Characterization of Lactic Acid Bacteria and Yeast from Grains as Starter Cultures for Gluten-Free Sourdough
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of LAB and Yeast from Fermented GF Dough
2.2. Characterization of LAB and Yeast Isolates
2.2.1. Acidification
2.2.2. Bacterial Growth in Varied pH Broths
2.2.3. EPS Production
2.2.4. Gas Production Ability
2.3. Physicochemical Properties of GF Sourdough Bread
2.3.1. GF Sourdough Bread Preparation
2.3.2. GF Dough Evaluation
2.3.3. GF Bread Evaluation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Identification of Bacterial Isolates
3.2. Functional Properties of Isolate Strains
3.2.1. Acidification Capacity and Acid Tolerance
3.2.2. EPS
3.2.3. Carbohydrate Utilization
3.2.4. Gas Production
3.3. GF Sourdough Bread Quality
3.3.1. GF Dough Properties
3.3.2. GF Bread Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cappelli, A.; Oliva, N.; Cini, E. A systematic review of gluten-free dough and bread: Dough rheology, bread characteristics, and improvement strategies. Appl. Sci. 2020, 10, 6559. [Google Scholar] [CrossRef]
- Scherf, K.A.; Koehler, P.; Wieser, H. Gluten and wheat sensitivities—An overview. J. Cereal Sci. 2016, 67, 2–11. [Google Scholar] [CrossRef]
- Di Sabatino, A.; Corazza, G.R. Nonceliac gluten sensitivity: Sense or sensibility? Ann. Intern. Med. 2012, 156, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Moroni, A.V.; Dal Bello, F.; Arendt, E.K. Sourdough in gluten-free bread-making: An ancient technology to solve a novel issue? Food Microbiol. 2009, 26, 676–684. [Google Scholar] [CrossRef]
- Anton, A.A.; Artfield, S.D. Hydrocolloids in gluten-free breads: A review. Int. J. Food Sci. Nutr. 2008, 59, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Naqash, F.; Gani, A.; Gani, A.; Masoodi, F.A. Gluten-free baking: Combating the challenges—A review. Trends Food Sci. Technol. 2017, 66, 98–107. [Google Scholar] [CrossRef]
- Korus, J.; Witczak, M.; Ziobro, R.; Juszczak, L. The impact of resistant starch on characteristics of gluten-free dough and bread. Food Hydrocoll. 2009, 23, 988–995. [Google Scholar] [CrossRef]
- Mohammadi, M.; Azizi, M.; Neyestani, T.R.; Hosseini, H.; Mortazavian, A.M. Development of gluten-free bread using guar gum and transglutaminase. J. Ind. Eng. Chem. 2015, 21, 1398–1402. [Google Scholar] [CrossRef]
- Kajzer, M.; Diowksz, A. The clean label concept: Novel approaches in gluten-free breadmaking. Appl. Sci. 2021, 11, 6129. [Google Scholar] [CrossRef]
- Vargas, M.C.A.; Simsek, S. Clean label in bread. Foods 2021, 10, 2054. [Google Scholar] [CrossRef]
- Bender, D.; Fraberger, V.; Szepasvári, P.; D’Amico, S.; Tömösközi, S.; Cavazzi, G.; Jäger, H.; Domig, K.J.; Schoenlechner, R. Effects of selected lactobacilli on the functional properties and stability of gluten-free sourdough bread. Eur. Food Res. Technol. 2018, 244, 1037–1046. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; Neysens, P. The sourdough microflora: Biodiversity and metabolic interactions. Trends Food Sci. Technol. 2005, 16, 43–56. [Google Scholar] [CrossRef]
- Arendt, E.K.; Ryan, L.A.; Dal Bello, F. Impact of sourdough on the texture of bread. Food Microbiol. 2007, 24, 165–174. [Google Scholar] [CrossRef]
