.G.; Sánchez-Muros, M.J.; Hidalgo, M.C.; Cardenete, G.; Tomás-Almenar, C.; Melenchón, F.; Guil-Guerrero, J.L. Effect of feeding with insect meal diet on the fatty acid compositions of sea bream (Sparus aurata), tench (Tinca tinca) and rainbow trout (Oncorhynchus mykiss) fillets. Aquaculture 2021, 545, 737170. [Google Scholar] [CrossRef]
- Giotis, T.; Drichoutis, A.C. Consumer acceptance and willingness to pay for direct and indirect entomophagy. Q Open 2021, 1, qoab015. [Google Scholar] [CrossRef]
- Sogari, G.; Menozzi, D.; Mora, C. The food neophobia scale and young adults’ intention to eat insect products. Int. J. Consum. Stud. 2019, 43, 68–76. [Google Scholar] [CrossRef]
- Zamparo, G.; Cunico, P.; Vianelli, D.; Moretti, A. It is unnatural!–the role of food neophobia and food technology neophobia in shaping consumers’ attitudes: A multimethod approach. Br. Food J. 2023, 125, 2275–2293. [Google Scholar] [CrossRef]
- Tan, H.S.G.; Fischer, A.R.; van Trijp, H.C.; Stieger, M. Tasty but nasty? Exploring the role of sensory-liking and food appropriateness in the willingness to eat unusual novel foods like insects. Food Qual. Prefer. 2016, 48, 293–302. [Google Scholar] [CrossRef]
- Kim, S.W.; Less, J.F.; Wang, L.; Yan, T.; Kiron, V.; Kaushik, S.J.; Lei, X.G. Downloaded from Www.Annualreviews.Org Access Provided by 146.66.244.71 on 05/22/23. For Personal Use Only. Annu. Rev. Anim. Biosci. 2019, 7, 221–243. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, W.; Spranghers, T.; De Clercq, P.; De Smet, S.; Sas, B.; Eeckhout, M. Insects in animal feed: Acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Anim. Feed. Sci. Technol. 2015, 204, 72–87. [Google Scholar] [CrossRef]
- La Barbera, F.; Verneau, F.; Videbæk, P.N.; Amato, M.; Grunert, K.G. A self-report measure of attitudes toward the eating of insects: Construction and validation of the Entomophagy Attitude Questionnaire. Food Qual. Prefer. 2020, 79, 103757. [Google Scholar] [CrossRef]
- Domingues, C.H.d.F.; Borges, J.A.R.; Ruviaro, C.F.; Gomes Freire Guidolin, D.; Rosa Mauad Carrijo, J. Understanding the factors influencing consumer willingness to accept the use of insects to feed poultry, cattle, pigs and fish in Brazil. PLoS ONE 2020, 15, e0224059. [Google Scholar] [CrossRef]
- Baldi, L.; Mancuso, T.; Peri, M.; Gasco, L.; Trentinaglia, M. Consumer attitude and acceptance toward fish fed with insects: A focus on the new generations. J. Insects Food Feed. 2022, 8, 1249–1263. [Google Scholar] [CrossRef]
- Sogari, G.; Amato, M.; Biasato, I.; Chiesa, S.; Gasco, L. The Potential Role of Insects as Feed: A Multi-Perspective Review. Animals 2019, 9, 119. [Google Scholar] [CrossRef]
- Lazo, O.; Claret, A.; Guerrero, L. A Comparison of Two Methods for Generating Descriptive Attributes with Trained Assessors: Check-All-That-Apply (CATA) vs. Free Choice Profiling (FCP). J. Sens. Stud. 2016, 31, 163–176. [Google Scholar] [CrossRef]
- Lock, E.; Arsiwalla, T.; Waagbø, R. Insect larvae meal as an alternative source of nutrients in the diet of Atlantic salmon (Salmo salar) postsmolt. Aquac. Nutr. 2016, 22, 1202–1213. [Google Scholar] [CrossRef]
- Belghit, I.; Liland, N.S.; Gjesdal, P.; Biancarosa, I.; Menchetti, E.; Li, Y.; Waagbo, R.; Krogdahl, Å.; Lock, E.-J. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture 2019, 503, 609–619. [Google Scholar] [CrossRef]
- Borgogno, M.; Dinnella, C.; Iaconisi, V.; Fusi, R.; Scarpaleggia, C.; Schiavone, A.; Monteleone, E.; Gasco, L.; Parisi, G. Inclusion of Hermetia illucens larvae meal on rainbow trout (Oncorhynchus mykiss) feed: Effect on sensory profile according to static and dynamic evaluations. J. Sci. Food Agric. 2017, 97, 3402–3411. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.; Costa, M.; Velasco, C.; Cunha, L.M.; Lima, R.C.; Baião, L.F.; Batista, S.; Marques, A.; Sá, T.; Campos, D.A.; et al. Comparative Analysis between Synthetic Vitamin E and Natural Antioxidant Sources from Tomato, Carrot and Coriander in Diets for Market-Sized Dicentrarchus labrax. Antioxid. 2022, 11, 636. [Google Scholar] [CrossRef] [PubMed]
- ISO 11035:1994; Sensory Analysis: Identification and Selection of Descriptors for Establishing a Sensory Profile by a Multidimentional Approach. ISO: Geneva, Switzerland, 1994.
