Electrochemiluminescence Sensor Based on CTS-MoS2 and AB@CTS with Functionalized Luminol for Detection of Malathion Pesticide Residues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Apparatus
2.3. Preparation of CTS-MoS2
2.4. Preparation of AB@CTS
2.5. Preparation of AuNPs
2.6. Preparation of PLL-Luminol
2.7. Processing of the Actual Samples
2.8. Fabrication of ECL Aptasensor
3. Results
3.1. Characterization of Prepared Nanomaterials
3.2. Electrochemical Behavior of the Aptasensor
3.3. ECL Characterization of Different Modified Electrodes
3.4. Experiments of Optimization
3.5. Performance of ECL Aptasensor
3.6. Specificity, Repeatability, and Stability of the Aptasensor
3.7. Real Sample Analysis in Vegetables
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Govindasamy, M.; Rajaji, U.; Chen, S.M.; Kumaravel, S.; Chen, T.W.; Al-Hemaid, F.M.A.; Ali, M.A.; Elshikh, M.S. Detection of Pesticide Residues (Fenitrothion) in Fruit Samples Based On Niobium Carbide@Molybdenum Nanocomposite: An Electrocatalytic Approach. Anal. Chim. Acta 2018, 1030, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Esen, C.; Czulak, J.; Cowen, T.; Piletska, E.; Piletsky, S.A. Highly Efficient Abiotic Assay Formats for Methyl Parathion: Molecularly Imprinted Polymer Nanoparticle Assay as an Alternative to Enzyme-Linked Immunosorbent Assay. Anal. Chem. 2019, 91, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Preu, M.; Guyot, D.; Petz, M. Development of a gas chromatography-mass spectrometry method for the analysis of aminoglycoside antibiotics using experimental design for the optimisation of the derivatisation reactions. J. Chromatogr. A 1998, 818, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.M.; Sanchez, R.; Diaz-Plaza, E.M.; Villen, J.; Vazquez, A. Large volume GC injection for the analysis of organophosphorus pesticides in vegetables using the through oven transfer adsorption desorption (TOTAD) interface. J. Agric. Food Chem. 2006, 54, 1997–2002. [Google Scholar] [CrossRef]
- Khay, S.; Abd El-Aty, A.M.; Choi, J.H.; Shin, E.H.; Shin, H.C.; Kim, J.S.; Chang, B.J.; Lee, C.H.; Shin, S.C.; Jeong, J.Y.; et al. Simultaneous determination of pyrethroids from pesticide residues in porcine muscle and pasteurized milk using GC. J. Sep. Sci. 2009, 32, 244–251. [Google Scholar] [CrossRef]
- Lehotay, S.J.; Lightfield, A.R. Simultaneous analysis of aminoglycosides with many other classes of drug residues in bovine tissues by ultrahigh-performance liquid chromatography-tandem mass spectrometry using an ion-pairing reagent added to final extracts. Anal. Bioanal. Chem. 2018, 410, 1095–1109. [Google Scholar] [CrossRef]
- Abd-Alrahman, S.H. Residue and dissipation kinetics of thiamethoxam in a vegetable-field ecosystem using QuEChERS methodology combined with HPLC-DAD. Food Chem. 2014, 159, 1–4. [Google Scholar] [CrossRef]
- Oertel, R.; Neumeister, V.; Kirch, W. Hydrophilic interaction chromatography combined with tandem-mass spectrometry to determine six aminoglycosides in serum. J. Chromatogr. A 2004, 1058, 197–201. [Google Scholar] [CrossRef]
- Chatzimitakos, T.G.; Karali, K.K.; Stalikas, C.D. Magnetic graphene oxide as a convenient nanosorbent to streamline matrix solid-phase dispersion towards the extraction of pesticides from vegetables and their determination by GC–MS. Microchem. J. 2019, 151, 104247. [Google Scholar] [CrossRef]
- Jamshidi, B.; Mohajerani, E.; Jamshidi, J.; Minaei, S.; Sharifi, A. Non-destructive detection of pesticide residues in cucumber using visible/near-infrared spectroscopy. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015, 32, 857–863. [Google Scholar] [CrossRef]
