Sensory Perception and Consumer Acceptance of Carrot Cultivars Are Influenced by Their Metabolic Profiles for Volatile and Non-Volatile Organic Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Consumer Acceptance Test and Panel Structure
2.3. Analyses of Volatiles
2.3.1. Volatile Analysis by HS-SPME-GC-FID
2.3.2. Volatile Analysis by SBSE-GC-MS
2.3.3. Data Processing for GC Analyses
2.4. Analysis of Non-Volatile Metabolites
2.4.1. Analysis of Sugars
2.4.2. Analyses of Polyacetylenes and Laserines
2.5. Statistics
3. Results
3.1. Consumer Acceptance Study
3.2. Analyses of Volatile Organic Compounds Using Two Different Sampling Methods
Identified Substance | CAS No | Substance Group | SI | RT- | HS-SPME-GC-FID (A) | RT- | SBSE-GC-MS (B) | Corr | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SPME | MW ± SD | Min | Max | N | SBSE | MW ± SD | Min | Max | N | A:B | ||||
α-pinene | 80-56-8 | monoterpene | l r c | 6.89 | 119.62 ± 72.74 | 28.74 | 264.97 | 16 | 7.30 | 5.73 ± 1.95 | 3.03 | 9.92 | 16 | 0.847 |
camphene | 79-92-5 | monoterpene | l r c | 8.32 | 8.16 ± 9.19 | 0 | 39.51 | 15 | n.i. | |||||
undecane | 1120-21-4 | alcane | l r c | 8.95 | 5.11 ± 7.78 | 0 | 27.86 | 11 | n.i. | |||||
hexanal | 66-25-1 | aldehyde | l r c | 9.07 | 0.42 ± 1.38 | 0 | 5.47 | 2 | 9.68 | 8.73 ± 3.18 | 5.22 | 16.42 | 16 | −0.190 |
β-pinene | 127-91-3 | monoterpene | l r c | 9.58 | 84.71 ± 92.69 | 0 | 351.30 | 15 | 10.16 | 3.29 ± 4.67 | 0 | 17.12 | 13 | 0.969 |
sabinene | 3387-41-5 | monoterpene | l r c | 10.41 | 37.52 ± 69.55 | 0 | 281.11 | 13 | 10.73 | 5.13 ± 6.51 | 0 | 26.15 | 12 | 0.929 |
β-myrcene | 123-35-3 | monoterpene | l r c | 11.75 | 194.91 ± 186.08 | 45.91 | 648.29 | 16 | 12.79 | 5.36 ± 6.25 | 0 | 19.19 | 15 | 0.984 |
limonene | 138-86-3 | monoterpene | l r c | n.i. | 14.09 | 9.11 ± 2.95 | 4.83 | 17.94 | 16 | |||||
β-phellandrene | 555-10-2 | monoterpene | l r c | n.i. | 14.83 | 0.14 ± 0.25 | 0 | 0.73 | 4 | |||||
limonene + b-phellandrene | mixture | monoterpenes | l r c | 13.11 | 129.33 ± 71.91 | 51.31 | 356.61 | 16 | n.i. | |||||
(E)-ocimene | 3779-61-1 | monoterpene | l r c | 14.17 | 21.92 ± 60.92 | 0 | 236.53 | 6 | n.i. | |||||
(E)-2-hexenal | 6728-26-3 | aldehyde | l r c | n.i. | 15.76 | 6.32 ± 2.06 | 3.91 | 10.88 | 16 | |||||
γ-terpinene | 99-85-4 | monoterpene | l r c | 14.57 | 146.03 ± 89.81 | 13.93 | 327.70 | 16 | 16.63 | 3.87 ± 2.76 | 0 | 9.06 | 14 | 0.929 |
(Z)-ocimene | 3338-55-4 | monoterpene | l r c | 14.76 | 14.50 ± 20.10 | 0 | 67.69 | 9 | n.i. | |||||
styrene | 100-42-5 | styrol | l r c | n.i. | 17.45 | 2.04 ± 0.33 | 1.23 | 2.57 | 16 | |||||
o-cymene | 527-84-4 | monoterpene | l r c | 15.40 | 65.98 ± 32.49 | 15.14 | 119.86 | 16 | 18.02 | 10.38 ± 6.94 | 2.76 | 25.61 | 16 | 0.430 |
terpinolene | 586-62-9 | monoterpene | l r c | 15.89 | 1004.40 ± 479.59 | 509.32 | 2471.94 | 16 | 18.65 | 75.55 ± 32.70 | 46.62 | 181.10 | 16 | 0.932 |
6-methyl-5-heptene-2-one | 100-93-0 | ketone | l r c | 17.58 | 3.60 ± 5.76 | 0 | 18.86 | 10 | 21.16 | 24.76 ± 20.55 | 7.15 | 76.00 | 16 | 0.125 |
hexanol | 111-27-3 | alcohol | l r c | n.i. | 21.86 | 3.16 ± 1.08 | 1.45 | 5.17 | 16 | |||||
allocimene | 3016-19-1 | monoterpene | l r c | 18.58 | 5.64 ± 16.85 | 0 | 65.67 | 3 | n.i. | |||||
1,3,8-p-menthatriene | 18368-95-1 | monoterpene | l r | 19.30 | 10.11 ± 5.97 | 4.08 | 29.39 | 16 | 23.57 | 56.39 ± 35.30 | 28.41 | 170.33 | 16 | 0.972 |
2-methylcoumarin | 92-48-8 | coumarine derivate | l r | 20.28 | 8.68 ± 5.35 | 3.31 | 26.44 | 16 | 25.07 | 46.51 ± 34.70 | 18.41 | 157.78 | 16 | 0.971 |
dimethylstyrol | 1195-32-0 | styrol | l r c | 20.57 | 16.62 ± 7.74 | 5.64 | 40.22 | 16 | 25.51 | 47.52 ± 24.22 | 22.82 | 124.30 | 16 | 0.920 |