- De Vuyst, L.; Harth, H.; Van Kerrebroeck, S.; Leroy, F. Yeast diversity of sourdoughs and associated metabolic properties and functionalities. Int. J. Food Microbiol. 2016, 239, 26–34. [Google Scholar] [CrossRef]
- Vogelmann, S.A.; Seitter, M.; Singer, U.; Brandt, M.J.; Hertel, C. Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters. Int. J. Food Microbiol. 2009, 130, 205–212. [Google Scholar] [CrossRef]
- Moroni, A.V.; Arendt, E.K.; Morrissey, J.P.; Dal Bello, F. Development of buckwheat and teff sourdoughs with the use of commercial starters. Int. J. Food Microbiol. 2010, 142, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Galle, S.; Schwab, C.; Arendt, E.; Gänzle, M. Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J. Agric. Food Chem. 2010, 58, 5834–5841. [Google Scholar] [CrossRef] [PubMed]
- Moroni, A.V.; Arendt, E.K.; Dal Bello, F. Biodiversity of lactic acid bacteria and yeasts in spontaneously fermented buckwheat and teff sourdoughs. Food Microbiol. 2011, 28, 497–502. [Google Scholar] [CrossRef]
- Galle, S.; Arendt, E.K. Exopolysaccharides from sourdough lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 2014, 54, 891–901. [Google Scholar] [CrossRef]
- Meignen, B.; Onno, B.; Gélinas, P.; Infantes, M.; Guilois, S.; Cahagnier, B. Optimization of sourdough fermentation with Lactobacillus brevis and baker’s yeast. Food Microbiol. 2001, 18, 239–245. [Google Scholar] [CrossRef]
- Müller, D.C.; Mischler, S.; Schönlechner, R.; Miescher Schwenninger, S. Multiple techno-functional characteristics of Leuconostoc and their potential in sourdough fermentations. Microorganisms 2021, 9, 1633. [Google Scholar] [CrossRef]
- Coda, R.; Xu, Y.; Moreno, D.S.; Mojzita, D.; Nionelli, L.; Rizzello, C.G.; Katina, K. Performance of Leuconostoc citreum FDR241 during wheat flour sourdough type I propagation and transcriptional analysis of exopolysaccharides biosynthesis genes. Food Microbiol. 2018, 76, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Paramithiotis, S.; Gioulatos, S.; Tsakalidou, E.; Kalantzopoulos, G. Interactions between Saccharomyces cerevisiae and lactic acid bacteria in sourdough. Process Biochem. 2006, 41, 2429–2433. [Google Scholar] [CrossRef]
- Clarke, C.I.; Arendt, E.K. A review of the application of sourdough technology to wheat breads. Adv. Food Nutr. Res. 2005, 49, 137–161. [Google Scholar] [CrossRef] [PubMed]
- Ogunsakin, A.O.; Vanajakshi, V.; Anu-Appaiah, K.A.; Vijayendra, S.V.N.; Walde, S.G.; Banwo, K.; Sanni, A.I.; Prabhasankar, P. Evaluation of functionally important lactic acid bacteria and yeasts from Nigerian sorghum as starter cultures for gluten-free sourdough preparation. LWT Food Sci. Technol. 2017, 82, 326–334. [Google Scholar] [CrossRef]
- Sánchez-Adriá, I.E.; Sanmartín, G.; Prieto, J.A.; Estruch, F.; Fortis, E.; Randez-Gil, F. Adaptive laboratory evolution for acetic acid-tolerance matches sourdough challenges with yeast phenotypes. Microbiol. Res. 2023, 277, 127487. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.L.; Thorsen, L.; Schwan, R.F.; Jespersen, L. Strain-specific probiotics properties of Lactobacillus fermentum, Lactobacillus plantarum and Lactobacillus brevis isolates from Brazilian food products. Food Microbiol. 2013, 36, 22–29. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C. Surviving the acid test: Responses of gram-positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 2003, 67, 429–453. [Google Scholar] [CrossRef]