- Chen, Y.P.; Zou, M.; Qi, C.; Xie, M.X.; Wang, D.N.; Wang, Y.F.; Xue, Q.; Li, J.F.; Chen, Y. Immunosensor based on magnetic relaxation switch and biotin-streptavidin system for the detection of Kanamycin in milk. Biosens. Bioelectron. 2013, 39, 112–117. [Google Scholar] [CrossRef]
- Qian, G.; Wang, L.; Wu, Y.; Zhang, Q.; Sun, Q.; Liu, Y.; Liu, F. A monoclonal antibody-based sensitive enzyme-linked immunosorbent assay (ELISA) for the analysis of the organophosphorous pesticides chlorpyrifos-methyl in real samples. Food Chem. 2009, 117, 364–370. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Q.; Chen, D.; Liu, Y.; Li, C.; Hu, B.; Du, D.; Liu, F. Development of a Specific Enzyme-Linked Immunosorbent Assay (ELISA) for the Analysis of the Organophosphorous Pesticide Fenthion in Real Samples Based on Monoclonal Antibody. Anal. Lett. 2011, 44, 1591–1601. [Google Scholar] [CrossRef]
- Harischandra, N.R.; Pallavi, M.S.; Bheemanna, M.; PavanKumar, K.; Chandra Sekhara Reddy, V.; Udaykumar, N.R.; Paramasivam, M.; Yadav, S. Simultaneous determination of 79 pesticides in pigeonpea grains using GC-MS/MS and LC-MS/MS. Food Chem. 2021, 347, 128986. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Rosado, T.; Barroso, M.; Vieira, D.N.; Gallardo, E. Organophosphorus pesticide determination in biological specimens: Bioanalytical and toxicological aspects. Int. J. Legal Med. 2019, 133, 1763–1784. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Niu, C.; Shang, Y.; Xu, Y.; Huang, K.; Zhang, X.; Xu, W. A ‘turn-on’ ultra-sensitive multiplex real-time fluorescent quantitative biosensor mediated by a universal primer and probe for the detection of genetically modified organisms. Food Chem. 2020, 330, 127247. [Google Scholar] [CrossRef]
- Majid, Z.; Zhang, Q.; Yang, Z.; Che, H.; Cheng, N. A Multi-Enzyme Cascade Response for the Colorimetric Recognition of Organophosphorus Pesticides Utilizing Core-Shell Pd@Pt Nanoparticles with High Peroxidase-like Activity. Foods 2023, 12, 3319. [Google Scholar] [CrossRef]
- Zhai, B.; Huang, K.; Wang, H.; Su, D.; Xu, Y. Highly Sensitive and Selective Copper (II)-Catalyzed Dual-DNAzyme Colorimetric Biosensor Based on Exonuclease III-Mediated Cyclical Assembly. Catalysts 2021, 11, 1352. [Google Scholar] [CrossRef]
- Chai, X.; Zhang, L.; Tian, Y. Ratiometric electrochemical sensor for selective monitoring of cadmium ions using biomolecular recognition. Anal. Chem. 2014, 86, 10668–10673. [Google Scholar] [CrossRef]
- Li, S.; Wu, X.; Liu, C.; Yin, G.; Luo, J.; Xu, Z. Application of DNA aptamers as sensing layers for detection of carbofuran by electrogenerated chemiluminescence energy transfer. Anal. Chim. Acta 2016, 941, 94–100. [Google Scholar] [CrossRef]
- Zhuo, Y.; Wang, H.J.; Lei, Y.M.; Zhang, P.; Liu, J.L.; Chai, Y.Q.; Yuan, R. Electrochemiluminescence biosensing based on different modes of switching signals. Analyst 2018, 143, 3230–3248. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, R.; Minhaz, U.A. Electrochemiluminescence study of AuNPs/CdTe-QDs/SWCNTs/chitosan nanocomposite modified carbon nanofiber screen-printed electrode with [Ru(bpy)3]2+/TPrA. Inorg. Chem. Commun. 2019, 106, 54–60. [Google Scholar]
- Chen, H.; Li, W.; Zhao, P.; Nie, Z.; Yao, S. A CdTe/CdS quantum dots amplified graphene quantum dots anodic electrochemiluminescence platform and the application for ascorbic acid detection in fruits. Electrochim. Acta 2015, 178, 407–413. [Google Scholar] [CrossRef]