β-sesquiphellandrene 1 | 20307-83-9 | sesquiterpene | l r c | 21.39 | 10.60 ± 14.53 | 0 | 57.65 | 14 | n.i. | |||||
γ-cadinene | 483-74-9 | sesquiterpene | l r | 22.10 | 6.35 ± 5.36 | 0 | 20.44 | 15 | n.i. | |||||
α-bergamotene | 17699-05-7 | sesquiterpene | l r | 24.17 | 7.57 ± 17.23 | 0 | 67.14 | 9 | n.i. | |||||
α-santalene | 512-61-8 | sesquiterpene | l r | 24.30 | 3.77 ± 6.38 | 0 | 24.83 | 9 | n.i. | |||||
(E)-linaloloxide | 34995-77-2 | monoterpene oxide | l r | n.i. | 26.33 | 3.12 ± 3.00 | 0 | 10.45 | 14 | |||||
furfural | 98-01-1 | aldehyde | l r c | n.i. | 26.90 | 17.99 ± 6.21 | 9.83 | 31.97 | 16 | |||||
2-ethylhexanol | 104-76-7 | alcohol | l r c | n.i. | 27.72 | 6.51 ± 1.62 | 4.34 | 10.53 | 16 | |||||
benzaldehyde | 100-52-7 | aldehyde | l r c | n.i. | 29.32 | 8.02 ± 1.48 | 5.30 | 11.21 | 16 | |||||
bornylacetate | 76-49-3 | monoterpene ester | l r c | 24.67 | 136.00 ± 304.17 | 11.99 | 1266.76 | 16 | 30.47 | 9.48 ± 1.92 | 6.75 | 13.47 | 16 | 0.286 |
β-caryophyllene | 87-44-5 | sesquiterpene | l r c | 25.09 | 697.97 ± 329.24 | 49.86 | 1123.34 | 16 | 31.89 | 11.26 ± 6.66 | 0.88 | 21.51 | 16 | 0.749 |
β-sesquiphellandrene 2 | 20307-83-9 | sesquiterpene | l r | 26.14 | 5.91 ± 6.34 | 0 | 26.86 | 16 | n.i. | |||||
(Z)-β-farnesene | 28973-97-9 | sesquiterpene | l r c | 26.42 | 46.45 ± 60.38 | 6.93 | 245.64 | 16 | n.i. | |||||
humulene | 6753-98-6 | sesquiterpene | l r | 26.94 | 56.63 ± 28.61 | 5.62 | 99.75 | 16 | n.i. | |||||
borneol | 507-70-0 | monoterpene alcohol | l r c | 27.73 | 4.56 ± 15.18 | 0.00 | 61.24 | 5 | n.i. | |||||
germacrene | 28387-44-2 | sesquiterpene | l r c | 27.95 | 40.19 ± 39.79 | 5.97 | 130.21 | 16 | n.i. | |||||
β-bisabolene | 15352-77-9 | sesquiterpene | l r c | 28.16 | 39.48 ± 14.79 | 8.80 | 58.01 | 16 | n.i. | |||||
(Z)-α-bisabolene | 495-62-5 | sesquiterpene | l r | 29.28 | 64.01 ± 43.36 | 3.47 | 139.59 | 16 | n.i. | |||||
geranylisobutyrate | 2345-26-8 | monoterpene ester | l r | 30.09 | 1.77 ± 2.12 | 0 | 7.14 | 9 | n.i. | |||||
p-cymen-8-ol | 1197-01-9 | monoterpene alcohol | l r c | 31.12 | 5.42 ± 3.23 | 0 | 13.61 | 15 | 41.59 | 128.22 ± 67.17 | 53.40 | 323.98 | 16 | 0.895 |
butyrolactone | 96-48-0 | lactone | l r c | n.i. | 33.60 | 2.43 ± 0.84 | 0.67 | 4.00 | 16 | |||||
acetophenone | 98-86-2 | ketone | l r c | n.i. | 34.46 | 351.22 ± 61.61 | 276.83 | 484.52 | 16 | |||||
furanmethanol | 98-00-0 | alkohol | l r c | n.i. | 34.76 | 13.96 ± 2.11 | 11.23 | 19.00 | 16 | |||||
isothiocyanato cyclohexane | 1122-82-3 | alcane | l r | n.i. | 35.07 | 3.31 ± 3.59 | 0.88 | 14.71 | 16 | |||||
phenyl-2-propanone | 103-79-7 | ketone | l r | n.i. | 37.16 | 3.70 ± 4.50 | 0.42 | 17.94 | 16 | |||||
dextrocarvone | 2244-16-8 | monoterpene | l r | n.i. | 37.47 | 6.80 ± 2.87 | 2.97 | 10.81 | 16 | |||||
1,2-cyclopentadione | 3008-40-0 | ketone | l r | n.i. | 38.83 | 7.21 ± 1.73 | 5.40 | 10.67 | 16 | |||||
p-methylacetophenone | 122-00-9 | ketone | l r | n.i. | 39.09 | 15.98 ± 8.78 | 7.05 | 45.21 | 16 | |||||
geranylacetone | 3796-70-1 | monoterpene ketone | l r | 31.22 | 7.49 ± 6.52 | 0.00 | 25.50 | 14 | 41.84 | 12.18 ± 4.77 | 6.27 | 19.42 | 16 | −0.094 |
geranylisovalerate | 109-20-6 | monoterpene ester | l r | 32.07 | 13.91 ± 12.78 | 0.00 | 48.76 | 14 | n.i. | |||||
β-ionon | 79-77-6 | carotinoid | l r c | 33.34 | 1.17 ± 1.99 | 0.00 | 6.58 | 7 | n.i. | |||||
caryophyllenoxid | 1139-30-6 | sesquiterpene | l r c | 34.53 | 4.32 ± 3.53 | 0.00 | 13.50 | 14 | n.i. | |||||
benzylacohol | 100-51-6 | alcohole | l r c | n.i. | 42.71 | 9.25 ± 5.86 | 3.36 | 24.59 | 16 | |||||
4-methylphenol | 106-44-5 | phenol | l r c | n.i. | 49.54 | 4.02 ± 1.53 | 0.58 | 6.71 | 16 | |||||