- Bartkiene, E.; Vizbickiene, D.; Bartkevics, V.; Pugajeva, I.; Krungleviciute, V.; Zadeike, D.; Zavistanaviciute, P.; Juodeikiene, G. Application of Pediococcus acidilactici LUHS29 immobilized in apple pomace matrix for high value wheat-barley sourdough bread. LWT Food Sci. Technol. 2017, 83, 157–164. [Google Scholar] [CrossRef]
- Narendranath, N.V.; Thomas, K.C.; Ingledew, W.M. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J. Ind. Microbiol. Biotechnol. 2001, 26, 171–177. [Google Scholar] [CrossRef]
- Patel, A.; Prajapati, J. Food and health applications of exopolysaccharides produced by lactic acid Bacteria. Adv. Dairy Res. 2013, 1, 2. [Google Scholar]
- Kavitake, D.; Devi, P.B.; Shetty, P.H. Overview of exopolysaccharides produced by Weissella genus—A review. Int. J. Biol. Macromol. 2020, 164, 2964–2973. [Google Scholar] [CrossRef]
- Galli, V.; Venturi, M.; Coda, R.; Maina, N.H.; Granchi, L. Isolation and characterization of indigenous Weissella confusa for in situ bacterial exopolysaccharides (EPS) production in chickpea sourdough. Food Res. Int. 2020, 138, 109785. [Google Scholar] [CrossRef]
- Sturza, A.; Păucean, A.; Chis, M.S.; Mures, V.; Vodnar, D.C.; Man, S.M.; Urcan, A.C.; Rusu, I.E.; Fostoc, G.; Muste, S. Influence of buckwheat and buckwheat sprouts flours on the nutritional and textural parameters of wheat buns. Appl. Sci. 2020, 10, 7969. [Google Scholar] [CrossRef]
- Vogel, R.F.; Ehrmann, M.A.; Gänzle, M.G. Development and potential of starter lactobacilli resulting from exploration of the sourdough ecosystem. Antonie Leeuwenhoek 2002, 81, 631–638. [Google Scholar] [CrossRef]
- Gobbetti, M.; Corsetti, A.; Rossi, J. Maltose-fructose co-fermentation by Lactobacillus brevis subsp. lindneri CB1 fructose-negative strain. Appl. Microbiol. Biotechnol. 1995, 42, 939–944. [Google Scholar] [CrossRef]
- Heitmann, M.; Zannini, E.; Arendt, E. Impact of Saccharomyces cerevisiae metabolites produced during fermentation on bread quality parameters: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1152–1164. [Google Scholar] [CrossRef] [PubMed]
- Stolz, P.; BÃcker, G.; Vogel, R.F.; Hammes, W.P. Utilisation of maltose and glucose by lactobacilli isolated from sourdough. FEMS Microbiol. Lett. 1993, 109, 237–242. [Google Scholar] [CrossRef]
- Hou, G.G.; Hsu, Y. Comparing fermentation gas production between wheat and apple sourdough starters using the risograph. Food Biosci. 2013, 3, 75–81. [Google Scholar] [CrossRef]
- Komlenić, D.K.; Ugarčić-Hardi, Ž.; Jukić, M.; Planinić, M.; Bucić-Kojić, A.; Strelec, I. Wheat dough rheology and bread quality effected by Lactobacillus brevis preferment, dry sourdough and lactic acid addition. Int. J. Food Sci. Technol. 2010, 45, 1417–1425. [Google Scholar] [CrossRef]
- De Vuyst, L.; Comasio, A.; Kerrebroeck, S.V. Sourdough production: Fermentation strategies, microbial ecology, and use of non-flour ingredients. Crit. Rev. Food Sci. Nutr. 2023, 63, 2447–2479. [Google Scholar] [CrossRef]
- De Vuyst, L.; Van Kerrebroeck, S.; Leroy, F. Microbial ecology and process technology of sourdough fermentation. Adv. Appl. Microbiol. 2017, 100, 49–160. [Google Scholar] [CrossRef]