- Lazo, O.; Guerrero, L.; Alexi, N.; Grigorakis, K.; Claret, A.; Pérez, J.A.; Bou, R. Sensory characterization, physico-chemical properties and somatic yields of five emerging fish species. Food Res. Int. 2017, 100, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Kemp, S.E.; Hort, J.; Hollowood, T. (Eds.) Descriptive Analysis in Sensory Evaluation. John Wiley & Sons: Chichester, UK, 2018. [Google Scholar]
- Stone, H.; Bleibaum, R.N.; Thomas, H.A. Descriptive Analysis. In Sensory Evaluation Practices; Taylor, S.L., Ed.; Academic Press Inc.: San Diego, CA, USA, 1993; pp. 202–242. [Google Scholar]
- Macfie, H.J.; Bratchell, N.; Greenhoff, K. Designs to balance the effect of order of presentation and first-order carry-over effects in hall tests. J. Sens. Stud. 1989, 4, 129–148. [Google Scholar] [CrossRef]
- ISO 8589:2007; Sensory Analysis: General Guidance for the Design of Test Rooms; ISO: Geneva, Switzerland, 2007.
- Peryam, D.R.; Pilgrim, F.J. Hedonic Scale Method of Measuring Food Preferences. Food Technol. 1957, 11, 9–14. [Google Scholar]
- Cardello, A.V. Consumer Expectations and Their Role in Food Acceptance; MacFie, H.J.H., Thomson, D.M.H., Eds.; Blackie Academic: London, UK, 1994. [Google Scholar]
- Martins, Y.; Pliner, P. Human Food Choices: An Examination of the Factors Underlying Acceptance/Rejection of Novel and Familiar Animal and Nonanimal Foods. Appetite 2005, 45, 214–224. [Google Scholar] [CrossRef]
- Laureati, M.; Proserpio, C.; Jucker, C.; Savoldelli, S. New sustainable protein sources: Consumers’ willingness to adopt insects as feed and food. Ital. J. Food Sci. 2016, 28, 652–668. [Google Scholar] [CrossRef]
- Mancuso, T.; Baldi, L.; Gasco, L. An Empirical Study on Consumer Acceptance of Farmed Fish Fed on Insect Meals: The Italian Case. Aquac. Int. 2016, 24, 1489–1507. [Google Scholar] [CrossRef]
- Hartmann, C.; Siegrist, M. Becoming an Insectivore: Results of an Experiment. Food Qual. Prefer. 2016, 51, 118–122. [Google Scholar] [CrossRef]
- Hartmann, C.; Ruby, M.B.; Schmidt, P.; Siegrist, M. Brave, Health-Conscious, and Environmentally Friendly: Positive Impressions of Insect Food Product Consumers. Food Qual. Prefer. 2018, 68, 64–71. [Google Scholar] [CrossRef]
- Tan HS, G.; Verbaan, Y.T.; Stieger, M. How Will Better Products Improve the Sensory-Liking and Willingness to Buy Insect-Based Foods? Food Res. Int. 2017, 92, 95–105. [Google Scholar] [CrossRef]
- Piha, S.; Pohjanheimo, T.; Lähteenmäki-Uutela, A.; Křečková, Z.; Otterbring, T. The Effects of Consumer Knowledge on the Willingness to Buy Insect Food: An Exploratory Cross-Regional Study in Northern and Central Europe. Food Qual. Prefer. 2018, 70, 1–10. [Google Scholar] [CrossRef]
- Lombardi, A.; Vecchio, R.; Borrello, M.; Caracciolo, F.; Cembalo, L. Willingness to Pay for Insect-Based Food: The Role of Information and Carrier. Food Qual. Prefer. 2019, 72, 177–187. [Google Scholar] [CrossRef]
- Turchini, G.M.; Torstensen, B.E.; Ng, W.K. Fish Oil Replacement in Finfish Nutrition. Rev. Aquac. 2009, 1, 10–57. [Google Scholar] [CrossRef]