2-phenoxyethanol | 122-99-6 | alcohole | l r c | n.i. | 51.42 | 17.20 ± 3.90 | 8.12 | 23.00 | 16 | |||||
nonanoic acid | 112-05-0 | alcane acid | l r c | n.i. | 52.39 | 11.25 ± 2.75 | 7.39 | 18.56 | 16 | |||||
elemicine | 487-11-6 | phenylpropanoid | l r | n.i. | 54.08 | 16.00 ± 5.15 | 6.64 | 25.33 | 16 | |||||
myristicine | 607-91-0 | phenylpropanoid | l r c | 40.18 | 2.71 ± 10.03 | 0.00 | 40.21 | 2 | 55.11 | 7.90 ± 27.12 | 0.00 | 109.29 | 7 | 0.999 |
Number | 38 | 39 | 17 |
3.3. HPLC Analyses of Polyacetylenes, Laserines and Sugars
Cultivar | Falcarinol | Falcarindiol | Falcarindiol-3-Acetate | Laserin | Epilaserin |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | |
Nevis | 349.47 ± 8.21 d | 164.75 ± 2.84 i | 20.63 ± 1.24 i | 74.04 ±1.74 c | 27.12 ± 0.39 c |
Himuro Fuyugosi Gosun | 178.93 ± 2.88 i | 237.40 ± 3.08 efg | 30.37 ± 0.76 gh | 7.16 ±0.51 ij | 14.11 ± 0.91 cd |
Nantejska Polana | 430. 44 ± 8.32 b | 168.93 ±12.04 i | 32.82 ± 1.29 gh | 15.54 ± 0.20 fg | 14.07 ± 0.42 cd |
Nagykallo | 231.39 ± 2.70 fg | 333.90 ± 11.55 b | 48.15 ± 0.95 e | 22.26 ±0.98 f | 20.79 ± 0.28 cd |
Nantes Fancy | 132.41 ± 1.80 k | 201.01 ± 1.35 h | 27.15 ± 0.75 h | 9.81 ± 0.11 hij | 4.19 ± 0.41 d |
Nantes Liva | 463.05 ± 18.35 a | 255.30 ± 16.42 def | 36.62 ± 2.75 fg | 10.79 ± 0.40 hij | 3.81 ± 0.47 de |
Berlicumer Bercoro | 256.57 ± 3.65 ef | 167.49 ± 8.49 i | 30.70 ± 0.88 gh | 16.87 ± 0.81 fg | 27.16 ± 0.94 c |
Hekinan Senko 5sun | 276.17 ± 6.45 e | 128.93 ± 1.33 j | 54.56 ± 0.77 d | 13.91 ± 0.26 ghi | 7.39 ± 0.05 d |
Viking | 166. 27 ± 3.34 ij | 266.27 ± 5.73 cd | 58.06 ± 1.16 d | 19.84 ± 1.01 fg | 30.31 ± 1.34 bc |
Santa Cruz | 345.64 ± 8.02 d | 211.46 ± 4.77 gh | 33.16 ± 1.43 gh | 33.96 ± 2.09 e | 29.75 ± 2.70 bc |
Stratova | 134.06 ± 2.32 k | 329 ± 17.92 b | 60.38 ± 3.20 d | 84.02 ± 3.92 b | 54.66 ± 2.46 b |
Beacon | 184.35 ± 7.82 hi | 263.41 ± 9.27 de | 83.90 ± 3.51 b | 49.70 ± 1.90 d | 46.47 ± 2.08 b |
Regulus Imperial | 208.33 ± 2.48 gh | 232.06 ± 1.96 fg | 72.88 ± 2.02 c | 2.69 ± 0.26 j | 4.53 ± 0.33 d |
Vita Longa | 243.60 ± 2.75 f | 290.07 ± 5.65 c | 33.17 ± 1.17 gh | 43.35 ± 2.68 d | 28.43 ± 0.95 bc |
Vitaminaja | 383.93 ± 11.97 c | 196.24 ± 6.91 h | 42.30 ± 0.80 ef | 0.00 ±0.00 | 0.00 ±0.00 |
Brasilia | 144.18 ± 1.89 jk | 560.78 ± 3.25 a | 113.16 ± 1.97 a | 521.77 ± 6.91 a | 572.22 ± 19.93 a |
ANOVA (p) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Tukey p = 0.01 |
3.4. Pearson Correlation Analysis and Principle Component Analysis (PCA)
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arscott, S.A.; Tanumihardjo, S.A. Carrots of many colors provide basic nutrition of bioavailable phytochemicals acting as a functional food. Comp. Rev. Food Sci. Food Saf. 2010, 9, 223–237. [Google Scholar] [CrossRef]
- Schmid, C.; Sharma, S.; Stark, T.; Günzkofer, D.; Hofmann, T.; Ulrich, D.; Dunemann, F.; Nothnagel, T.; Dawid, C. Influence of the abiotic stress conditions, waterlogging and drought, on the bitter sensometabolome as well as agronomical traits of six genotypes of Daucus carota. Foods 2021, 10, 1607. [Google Scholar] [CrossRef] [PubMed]
- Klee, H.J.; Tieman, D.M. The genetics of fruit flavour preferences. Nat. Rev. Genet. 2018, 19, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, G.M. Smell images and the flavour system in the human brain. Nature 2006, 444, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Vogt, J.; Schiller, D.; Ulrich, D.; Schwab, W.; Dunemann, F. Identification of lipoxygenase (LOX) genes putatively involved in fruit flavor formation in apple (Malus domestica). Tree Genet. Genomes 2013, 9, 1493–1511. [Google Scholar] [CrossRef]