- Chen, S.; Chen, X.; Xia, T.; Ma, Q. A novel electrochemiluminescence sensor for the detection of nitroaniline based on the nitrogen-doped graphene quantum dots. Biosens. Bioelectron. 2016, 85, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Po, C.Y.; Pradeep, K.P.; Li, C.H.; Ting, Y.X.; Yasser, A.G.; Chien, T.H. Hydrothermal Synthesis of Functionalized Carbon Nanodots and Their Clusters as Ionic Probe for High Sensitivity and Selectivity for Sulfate Anions with Excellent Detection Level. Polymers 2023, 15, 2655. [Google Scholar]
- Mayer, M.; Takegami, S.; Neumeier, M.; Rink, S.; Jacobi von Wangelin, A.; Schulte, S.; Vollmer, M.; Griesbeck, A.G.; Duerkop, A.; Baeumner, A.J. Electrochemiluminescence Bioassays with a Water-Soluble Luminol Derivative Can Outperform Fluorescence Assays. Angew. Chem. Int. Ed. Engl. 2018, 57, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, N.; Li, J.; Li, M.; Wang, G.; Wang, W.; Fan, Y.; Jiang, S.; Chen, G.; Zhang, Y.; et al. A novel umami electrochemical biosensor based on AuNPs@ZIF-8/Ti3C2 MXene immobilized T1R1-VFT. Food Chem. 2022, 397, 133838. [Google Scholar] [CrossRef]
- Wang, D.; Liang, Y.; Su, Y.; Shang, Q.; Zhang, C. Sensitivity enhancement of cloth-based closed bipolar electrochemiluminescence glucose sensor via electrode decoration with chitosan/multi-walled carbon nanotubes/graphene quantum dots-gold nanoparticles. Biosens. Bioelectron. 2019, 130, 55–64. [Google Scholar] [CrossRef]
- Männistö, M.; Vanderkerken, S.; Toncheva, V.; Elomaa, M.; Ruponen, M.; Schacht, E.; Urtti, A. Structure–activity relationships of poly(l-lysines): Effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery. J. Control. Release 2002, 83, 169–182. [Google Scholar] [CrossRef]
- Kankariya, Y.; Chatterjee, B. Biomedical Application of Chitosan and Chitosan Derivatives: A Comprehensive Review. Curr. Pharm. Des. 2023, 29, 1311–1325. [Google Scholar] [CrossRef]
- Pradeep, K.P.; Jen, M.Y.; Yen, H.C.; Sun, W.W. Modification of different molecular weights of chitosan by p-Coumaric acid: Preparation, characterization and effect of molecular weight on its water solubility and antioxidant property. Int. J. Biol. Macromol. 2019, 136, 661–667. [Google Scholar]
- Laura, G.; Manuel, V.S.; Cristina, G.S.; Daniel, G.N.; Emilio, M.P.; Tania, G.M.; Encarnación, L.; Mónica, L. MoS2-Carbon Nanodots as a New Electrochemiluminescence Platform for Breast Cancer Biomarker Detection. Biosensors 2023, 13, 348. [Google Scholar]
- Shyang, P.H.; Natasha, A.K.; Minhaz, U.A. Development of a gliadin immunosensor incorporating gold nanourchin, molybdenum disulfide, titanium dioxide, and Nafion for enhanced electrochemiluminescence. Microchem. J. 2023, 193, 109059. [Google Scholar]
- Güner, A.; Çevik, E.; Şenel, M.; Alpsoy, L. An electrochemical immunosensor for sensitive detection of Escherichia coli O157:H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chem. 2017, 229, 358–365. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, L.; Tan, X.; Zhao, G.; Xie, X.; Du, G. A robust electrochemical immunosensor based on hydroxyl pillar[5]arene@AuNPs@g-C3N4 hybrid nanomaterial for ultrasensitive detection of prostate specific antigen. Biosens. Bioelectron. 2018, 112, 31–39. [Google Scholar] [CrossRef]
- Jing, W.; Wang, Y.; Yang, Y.; Wang, Y.; Ma, G.; Wang, S.; Tao, N. Time-Resolved Digital Immunoassay for Rapid and Sensitive Quantitation of Procalcitonin with Plasmonic Imaging. ACS Nano 2019, 13, 8609–8617. [Google Scholar] [CrossRef]