- Sealey, W.M.; Gibson Gaylord, T.; Barrows, F.T.; Tomberlin, J.K.; McGuire, M.A.; Ross, C.; St-Hilaire, S. Sensory Analysis of Rainbow Trout, Oncorhynchus Mykiss, Fed Enriched Black Soldier Fly Prepupae, Hermetia Illucens. J. World Aquac. Soc. 2011, 42, 34–45. [Google Scholar] [CrossRef]
- Iaconisi, V.; Marono, S.; Parisi, G.; Gasco, L.; Genovese, L.; Maricchiolo, G.; Bovera, F.; Piccolo, G. Dietary Inclusion of T. molitor Larvae Meal: Effects on Growth Performance and Final Quality Treats of Blackspot Sea Bream (Pagellus Bogaraveo). Aquaculture 2017, 476, 49–58. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; de Boer, I.J.M. Environmental Impact of the Production of Mealworms as a Protein Source for Humans—A Life Cycle Assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef]
- van Huis, A. Potential of Insects as Food and Feed in Assuring Food Security. Annu. Rev. Èntomol. 2013, 58, 563–583. [Google Scholar] [CrossRef]
- Onwezen, M.C.; van den Puttelaar, J.; Verain, M.C.D.; Veldkamp, T. Consumer acceptance of insects as food and feed: The relevance of affective factors. Food Qual. Prefer. 2019, 77, 51–63. [Google Scholar] [CrossRef]
- Rozin, P.; Fallen, A.E.; Thank, W.; Appadurai, A.; Bell, M.; Fridlund, A.; Mccauley, C.; Nemeroft, C.; Oster, H.; Parker, S.; et al. A Perspective on Disgust. Psychol. Rev. 1987, 94, 23. [Google Scholar] [CrossRef]
- Altmann, B.A.; Anders, S.; Risius, A.; Mörlein, D. Information Effects on Consumer Preferences for Alternative Animal Feedstuffs. Food Policy 2022, 106, 102192. [Google Scholar] [CrossRef]
- Sogari, G.; Menozzi, D.; Mora, C. Sensory-Liking Expectations and Perceptions of Processed and Unprocessed Insect Products. Int. J. Food Syst. Dyn. 2018, 9, 314–320. [Google Scholar] [CrossRef]
- Deely, J.; Hynes, S.; Barquín, J.; Burgess, D.; Álvarez-Martínez, J.M.; Silió, A.; Finney, G. Are Consumers Willing to Pay for Beef That Has Been Produced without the Use of Uncontrolled Burning Methods? A Contingent Valuation Study in North-West Spain. Econ. Anal. Policy 2022, 75, 577–590. [Google Scholar] [CrossRef]
- Sogari, G. Entomophagy and Italian Consumers: An Exploratory Analysis Introduction to Entomophagy. Prog. Nutr. 2015, 17, 311–316. [Google Scholar]
- Sogari, G.; Menozzi, D.; Mora, C. Exploring Young Foodies’ Knowledge and Attitude Regarding Entomophagy: A Qualitative Study in Italy. Int. J. Gastron. Food Sci. 2017, 7, 16–19. [Google Scholar] [CrossRef]
Attributes | Description |
---|---|
ODOUR | |
Odour intensity | Intensity of odour |
Earthy | Intensity of odour like humid earth |
Fish oil | Intensity of characteristic odour |
Biscuit/Vanilla | Intensity of odour like biscuits |
Boiled potato /Vegetables | Intensity of odour like cooked vegetables |
APPEARENCE | |
Exudate quantity | Quantity of liquid released after cooking the sample |
Fat droplets | Fat released in fish exudate in the form of oil droplets |
Colour intensity of exudate | Yellow colour intensity of the exudate |
Turbidity exudate | Suspended particles in exudate that block transparency |
Colour intensity | Colour intensity from white to light brown inside the flesh of the fish |
FLAVOUR | |
Flavour intensity | Intensity of flavour |
Earthy | Intensity of flavour like humid earth |
Fish oil | Intensity of characteristic flavour |
