Effects of Frozen Storage Time, Thawing Treatments, and Their Interaction on the Rheological Properties of Non-Fermented Wheat Dough
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wheat Flour
2.2. Dough Preparation
2.2.1. Dough Mixing and Freezing
2.2.2. Thawing Treatments
2.3. Measurement of Dough’s Rheological Properties
2.3.1. Dynamic Strain Sweep
2.3.2. Dynamic Frequency Sweep
2.3.3. Creep-Recovery Measurements
2.4. Texture Profile Analysis
2.5. Microstructure Observation (SEM)
2.6. Statistical Analysis
3. Results
3.1. Dynamic Rheological Properties of the Dough
3.1.1. Dynamic Strain Sweep
3.1.2. Dynamic Frequency Sweep
3.1.3. Creep and Recovery Measurements
3.2. Texture Profile Analysis (TPA) of Non-Fermented Dough
3.3. Microstructure
3.4. Multi-ANOVA Analysis
3.5. Relationship between TPA Properties and Rheological Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, K.; Chi, C.; She, Z.; Liu, X.; Zhang, Y.; Wang, H.; Zhang, H. Understanding How Starch Constituent in Frozen Dough Following Freezing-Thawing Treatment Affected Quality of Steamed Bread. Food Chem. 2022, 366, 130614. [Google Scholar] [CrossRef] [PubMed]
- Omedi, J.O.; Huang, W.; Zhang, B.; Li, Z.; Zheng, J. Advances in Present-Day Frozen Dough Technology and Its Improver and Novel Biotech Ingredients Development Trends—A Review. Cereal Chem. 2019, 96, 34–56. [Google Scholar] [CrossRef]
- Meziani, S.; Kaci, M.; Jacquot, M.; Jasniewski, J.; Ribotta, P.; Muller, J.M.; Ghoul, M.; Desobry, S. Effect of Freezing Treatments and Yeast Amount on Sensory and Physical Properties of Sweet Bakery Products. J. Food Eng. 2012, 111, 336–342. [Google Scholar] [CrossRef]
- Kondakci, T.; Zhang, J.W.; Zhou, W. Impact of Flour Protein Content and Freezing Conditions on the Quality of Frozen Dough and Corresponding Steamed Bread. Food Bioprocess Technol. 2015, 8, 1877–1889. [Google Scholar] [CrossRef]
- Yi, J.; Kerr, W.L. Combined Effects of Freezing Rate, Storage Temperature and Time on Bread Dough and Baking Properties. Food Sci. Technol. 2009, 42, 1474–1483. [Google Scholar] [CrossRef]
- Esselink, E.F.J.; Van Aalst, H.; Maliepaard, M.; Van Duynhoven, J.P.M. Long-Term Storage Effect in Frozen Dough by Spectroscopy and Microscopy. Cereal Chem. 2003, 80, 396–403. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, B.; Zhang, Y.; Rasheed, M.; Gu, S.; Guo, B. Effect of Freezing Rate and Frozen Storage on the Rheological Properties and Protein Structure of Non-Fermented Doughs. J. Food Eng. 2021, 293, 110377. [Google Scholar] [CrossRef]
- Lou, X.; Yue, C.; Luo, D.; Li, P.; Zhao, Y.; Xu, Y.; Wang, L.; Bai, Z. Effects of Natural Inulin on the Rheological, Physicochemical and Structural Properties of Frozen Dough during Frozen Storage and Its Mechanism. LWT-Food Sci. Technol. 2023, 184, 114973. [Google Scholar] [CrossRef]
- Shan, S.; Campanella, O.H. The Effects of Freeze-Thaw Cycles on the Rheological Properties of Yeasted and Non-Yeasted Frozen Bread Doughs. J. Cereal Sci. 2023, 112, 103691. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Liu, Y.; Zhang, H. Effects of Multiple Freeze—Thaw Cycles on the Quality of Frozen Dough. Cereal Sci. 2018, 95, 499–507. [Google Scholar] [CrossRef]