- Ercolini, D.; Pontonio, E.; De Filippis, F.; Minervini, F.; La Storia, A.; Gobbetti, M.; Di Cagno, R. Microbial ecology dynamics during rye and wheat sourdough preparation. Appl. Environ. Microbiol. 2013, 79, 7827–7836. [Google Scholar] [CrossRef] [PubMed]
- Cakir, E.; Arici, M.; Durak, M.Z. Effect of starter culture sourdough prepared with Lactobacilli and Saccharomyces cerevisiae on the quality of hull-less barley-wheat bread. LWT 2021, 152, 112230. [Google Scholar] [CrossRef]
- Sevgili, A.; Erkmen, O.; Koçaslan, S. Identification of lactic acid bacteria and yeasts from traditional sourdoughs and sourdough production by enrichment. Czech J. Food Sci. 2021, 39, 312–318. [Google Scholar] [CrossRef]
- Elhariry, H.M.; Mahmoud, R.M.; Hassan, A.A.; Aly, M.A. Development of co-culture sourdough systems for improving bread quality and delaying staling. Food Biotechnol. 2011, 25, 252–272. [Google Scholar] [CrossRef]
- Hanis-Syazwani, M.; Bolarinwa, I.F.; Lasekan, O.; Muhammad, K. Influence of starter culture on the physicochemical properties of rice bran sourdough and physical quality of sourdough bread. Food Res. 2018, 2, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jia, B.; Sun, X.; Ai, J.; Wang, L.; Wang, C.; Zhao, F.; Zhan, J.; Huang, W. Effect of initial pH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. J. Food Sci. 2015, 80, M800–M808. [Google Scholar] [CrossRef]
- Monteiro, J.S.; Farage, P.; Zandonadi, R.P.; Botelho, R.B.; de Oliveira, L.D.L.; Raposo, A.; Shakeel, F.; Alshehri, S.; Mahdi, W.A.; Araújo, W.M. A systematic review on gluten-free bread formulations using specific volume as a quality indicator. Foods 2021, 10, 614. [Google Scholar] [CrossRef]
- Cappa, C.; Lucisano, M.; Raineri, A.; Fongaro, L.; Foschino, R.; Mariotti, M. Gluten-free bread: Influence of sourdough and compressed yeast on proofing and baking properties. Foods 2016, 5, 69. [Google Scholar] [CrossRef]
- Demirkesen, I.; Sumnu, G.; Sahin, S. Image analysis of gluten-free breads prepared with chestnut and rice flour and baked in different ovens. Food Bioprocess. Technol. 2013, 6, 1749–1758. [Google Scholar] [CrossRef]
- Gobbetti, M.; Corsetti, A.; Rossi, J. Interaction between lactic acid bacteria and yeasts in sourdough using a rheofermentometer. World J. Microbiol. Biotechnol. 1995, 11, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Inoue, N.; Hagiwara, S.; Yang, Z.; Kato, M.; Hagiwara, M. Relationship between antioxidant activity and flour and hull color in Tartary buckwheat. Fagopyrum 2004, 21, 51–57. [Google Scholar]
- Ikeda, K. Buckwheat: Composition. chemistry, and processing. Adv. Food Nutr. Res. 2002, 44, 395–434. [Google Scholar] [CrossRef]
- Ua-Arak, T.; Jakob, F.; Vogel, R.F. Influence of levan-producing acetic acid bacteria on buckwheat-sourdough breads. Food Microbiol. 2017, 65, 95–104. [Google Scholar] [CrossRef]
Source | Identification | API 50 CHL | 16S rRNA |
---|---|---|---|
Quinoa | Weissella confusa | 99.8% | 99.0% |
Corn | Leuconostoc citreum | 99.8% | 99.0% |
Quinoa | Lactobacillus brevis | 99.0% | 99.0% |
Bacteria | TTA (24 h) | TTA (48 h) | Exopolysaccharide (mg/mL) |
---|---|---|---|
Weissella confusa BAQ2 | 11.70 ± 0.90 a | 13.05 ± 0.90 a | 30.51 ± 8.57 a |
Leuconostoc citreum YC2 | 8.10 ± 0.00 c | 9.45 ± 0.45 c | 16.55 ± 0.64 b |
Lactobacillus brevis AQ2 | 10.35 ± 0.45 b | 10.8 ± 0.90 b | 2.06 ± 0.02 c |
KCTC3499 (Weissella confusa) | 8.78 ± 0.23 c | 12.38 ± 0.23 a | 24.35 ± 0.86 a |