- Cavagnaro, P.F. Genetics and genomics of sugars and polacetylenes. In The Carrot Genome; Springer: Berlin/Heidelberg, Germany, 2019; pp. 295–315. [Google Scholar]
- Kramer, M.; Bufler, G.; Ulrich, D.; Leitenberger, M.; Conrad, J.; Carle, R.; Kammerer, D.R. Effect of ethylene and 1-methylcyclopropene on bitter compounds in carrots (Daucus carota L.). Postharvest Biol. Technol. 2012, 73, 28–36. [Google Scholar] [CrossRef]
- Czepa, A.; Hofmann, T. Structural and sensory characterization of compounds contributing to the bitter off-taste of carrots (Daucus carota L.) and carrot puree. J. Agric. Food Chem. 2003, 51, 3865–3873. [Google Scholar] [CrossRef]
- Kreutzmann, S.; Christensen, L.P.; Edelenbos, M. Investigation of bitterness in carrots (Daucus carota L.) based on quantitative chemical and sensory analyses. LWT-Food Sci. Technol. 2008, 41, 193–205. [Google Scholar] [CrossRef]
- Schmiech, L.; Alayrac, C.; Witulski, B.; Hofmann, T. Reinvestigation of the bitter compounds in carrots (Daucus carota L.) by using a molecular sensory science approach. J. Agric. Food Chem. 2008, 56, 10252–10260. [Google Scholar] [CrossRef]
- Kjeldsen, F.; Christensen, L.P.; Edelenbos, M. Quantitative analysis of aroma compounds in carrot (Daucus carota L.) cultivars by capillary gas chromatography using large-volume injection technique. J. Agric. Food Chem. 2001, 49, 4342–4348. [Google Scholar] [CrossRef]
- Alasalvar, C.; Grigor, J.M.; Zhang, D.; Quantick, P.C.; Shahidi, F. Comparison of volatiles, phenolics, sugars, antioxidant vitamins, and sensory quality of different colored carrot varieties. J. Agric. Food Chem. 2001, 49, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Kreutzmann, S.; Svensson, V.T.; Thybo, A.K.; Bro, R.; Petersen, M.A. Prediction of sensory quality in raw carrots (Daucus carota L.) using multi-block LS-ParPLS. Food Qual. Prefer. 2008, 19, 609–617. [Google Scholar] [CrossRef]
- Fukuda, T.; Okazaki, K.; Shinano, T. Aroma characteristic and volatile profiling of carrot varieties and quantitative role of terpenoid compounds for carrot sensory attributes. J. Food Sci. 2013, 78, 1800–1806. [Google Scholar] [CrossRef] [PubMed]
- Kjeldsen, F.; Christensen, L.P.; Edelenbos, M. Changes in volatile compounds of carrots (Daucus carota L.) during refrigerated and frozen storage. J. Agric. Food Chem. 2003, 51, 5400–5407. [Google Scholar] [CrossRef]
- Iorizzo, M.; Ellison, S.; Senalik, D.; Huang, J.; Bowman, M.; Iovene, M.; Sanseverino, W.; Cavagnaro, P.; Yildiz, M.; Macko-Podgórni, A.; et al. A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat. Genet. 2016, 48, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Keilwagen, J.; Lehnert, H.; Berner, T.; Budahn, H.; Nothnagel, T.; Ulrich, D.; Dunemann, F. The terpene synthase gene family of carrot (Daucus carota L.): Identification of QTLs and candidate genes associated with terpenoide volatile compounds. Front. Plant Sci. Sect. Plant Breed. 2017, 8, 1930. [Google Scholar] [CrossRef] [PubMed]
- Busta, L.; Yim, W.C.; Laßrant, E.W.; Wang, P.; Grimes, L.; Malyszka, K.; Cushman, J.C.; Santos, P.; Kosma, D.K.; Cahoon, E.B. Identification of genes encoding enzymes catalysing the early steps of carrot polyacetylene biosynthesis. Plant Physiol. 2018, 178, 1507–1521. [Google Scholar] [CrossRef]
- Simon, P.W.; Geoffriau, E.; Ellison, S.; Iorizzo, M. Carrot carotenoid genetics and genomics. In The Carrot Genome; Simon, P.W., Iorizzo, M., Grzebelius, D., Baranski, R., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 247–260. [Google Scholar] [CrossRef]