- Mohammadi, M.; Zoghi, A.; Azizi, M.H. Effect of Xylanase and Pentosanase Enzymes on Dough Rheological Properties and Quality of Baguette Bread. J. Food Qual. 2022, 2022, 2910821. [Google Scholar] [CrossRef]
- Chen, N.; Yang, Q.; Zhang, C.C.; Chen, H.Q. Impact of Basil Seed Gum on the Textural, Rheological Proper-ties, Water State, Gluten Depolymerization and Microstructure of Frozen Dough. J. Cereal Sci. 2023, 112, 103728. [Google Scholar] [CrossRef]
- Yang, S.; Jeong, S.; Lee, S. Elucidation of Rheological Properties and Baking Performance of Frozen Doughs under Different Thawing Conditions. J. Food Eng. 2020, 284, 110084. [Google Scholar] [CrossRef]
- Du, H.; Zheng, X.; Han, X.; Zhang, J.; Li, L.; Liu, C.; Bian, K. Effects of Freezing Conditions and Thawing Methods on the Qualities Od Emptins Frozen Dough for Steamed Bread. Cereal Feed. Ind. 2015, 5, 14–18. [Google Scholar] [CrossRef]
- Peng, B.; Li, Y.; Ding, S.; Yang, J. Characterization of Textural, Rheological, Thermal, Microstructural, and Water Mobility in Wheat Flour Dough and Bread Affected by Trehalose. Food Chem. 2017, 233, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.M.; Li, B.; Han, S.Y.; Wu, H. Use of a Compound Modifier to Retard the Quality Deterioration of Frozen Dough and Its Steamed Bread. Food Res. Int. 2023, 172, 113229. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.T.; Yang, X.F.; Ji, Y.S.; Hu, B.; Li, W.G.; Zhong, X.Y.; Jiang, S.T.; Zheng, Z. Effects of Transglutaminase and Glucose Oxidase on the Properties of Frozen Dough: Water Distribution, Rheological Properties, and Microstructure. J. Cereal Sci. 2023, 111, 103689. [Google Scholar] [CrossRef]
- Bai, N.; Guo, X.N.; Xing, J.J.; Zhu, K.X. Effect of Freeze-Thaw Cycles on the Physicochemical Properties and Frying Performance of Frozen Youtiao Dough. Food Chem. 2022, 386, 132854. [Google Scholar] [CrossRef]
- Han, R.; Lin, J.; Hou, J.; Xu, X.; Bao, S.; Wei, C.; Xing, J.; Wu, Y.; Liu, J. Ultrasonic Treatment of Corn Starch to Improve the Freeze-Thaw Resistance of Frozen Model Dough and Its Application in Steamed Buns. Foods 2023, 12, 1962. [Google Scholar] [CrossRef]
- He, T.; Zhang, B.; Cai, K.; Tao, H.; Xu, X.; Wang, H. Application of Magnetic Field for Improving the Frozen Deterioration of Wheat Dough. LWT-Food Sci. Technol. 2023, 186, 115227. [Google Scholar] [CrossRef]
- Xie, X.; Li, J.; Zhu, H.; Zhang, B.; Liang, D.; Cheng, L.; Hao, M.; Guo, F. Effects of Polydextrose on Rheological and Fermentation Properties of Frozen Dough and Quality of Chinese Steamed Bread. Starch 2023, 75, 2200153. [Google Scholar] [CrossRef]
- Yang, J.; Chen, L.; Guo, B.; Zhang, B.; Zhang, Y.; Li, M. Elucidation of Rheological Properties of Frozen Non-Fermented Dough with Different Thawing Treatments: The View from Protein Structure and Water Mobility. J. Cereal Sci. 2022, 108, 103572. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Mu, T.H.; Sun, H.N. Comparative Study of the Effect of Starches from Five Different Sources on the Rheological Properties of Gluten-Free Model Doughs. Carbohydrapolym 2017, 176, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Weipert, D. The benefits of basic rheometry in studying dough rheology. Cereal Chem. 1990, 67, 311. [Google Scholar]
- Havet, M.; Mankai, M.; Le Bail, A. Influence of the Freezing Condition on the Baking Performances of French Frozen Dough. J. Food Eng. 2000, 45, 139–145. [Google Scholar] [CrossRef]