KCTC3524 (Leuconostoc citreum) | 6.75 ± 0.45 d | 6.53 ± 0.23 d | 15.74 ± 0.07 b |
KCTC3102 (Lactobacillus brevis) | 4.05 ± 0.45 e | 5.63 ± 0.68 d | 1.98 ± 0.69 c |
Carbohydrate | Reaction | Carbohydrate | Reaction | ||||
---|---|---|---|---|---|---|---|
Weissella confusa BAQ2 | Leuconostoc citreum YC2 | Lactobacillus brevis AQ2 | Weissella confusa BAQ2 | Leuconostoc citreum YC2 | Lactobacillus brevis AQ2 | ||
Control | - | - | - | Esculine | + | + | + |
Glycerol | - | - | - | Salicin | + | - | + |
Erythritol | - | - | - | Cellobiose | + | + | + |
D-Arabinose | - | - | - | Maltose | + | + | + |
L-Arabinose | - | + | + | Lactose | - | - | + |
Ribose | - | - | + | Mellibiose | - | - | - |
D-xylose | + | - | + | Saccharose | - | + | + |
L-xylose | - | - | - | Trehalose | - | + | + |
Adonitol | - | - | - | Inulin | - | - | - |
β-Methyl-xyloside | - | - | - | Melezitose | - | - | - |
Galactose | + | - | + | D-Raffinose | - | - | - |
D-Glucose | + | + | + | Amidon | - | - | - |
D-Fructose | + | + | + | Glycogen | - | - | - |
D-Mannose | + | + | + | Xylitol | - | - | - |
L-Sorbose | - | - | - | β-Gentiobiose | + | - | + |
Rhamnose | - | - | - | D-Turanose | - | + | - |
Dulcitol | - | - | - | D-Lyxose | - | - | - |
Inositol | - | - | - | D-Tagatose | - | + | + |
Mannitol | - | + | - | D-Fucose | - | - | - |
Sorbitol | - | - | - | L-Fucose | - | - | - |
α-Methyl-D-Mannoside | - | - | - | D-Arabitol | - | - | - |
α-Methyl-D-Glucoside | - | + | - | L-Arabitol | - | - | - |
N-Acetyl glucosamine | + | + | + | Gluconate | - | - | - |
Amygdalin | + | + | + | 2-Ceto-gluconate | - | - | - |
Arbutine | + | - | + | 5-Ceto-gluconate | - | - | + |
Bread Samples | Specific Volume (mL/g) | Moisture (%) | Texture Properties | Color Analysis | |||
---|---|---|---|---|---|---|---|
Hardness | Springiness | L* | a* | b* | |||
BWSD0 | 1.044 ± 0.09 a | 48.61 ± 0.44 a | 1326.28 ± 210.75 b | 0.809 ± 0.00 b | 61.84 ± 0.26 a | 2.99 ± 0.06 b | 10.99 ± 0.05 c |
BWSD8 | 1.206 ± 0.08 a | 44.77 ± 0.29 c | 1905.55 ± 111.24 a | 0.903 ± 0.00 a | 59.52 ± 0.05 b | 2.84 ± 0.01 c | 11.28 ± 0.02 b |
BWSD48 | 1.212 ± 0.08 a | 45.82 ± 0.36 b | 1919.97 ± 149.70 a | 0.906 ± 0.03 a | 59.31 ± 0.09 b | 3.66 ± 0.04 a | 11.54 ± 0.08 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, S.-H.; Park, J.; Sung, J.M.; Choi, E.-J.; Choi, Y.-S.; Park, J.-D. Characterization of Lactic Acid Bacteria and Yeast from Grains as Starter Cultures for Gluten-Free Sourdough. Foods 2023, 12, 4367. https://doi.org/10.3390/foods12234367
Woo S-H, Park J, Sung JM, Choi E-J, Choi Y-S, Park J-D. Characterization of Lactic Acid Bacteria and Yeast from Grains as Starter Cultures for Gluten-Free Sourdough. Foods. 2023; 12(23):4367. https://doi.org/10.3390/foods12234367
Chicago/Turabian StyleWoo, Seung-Hye, Jiwoon Park, Jung Min Sung, Eun-Ji Choi, Yun-Sang Choi, and Jong-Dae Park. 2023. "Characterization of Lactic Acid Bacteria and Yeast from Grains as Starter Cultures for Gluten-Free Sourdough" Foods 12, no. 23: 4367. https://doi.org/10.3390/foods12234367
APA StyleWoo, S. -H., Park, J., Sung, J. M., Choi, E. -J., Choi, Y. -S., & Park, J. -D. (2023). Characterization of Lactic Acid Bacteria and Yeast from Grains as Starter Cultures for Gluten-Free Sourdough. Foods, 12(23), 4367. https://doi.org/10.3390/foods12234367