- Muchlinski, A.; Ibdah, M.; Ellison, S.; Yahyaa, M.; Nawade, B.; Laliberte, S.; Senalik, D.; Simon, P.; Whitehead, S.R.; Tholl, D. Diversity and function of terpene synthases in the production of carrot aroma and flavour compounds. Sci. Rep. 2020, 10, 9989. [Google Scholar] [CrossRef]
- Dunemann, F.; He, W.; Büttcher, C.; Reichardt, S.; Nothnagel, T.; Heuvelmans, P.; Hermans, F. The genetic control of polyacetylenes involved in bitterness of carrots (Daucus carota L.): Identification of QTLs and candidate genes from the plant fatty acid metabolism. BMC Plant Biol. 2022, 22, 92. [Google Scholar] [CrossRef]
- Santos, P.; Busta, L.; Yim, W.C.; Cahoon, E.B.; Kosma, D.K. Structural diversity, biosynthesis and function of plant falcarin-type polyacetylenic lipids. J. Exp. Bot. 2022, 73, 2889–2904. [Google Scholar] [CrossRef]
- Martina, M.; Tikunov, Y.; Portis, E.; Bovy, A.G. The genetic basis of tomato aroma. Genes 2021, 12, 226. [Google Scholar] [CrossRef] [PubMed]
- Tieman, D.; Zhu, G.; Resende, M.F.R., Jr.; Lin, T.; Nguyen, C.; Bies, D.; Rambla, J.L.; Beltran, K.S.; Taylor, M.; Zhang, B.; et al. A chemical genetic roadmap to improved tomato flavor. Science 2017, 355, 391–394. [Google Scholar] [CrossRef] [PubMed]
- Schwieterman, M.L.; Colquhoun, T.A.; Jaworski, R.A.; Bartoshuk, J.L.; Gilbert, D.M.; Tiemann, A.Z.; Odabasi, H.R.; Moskowitz, H.R.; Folta, K.M.; Klee, H.J.; et al. Strawberry flavour: Diverse chemical compositions, a seasonal influence, and effects on sensory perception. PLoS ONE 2014, 9, 88446. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, D.; Olbricht, K. A search for the ideal flavor of strawberry—Comparison of consumer acceptance and metabolite patterns in Fragaria x ananassa Duch. J. Appl. Bot Food Qual. 2016, 89, 223–234. [Google Scholar] [CrossRef]
- Fan, Z.; Hasing, T.; Johnson, T.S.; Garner, D.M.; Schwieterman, M.L.; Barbey, C.R.; Colquhoun, T.A.; Sims, C.A.; Resende, M.F.R.; Whitaker, V.M. Strawberry sweetness and consumer preference are enhanced by specific volatile compounds. Hortic. Res. 2021, 8, 66–81. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, J.L.; Guthart, M.J.; Gezan, S.A.; de Carvalho, M.P.; Schwieterman, M.L.; Colquhoun, T.A.; Bartoshuk, L.M.; Sims, C.A.; Clark, D.G.; Olmstead, J.W. Identifying breeding priorities for blueberry flavor using biochemical, sensory and genotype by environment analyses. PLoS ONE 2015, 10, 0138494. [Google Scholar] [CrossRef]
- Ferrao, L.F.V.; Johnson, T.S.; Benevenuto, J.; Edger, P.P.; Colquhoun, T.A.; Munoz, P.R. Genome-wide association of volatile reveals candidate loci for blueberry flavor. New Phytol. 2020, 226, 1725–1737. [Google Scholar] [CrossRef]
- Ting, V.J.L.; Silcock, A.R.P.; Bremer, P.; Corollaro, M.L.; Soukoulis, C.; Capellini, L.; Biasioli, F. Apple flavor: Linking sensory perception to volatile release and texture properties. J. Sens. Stud. 2015, 30, 195–210. [Google Scholar] [CrossRef]
- Amyotte, B.; Bowen, A.J.; Banks, T.; Rajcan, I.; Somers, D.J. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study. PLoS ONE 2017, 12, 0171710. [Google Scholar] [CrossRef]
- Rosenfeld, H.; Aaby, K.; Lea, P. Influence of temperature and plant density on sensory quality and volatile terpenoids of carrot (Daucus carota L.) root. J. Sci. Food Agric. 2002, 82, 1384–1390. [Google Scholar] [CrossRef]
- Gajewski, M.; Scymczak, P.; Radzanowska, J. Sensory quality of orange, purple and yellow carrots stored under controlled atmosphere. Not. Bot. Horti Agrobo. 2010, 28, 169–176. [Google Scholar]
- Baranski, R.; Maksylewiez-Kaul, M.; Nothnagel, T.; Cavagnaro, P.F.; Simon, P.W.; Grzebelus, D. Genetic diversity of carrot (Daucus carota L.) cultivars revealed by analysis of SSR loci. Genet. Resour. Crop Evol. 2012, 59, 163–170. [Google Scholar] [CrossRef]
- Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using sused silica optical fibers. Anal. Chem. 1990, 62, 2145–2148. [Google Scholar] [CrossRef]
- Baltussen, E.; Sandra, P.; David, F.; Cramers, C. Stir bar sorptive extraction (SBSE), a novel extraction technique for aqueous samples: Theory and principles. J. Microcolumn 1999, 11, 737–747. [Google Scholar] [CrossRef]
- Lim, W.; Miller, R.; Park, J.; Park, S. Consumer sensory analysis of high flavonoid transgenic tomatoes. J. Food Sci. 2014, 79, 1212–1217. [Google Scholar] [CrossRef] [PubMed]
- Simon, P.W.; Peterson, C.E.; Lindsay, R.C. Genotype, soil, and climate effects on sensory and objective components of carrot flavor. J. Amer. Soc. Hort. Sci. 1982, 107, 644–648. [Google Scholar] [CrossRef]
- Simon, P.W. Carrot flavor: Effects of genotype, growing conditions, storage, and processing. In Evaluation of Quality of Fruits and Vegetables; Pattee, H.E., Ed.; AVI Publishing Co., Inc.: Westport, CT, USA; Kansas City, MO, USA, 1985. [Google Scholar] [CrossRef]
- Kramer, M.; Bufler, G.; Nothnagel, T.; Carle, R.; Kammerer, D.R. Effects of cultivation conditions and cold storage on the polyacetylene contents of carrot (Daucus carota L.) and parsnip (Pastinaca sativa L.). J. Hort. Sci. Biotechnol. 2012, 87, 101–106. [Google Scholar] [CrossRef]
- Ulrich, D.; Nothnagel, T.; Schulz, H. Influence of cultivar and harvest year on the volatile profiles of leaves and roots of carrots (Daucus carota spp. sativus Hoffm.). J. Agric. Food Chem. 2015, 63, 3348–3356. [Google Scholar] [CrossRef]
- Komes, D.; Ulrich, D.; Lovric, T.; Schippel, K. Isolation of white wine volatiles using different sample preparation methods. Vitis 2005, 44, 187–193. [Google Scholar]
- Richter, T.M.; Eyres, G.T.; Silcock, P.S.; Bremer, P.J. Comparison of four extraction method for analysis of volatile hop-derived aroma compounds in beer. J. Sep. Sci. 2017, 40, 4366–4376. [Google Scholar] [CrossRef]
- Barba, C.; Thomas-Danguin, T.; Guichard, E. Comparison of stir-bar extraction evaporation and headspace solid-phase microextraction for the (non)-targeted analysis of volatiles in fruit juice. LWT—Food Sci. Technol. 2017, 85, 334–344. [Google Scholar] [CrossRef]
- Wang, L.; Gao, M.; Liu, Z.; Xu, Y. Three extraction methods in combination with GCxGC-TOFMS for the detailed investigation of volatiles in Chinese herbadeous aroma-type Baijiu. Molecules 2020, 25, 4429. [Google Scholar] [CrossRef]
- Steele, D.H.; Thornburg, M.J.; Stanley, J.S.; Miller, R.R.; Brooke, R.; Cushman, J.R.; Cruzan, G. Determination of styrene in selected foods. J. Agric. Food Chem. 1994, 42, 1661–1665. [Google Scholar] [CrossRef]
- Cao, X.L.; Sparling, M.; Pelletier, L.; Dabeka, R. Styrene in foods and dietary exposure estimates. Food Addit. Contamin. 2018, 35, 2025–2051. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Enano, M.L.; Stanley, R.; Frank, D. Linking consumer sensory acceptability to volatile composition for improved shelf-life: A case study of fresh-cut watermelon (Citrullus lanatus). Postharvest Biol. Technol. 2019, 154, 137–147. [Google Scholar] [CrossRef]
- Wright, J. Flavor Bites: Acetophenone. Perf. Flavor. 2021, 46, 13. [Google Scholar]