- Deng, P.; Xu, Z.; Feng, Y. Highly sensitive and simultaneous determination of ascorbic acid and rutin at an acetylene black paste electrode coated with cetyltrimethyl ammonium bromide film. J. Electroanal. Chem. 2012, 683, 47–54. [Google Scholar] [CrossRef]
- Deng, P.; Xu, Z.; Feng, Y. Acetylene black paste electrode modified with graphene as the voltammetric sensor for selective determination of tryptophan in the presence of high concentrations of tyrosine. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 35, 54–60. [Google Scholar] [CrossRef]
- Nimai, S.; Zhang, H.; Wu, Z.; Li, N.; Lai, B. Efficient degradation of sulfamethoxazole by acetylene black activated peroxydisulfate. Chin. Chem. Lett. 2020, 31, 2657–2660. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Zhang, Y.; Qin, D.; Zheng, Z.; Zhu, G.; Lv, Y.; Liu, Z.; Dong, Z.; Liao, X.; et al. The degradation behaviour, residue distribution, and dietary risk assessment of malathion on vegetables and fruits in China by GC-FPD. Food Control 2020, 107, 106754. [Google Scholar] [CrossRef]
- Singh, S.; Tripathi, P.; Kumar, N.; Nara, S. Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme. Biosens. Bioelectron. 2017, 92, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, C.D.L.; Poppi, R.J. Detection of malathion in food peels by surface-enhanced Raman imaging spectroscopy and multivariate curve resolution. Anal. Chim. Acta 2015, 879, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Amatatongchai, M.; Sroysee, W.; Sodkrathok, P.; Kesangam, N.; Chairam, S.; Jarujamrus, P. Novel three-Dimensional molecularly imprinted polymer-coated carbon nanotubes (3D-CNTs@MIP) for selective detection of profenofos in food. Anal. Chim. Acta 2019, 1076, 64–72. [Google Scholar] [CrossRef] [PubMed]
Method | LOD (ng/mL) | Detection Range (ng/mL) | Reference |
---|---|---|---|
Gas chromatography | 10 | 10~104 | [40] |
Colorimetry | 60 | 10~105 | [41] |
Raman spectra | 123 | 1.23 × 102~1.23 × 105 | [42] |
Electrochemistry | 0.75 | 3.73~7.47 × 104 | [43] |
ECL | 2.75 × 10−3 | 1.0 × 10−2~1.0 × 103 | This work |
Samples | Addition/(ng/mL) | Detection/(ng/mL) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Cabbage | 0 | 0 | - | - |
10 | 9.421 | 94.21 | 1.59 | |
100 | 98.337 | 98.35 | 1.94 | |
Lettuce | 0 | 0 | - | - |
10 | 9.739 | 97.39 | 1.43 | |
100 | 99.634 | 99.63 | 2.01 | |
Spinach | 0 | 0 | - | - |
10 | 9.945 | 99.45 | 1.38 | |
100 | 97.482 | 97.48 | 2.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Li, C.; Sun, J.; Sun, X.; Hu, G. Electrochemiluminescence Sensor Based on CTS-MoS2 and AB@CTS with Functionalized Luminol for Detection of Malathion Pesticide Residues. Foods 2023, 12, 4363. https://doi.org/10.3390/foods12234363
Yu Z, Li C, Sun J, Sun X, Hu G. Electrochemiluminescence Sensor Based on CTS-MoS2 and AB@CTS with Functionalized Luminol for Detection of Malathion Pesticide Residues. Foods. 2023; 12(23):4363. https://doi.org/10.3390/foods12234363
Chicago/Turabian StyleYu, Zhiping, Chengqiang Li, Jiashuai Sun, Xia Sun, and Guodong Hu. 2023. "Electrochemiluminescence Sensor Based on CTS-MoS2 and AB@CTS with Functionalized Luminol for Detection of Malathion Pesticide Residues" Foods 12, no. 23: 4363. https://doi.org/10.3390/foods12234363
APA StyleYu, Z., Li, C., Sun, J., Sun, X., & Hu, G. (2023). Electrochemiluminescence Sensor Based on CTS-MoS2 and AB@CTS with Functionalized Luminol for Detection of Malathion Pesticide Residues. Foods, 12(23), 4363. https://doi.org/10.3390/foods12234363