- Dapčević Hadnadev, T.R.; Torbica, A.M.; Hadnadev, M.S. Influence of Buckwheat Flour and Carboxymethyl Cellulose on Rheological Behaviour and Baking Performance of Gluten-Free Cookie Dough. Food Bioprocess Technol. 2013, 6, 1770–1781. [Google Scholar] [CrossRef]
- Angioloni, A.; Balestra, F.; Pinnavaia, G.G.; Rosa, M.D. Small and Large Deformation Tests for the Evaluation of Frozen Dough Viscoelastic Behaviour. J. Food Eng. 2008, 87, 527–531. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Langstaff, T.M.; Berzonsky, W.A. Effect of Frozen Storage and Freeze-Thaw Cycles on the Rheological and Baking Properties of Frozen Doughs. Food Res. Int. 2003, 36, 365–372. [Google Scholar] [CrossRef]
- Gaikwad, S.; Arya, S.S. Influence of Frozen Storage on Quality of Multigrain Dough, Par Baked and Ready to Eat Thalipeeth with Additives. LWT-Food Sci. Technol. 2018, 96, 350–356. [Google Scholar] [CrossRef]
- Meziani, S.; Jasniewski, J.; Gaiani, C.; Ioannou, I.; Muller, J.M.; Ghoul, M.; Desobry, S. Effects of Freezing Treatments on Viscoelastic and Structural Behavior of Frozen Sweet Dough. J. Food Eng. 2011, 107, 358–365. [Google Scholar] [CrossRef]
- Wang, B.; Kong, B.; Li, F.; Liu, Q.; Zhang, H.; Xia, X. Changes in the Thermal Stability and Structure of Protein from Porcine Longissimus Dorsi Induced by Different Thawing Methods. Food Chem. 2020, 316, 126375. [Google Scholar] [CrossRef]
Moisture Content (%) | Protein Content (%) | Wet Gluten (%) | Ash Content (%) | Water Absorption (%) | Development Time (min) | Stability Time (min) | Maximum Resistance (BU) | Extensibility (mm) |
---|---|---|---|---|---|---|---|---|
13.1 ± 0.02 | 10.8 ± 0.04 | 32.6 ± 0.17 | 0.4 ± 0.01 | 65.8 ± 0.04 | 3.3 ± 0.12 | 2.2 ± 0.12 | 132 ± 2.60 | 211 ± 1.20 |
Frozen Storage Time (d) | Thawing Conditions | LVRs (%) | G′ (kPa) | G″ (kPa) | z′ | K′ | R2 |
---|---|---|---|---|---|---|---|
CK | 0.33 ± 0.03 | 6.88 ± 0.04 | 2.69 ± 0.08 | 0.249 ± 0.01 | 3.858 ± 0.061 | 0.995 ± 0.000 | |
1 | RT | 0.33a ± 0.03 | 5.99a ± 0.09 | 2.40a ± 0.10 | 0.248a ± 0.00 | 3.790a ± 0.006 | 0.993 ± 0.007 |
CT | 0.30a ± 0.02 | 5.85ab ± 0.02 | 2.31a ± 0.20 | 0.245a ± 0.00 | 3.776a ± 0.028 | 0.994 ± 0.003 | |
MT | 0.28a ± 0.02 | 5.34b ± 0.05 | 2.28a ± 0.10 | 0.258a ± 0.00 | 3.716a ± 0.040 | 0.991 ± 0.002 | |
30 | RT | 0.28A ± 0.01 | 5.54A ± 0.05 | 2.54B ± 0.01 | 0.265B ± 0.00 | 3.674A ± 0.006 | 0.991 ± 0.005 |
CT | 0.28A ± 0.01 | 5.16B ± 0.02 | 2.49B ± 0.10 | 0.270AB ± 0.01 | 3.672A ± 0.008 | 0.992 ± 0.006 | |
MT | 0.23B ± 0.00 | 4.86B ± 0.02 | 2.35B ± 0.07 | 0.293A ± 0.01 | 3.440B ± 0.043 | 0.994 ± 0.004 |
Frozen Storage Time (d) | Thawing Treatments | Creep-Phase | Recovery-Phase | ||
---|---|---|---|---|---|
Jmax | η0 | Je/Jmax | Jv/Jmax | ||
10−4 Pa−1 | 105 Pa−1 | (%) | (%) | ||
CK | 37.2 ± 3.8 | 1.8 ± 0.1 | 52.7 ± 0.0 | 47.2 ± 4.1 | |
1 | RT | 31.4a ± 0.0 | 2.1a ± 0.10 | 51.1a ± 0.6 | 48.8a ± 2.1 |
CT | 29.5a ± 2.7 | 2.3a ± 0.11 | 48.6a ± 2.1 | 50.7a ± 3.6 | |
MT | 26.9a ± 0.0 | 2.8a ± 0.34 | 48.3a ± 0.6 | 51.7a ± 1.9 | |
30 | RT | 18.3A ± 1.3 | 2.5B ± 0.33 | 46.4A ± 0.7 | 53.6A ± 2.0 |
CT | 13.7B ± 0.6 | 2.8B ± 0.14 | 45.1B ± 0.3 | 55.1A ± 1.5 | |
MT | 8.8C ± 0.9 | 3.1A ± 0.03 | 42.9C ± 0.1 | 55.4A ± 2.0 |