- Czepa, A.; Hofmann, T. Quantitative and sensory analyses of the influence of cultivar, spatial tissue distribution, and industrial processing on the bitter off-taste of carrots (Daucus carota L.) and carrot products. J. Agric. Food Chem. 2004, 52, 4508–4514. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zhu, H.; Shao, Y.; Chen, A.; Lu, C.; Zhu, B.; Luo, Y. Lycopene accumulation affects the biosynthesis of some carotenoid-related volatiles independent of ethylene in tomato. J. Integr. Plant Biol. 2008, 50, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Güler, Z.; Emre, Y. Distribution of volatile compounds in organic tomato (Lycopersicon esculentum) at different ripening stages. Acad. Food J. 2013, 11, 6–11. [Google Scholar] [CrossRef]
- Du, X.; Ramirez, J. Watermelon rind and flesh volatile profiles and cultivar differences. Horticulturae 2022, 9, 99. [Google Scholar] [CrossRef]
- Leitereg, T.J.; Guadagni, D.G.; Harris, J.; Mon, T.R.; Roy Teranishi, R. Chemical and sensory data supporting the difference between the odors of the enantiomeric carvones. J. Agric. Food Chem. 1971, 19, 785–787. [Google Scholar] [CrossRef]
- Costa, R.; Zellner, B.A.; Crupi, M.L.; De Fina, M.R.; Valentino, M.R.; Dugo, G.; Mondello, L. GC-MS, GC-O and enantio-GC investigatrion of the essential oil of Tarchonanthus camphoratus L. Flavour Fragr. J. 2008, 23, 40–48. [Google Scholar] [CrossRef]
- Mann, J.C.; Hobbs, J.B.; Banthorpe, D.V.; Harborne, J.B. Natural Products: Their Chemistry and Biological Significance; Longmal Scientific & Technical: Harlow, UK, 1994; pp. 309–311. ISBN 978-0-582-06009-8. [Google Scholar]
- Le Clerc, V.; Aubert, C.; Cotter, V.; Yovanopoulos, C.; Piquet, M.; Suel, A.; Huet, S.; Koutouan, C.; Hamama, L.; Chalot, G.; et al. Resistant carrots to Alternaria dauci or tasty carrots: Should we choose? Acta Hortic. 2019, 1264, 199–204. [Google Scholar] [CrossRef]
- Koutouan, C.E.; Le Clerc, V.; Baltenweck, R.; Claudel, P.; Halter, D.; Hugueney, P.; Hamada, L.; Suel, A.; Huet, S.; Bouvet Merlet, M.H.; et al. Link between carrot leaf secondary metabolites and resistance to Alternaria dauci. Sci. Rep. 2018, 8, 13746. [Google Scholar] [CrossRef] [PubMed]
- Koutouan, C.E.; Le Clerc, V.; Suel, A.; Hamada, L.; Claudel, P.; Halter, D.; Baltenweck, R.; Hugueney, P.; Chich, J.-F.; Moussa, S.A.; et al. Co-localization of resistance and metabolic quantitative trait loci on carrot reveals fungutoxic terpenes and related candidate genes associated with resistance to Alternaria dauci. Metabolites 2023, 13, 71. [Google Scholar] [CrossRef] [PubMed]
- Shaltiel-Harpaz, L.; Yahyaa, M.; Nawade, B.; Dudareva, N.; Ibdah, M. Identification of a wild carrot as carrot psylla (Bactericera trigonica) attractant and host plant chemistry. Plant Sci. 2021, 311, 111011. [Google Scholar] [CrossRef] [PubMed]
- Dawid, C.; Dunemann, F.; Schwab, W.; Nothnagel, T.; Hofmann, T. Bioactive C17-polyacetylenes in carrots (Daucus carota L.): Current knowledge and future perspectives. J. Agric. Food Chem. 2015, 63, 9211–9222. [Google Scholar] [CrossRef]
Cultivar | Fructose | Glucose | Sucrose |
---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | |
Nevis | 5.34 ± 0.14 de | 5.80 ± 0.15 de | 36.67 ± 0.44 ab |
Himuro Fuyugosi Gosun | 5.47 ± 0.22 de | 5.40 ± 0.18 e | 37.24 ± 0.70 a |
Nantejska Polana | 4.17 ± 0.09 f | 3.79 ± 0.18 f | 35.68 ± 3.56 abc |
Nagykallo | 5.18 ± 0.05 e | 5.65 ± 0.10 de | 35.40 ± 0.26 abc |
Nantes Fancy | 8.73 ± 0.20 a | 9.23 ± 0.48 a | 31.29 ± 0.64 ef |
Nantes Liva | 7.80 ± 0.29 b | 8.34 ± 0.45 ab | 33.31 ± 1.25 cde |
Berlicumer Bercoro | 7.92 ± 0.18 b | 8.95 ± 0.20 a | 31.89 ± 0.60 def |
Hekinan Senko 5sun | 5.99 ± 0.04 cd | 7.23 ± 0.06 c | 31.95 ± 0.18 def |
Viking | 5.52 ± 0.27 cde | 6.30 ± 0.23 d | 34.67 ± 0.59 bcd |
Santa Cruz | 5.72 ±0.19 cde | 5.79 ± 0.18 de | 35.32 ± 0.18 abc |
Stratova | 7.68 ± 0.44 b | 8.33 ± 0.53 ab | 33.66 ± 0.98 bcde |
Beacon | 7.29 ± 0.06 b | 8.64 ± 0.07 ab | 31.86 ± 0.31 def |