Acid | Intensity of flavour like citric acid |
Sweet | Intensity of flavour like sugar |
Bitter | Intensity of flavour like caffeine |
Persistence/Aftertaste | Duration of stimulus in the oral cavity after swallowing |
TEXTURE | |
Firmness | Force required to deform the fillet between the tongue and palate |
Teeth adherence | Degree in which fish sticks between molars |
Chewiness | Number of chews before swallowing |
Greasiness | Surface attribute that expresses the perception of the quantity of fat present in a product. |
Pastiness | Degree in which fish turns into a paste after chewing |
Flakiness | Degree of fish disintegration in the first bite |
Pair of Adjectives | CRL 0% | 30% | 60% | 100% | p Value |
---|---|---|---|---|---|
Known–unknown | 2.845 b | 4.928 a | 4.879 a | 5.224 a | <0.0001 |
New–common | 4.897 a | 2.750 b | 2.560 b | 2.603 b | <0.0001 |
Safe–unsafe | 2.422 a | 2.897 b | 2.698 b | 2.828 b | 0.002 |
Unhealthy–healthy | 5.793 a | 5.448 b | 5.401 b | 5.241 b | <0.0001 |
Expensive–cheap | 4.026 | 4.078 | 4.121 | 4.207 | 0.456 |
Bad taste–good taste | 5.431 a | 5.103 ab | 4.984 b | 4.914 b | 0.002 |
Low quality–high quality | 5.026 | 4.845 | 4.836 | 4.828 | 0.269 |
Sustainable–unsustainable | 3.293 | 3.026 | 3.083 | 2.966 | 0.222 |
Artificial–natural | 5.207 a | 4.853 ab | 4.948 b | 4.991 b | 0.049 |
Environ. unfriendly–environ. friendly | 5.009 b | 5.267 ab | 5.397 a | 5.388 a | 0.004 |
Overall Perception | Mean Score |
---|---|
Percep. Nutritious | 5.611 |
Percep. Healthy | 5.341 |
Percep. Good taste | 4.864 |
Percep. Natural | 5.091 |
Percep. Expensive | 4.282 |
Percep. Difficulty digesting | 4.028 |
Percep. Environ. responsible | 5.359 |
Percep. High quality | 4.683 |
Percep. Safe | 5.241 |
Percep. Sustainable | 5.541 |
Experimental Diets | Blind | Informed |
---|---|---|
Crl 0% | 6.871 | 6.871 |
30% | 6.836 | 6.603 |
60% | 6.750 | 6.509 |
100% | 6.862 | 6.681 |
p value | 0.856 | 0.099 |
Willingness to Buy | Willingness to Pay | |
---|---|---|
Crl 0% | 7.345 a | 6.774 a |
30% | 6.578 b | 6.289 b |
60% | 6.491 b | 6.183 b |
100% | 6.328 b | 6.070 b |
p value | <0.0001 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magnani, M.; Claret, A.; Gisbert, E.; Guerrero, L. Consumer Expectation and Perception of Farmed Rainbow Trout (Oncorhynchus mykiss) Fed with Insect Meal (Tenebrio molitor). Foods 2023, 12, 4356. https://doi.org/10.3390/foods12234356
Magnani M, Claret A, Gisbert E, Guerrero L. Consumer Expectation and Perception of Farmed Rainbow Trout (Oncorhynchus mykiss) Fed with Insect Meal (Tenebrio molitor). Foods. 2023; 12(23):4356. https://doi.org/10.3390/foods12234356
Chicago/Turabian StyleMagnani, Martina, Anna Claret, Enric Gisbert, and Luis Guerrero. 2023. "Consumer Expectation and Perception of Farmed Rainbow Trout (Oncorhynchus mykiss) Fed with Insect Meal (Tenebrio molitor)" Foods 12, no. 23: 4356. https://doi.org/10.3390/foods12234356
APA StyleMagnani, M., Claret, A., Gisbert, E., & Guerrero, L. (2023). Consumer Expectation and Perception of Farmed Rainbow Trout (Oncorhynchus mykiss) Fed with Insect Meal (Tenebrio molitor). Foods, 12(23), 4356. https://doi.org/10.3390/foods12234356