Frozen Storage Time (d) | Thawing Methods | Hardness (N) | Springiness | Adhesiveness (N s) |
---|---|---|---|---|
CK | 106.11 ± 3.33 | 0.85 ± 0.07 | 465.78 ± 10.66 | |
1 | RT | 126.22a ± 1.51 | 0.84a ± 0.00 | 512.73a ± 92.08 |
CT | 131.96a ± 5.52 | 0.84a ± 0.01 | 491.23a ± 10.71 | |
MT | 225.71b ± 4.07 | 0.83a ± 0.06 | 471.97a ± 141.51 | |
30 | RT | 267.0B ± 26.11 | 0.51A ± 0.0 | 359.0A ± 21.7 |
CT | 274.7B ± 20.69 | 0.48A ± 0.05 | 339.8A ± 8.8 | |
MT | 307.4A ± 12.93 | 0.38B± 0.09 | 355.54A ± 1.6 |
Source of Variation | Frozen Storage Time (S) | Thawing Treatment (T) | (S × T) | Error |
---|---|---|---|---|
df | 1 | 2 | 2 | 6 |
LVRs | 0.004 * | 0.003 * | 0.000 | 0 |
G′ | 8.58 × 105 * | 4.52 × 105 ** | 0.18 × 105 | 33,852 |
G” | 5.32 × 104 | 2.34 × 104 * | 0.34 × 104 | 25,000.083 |
z′ | 0.002 ** | 0.001 * | 7.65 × 10−5 | 2.76 × 10−5 |
K′ | 0.082 ** | 0.03 ** | 0.009 * | 0.001 |
Jmax | 7.36 × 10−6 ** | 4.95 × 10−7 ** | 6.27 × 10−8 | 3.63 × 10−8 |
η0 | 5.39 × 109 * | 4.39 × 109 * | 0.16 × 109 | 0.71 × 109 |
Je/Jmax | 63.895 ** | 10.521 * | 1.129 | 1.594 |
Jv/Jmax | 46.768 * | 6.464 | 0.032 | 7.379 |
Hardness | 4,660,115.114 ** | 572,728.769 ** | 91,845.983 * | 5836.077 |
Springiness | 0.48 ** | 0.007 ** | 0.004 * | 0.003 |
Adhesiveness | 5,314,297.02 * | 467,335.108 | 242,172.446 | 556,093.543 |
G′ | G” | z′ | K′ | Jmax | η0 | Je/Jmax | Jv/Jmax | Hardness | Springiness | Adhesiveness | |
LVRs | −0.051 | −0.405 | −0.109 | 0.071 | 0.28 | 0.1 | 0.277 | −0.379 | −0.222 | 0.508 * | −0.356 |
G′ | 0.186 | −0.888 ** | 0.861 ** | 0.855 ** | −0.865 ** | 0.891 ** | −0.781 ** | −0.860 ** | 0.711 ** | −0.665 * | |
G” | 0.077 | 0.092 | −0.221 | 0.012 | 0.035 | −0.166 | 0.279 | −0.419 | 0.409 | ||
z′ | −0.946 ** | −0.912 ** | 0.803 ** | −0.843 ** | 0.631 * | 0.890 ** | −0.835 ** | 0.652 * | |||
K′ | 0.861 ** | −0.711 ** | 0.864 ** | −0.616 * | −0.818 ** | 0.765 ** | −0.525 | ||||
Jmax | −0.766 ** | 0.947 ** | −0.760** | −0.925 ** | 0.962 ** | −0.749 ** | |||||
η0 | −0.729 ** | 0.565 | 0.790 ** | −0.634 * | 0.713 ** | ||||||
Je/Jmax | −0.866 ** | −0.890 ** | 0.877 ** | −0.762 ** | |||||||
Jv/Jmax | 0.735 ** | −0.727 ** | 0.755 ** | ||||||||
Hardness | −0.879 ** | 0.846 ** | |||||||||
Springiness | −0.763 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Zhang, Y.; Jiang, J.; Zhang, B.; Li, M.; Guo, B. Effects of Frozen Storage Time, Thawing Treatments, and Their Interaction on the Rheological Properties of Non-Fermented Wheat Dough. Foods 2023, 12, 4369. https://doi.org/10.3390/foods12234369
Yang J, Zhang Y, Jiang J, Zhang B, Li M, Guo B. Effects of Frozen Storage Time, Thawing Treatments, and Their Interaction on the Rheological Properties of Non-Fermented Wheat Dough. Foods. 2023; 12(23):4369. https://doi.org/10.3390/foods12234369
Chicago/Turabian StyleYang, Jingjie, Yingquan Zhang, Jikai Jiang, Bo Zhang, Ming Li, and Boli Guo. 2023. "Effects of Frozen Storage Time, Thawing Treatments, and Their Interaction on the Rheological Properties of Non-Fermented Wheat Dough" Foods 12, no. 23: 4369. https://doi.org/10.3390/foods12234369
APA StyleYang, J., Zhang, Y., Jiang, J., Zhang, B., Li, M., & Guo, B. (2023). Effects of Frozen Storage Time, Thawing Treatments, and Their Interaction on the Rheological Properties of Non-Fermented Wheat Dough. Foods, 12(23), 4369. https://doi.org/10.3390/foods12234369