Regulus Imperial | 7.59 ± 0.14 b | 7.99 ± 0.23 bc | 29.25 ± 0.34 f |
Vita Longa | 6.20 ± 0.04 c | 6.18 ± 0.16 de | 37.13 ± 0.61 a |
Vitaminaja | 2.84 ± 0.03 g | 2.74 ± 0.08 g | 35.14 ± 1.28 abcd |
Brasilia | 7.65 ± 0.19 b | 7.91 ± 0.10 bc | 36.32 ± 0.56 abc |
ANOVA (p) | 0.00 | 0.00 | 0.00 |
Tukey p = 0.01 |
GC | Acceptance | Sweetness | Aroma | Bitterness | Astringency | Off Flavor | |
---|---|---|---|---|---|---|---|
sweetness | 0.898 | ||||||
aroma | 0.975 | 0.952 | |||||
bitterness | −0.890 | −0.774 | −0.813 | ||||
astringency | −0.919 | −0.706 | −0.830 | 0.935 | |||
off-flavor | −0.886 | −0.644 | −0.811 | 0.812 | 0.941 | ||
α-pinene | B | 0.473 | 0.532 | 0.554 | −0.226 | −0.292 | −0.327 |
camphene | A | −0.458 | −0.236 | −0.366 | 0.488 | 0.593 | 0.718 |
hexanal | A | 0.503 | 0.501 | 0.562 | −0.324 | −0.368 | −0.340 |
β-pinene | B | 0.459 | 0.454 | 0.439 | −0.396 | −0.395 | −0.320 |
β-phellandrene | B | −0.207 | −0.257 | −0.145 | 0.490 | 0.284 | 0.051 |
styrene | B | 0.617 | 0.464 | 0.591 | −0.473 | −0.639 | 0.712 |
o-cymene | A | −0.397 | −0.314 | −0.365 | 0.477 | 0.444 | 0.421 |
6-methyl-5-heptene-2-one | B | −0.568 | −0.358 | −0.441 | 0.700 | 0.653 | 0.583 |
hexanol | B | −0.553 | −0.629 | −0.553 | 0.565 | 0.424 | 0.298 |
γ-cadinene | A | −0.169 | −0.206 | −0.122 | 0.480 | 0.264 | 0.072 |
2-ethylhexanol | B | −0.345 | −0.428 | −0.318 | 0.436 | 0.341 | 0.260 |
bornylacetate | A | −0.513 | −0.324 | −0.463 | 0.436 | 0.593 | 0.772 |
β-caryophyllene | A | 0.432 | 0.409 | 0.455 | −0.279 | −0.313 | −0.393 |
borneol | A | −0.504 | −0.307 | −0.452 | 0.418 | 0.582 | 0.776 |
β-bisabolene | A | −0.288 | −0.369 | −203 | 0.444 | 0.301 | 0.272 |
acetophenone | B | 0.600 | 0.494 | 0.614 | −0.397 | −0.530 | −0.501 |
dextrocarvone | B | −0.594 | −0.663 | −0.591 | 0.669 | 0.544 | 0.521 |
β-ionon | A | −0.495 | −0.309 | −0.412 | 0.467 | 0.481 | 0.490 |
geranylacetone | A | −0.601 | −0.496 | −0.559 | 0.575 | 0.494 | 0.436 |
benzylalcohol | B | −0.526 | −0.336 | −0.430 | 0.637 | 0.638 | 0.664 |
4-methylphenol | B | −0.583 | −0.496 | −0.513 | 0.652 | 0.646 | 0.460 |
myristicine | B | −0.492 | −0.288 | −0.431 | 0.424 | 0.583 | 0.769 |
falcerindiol | −0.498 | −0.335 | −0.430 | 0.595 | 0.630 | 0.703 | |
falcarinol-3-acetate | −0.680 | −0.544 | −0.638 | 0.705 | 0.720 | 0.736 | |
laserin | −0.501 | −0.288 | −0.424 | 0.490 | 0.627 | 0.778 | |
epilaserin | −0.527 | −0.313 | −0.455 | 0.485 | 0.635 | 0.794 | |
sucrose | 0.209 | 0.444 | 0.330 | −0.067 | −0.005 | −0.058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nothnagel, T.; Ulrich, D.; Dunemann, F.; Budahn, H. Sensory Perception and Consumer Acceptance of Carrot Cultivars Are Influenced by Their Metabolic Profiles for Volatile and Non-Volatile Organic Compounds. Foods 2023, 12, 4389. https://doi.org/10.3390/foods12244389
Nothnagel T, Ulrich D, Dunemann F, Budahn H. Sensory Perception and Consumer Acceptance of Carrot Cultivars Are Influenced by Their Metabolic Profiles for Volatile and Non-Volatile Organic Compounds. Foods. 2023; 12(24):4389. https://doi.org/10.3390/foods12244389
Chicago/Turabian StyleNothnagel, Thomas, Detlef Ulrich, Frank Dunemann, and Holger Budahn. 2023. "Sensory Perception and Consumer Acceptance of Carrot Cultivars Are Influenced by Their Metabolic Profiles for Volatile and Non-Volatile Organic Compounds" Foods 12, no. 24: 4389. https://doi.org/10.3390/foods12244389
APA StyleNothnagel, T., Ulrich, D., Dunemann, F., & Budahn, H. (2023). Sensory Perception and Consumer Acceptance of Carrot Cultivars Are Influenced by Their Metabolic Profiles for Volatile and Non-Volatile Organic Compounds. Foods, 12(24), 4389. https://doi.org/10.3390/foods12244389