Exploring the Connection between the Occurrence and Intensity of “Grubby” Defect and Volatile Composition of Olive Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Samples of Virgin Olive Oil
2.2. Determination of the Water and Oil Content
2.3. Determination of the Quality Parameters
2.4. Determination of the Fatty Acid Methyl Esters (FAME)
2.5. Sensory Analysis
2.6. Analysis of Volatile Compounds
2.7. Elaboration of the Data
3. Results and Discussion
3.1. Oil Content and VOO Quality Parameters
Parameter | L-0% | L-50% | L-100% | EVOO * |
---|---|---|---|---|
Water in olive paste (%) | 46.74 ± 1.03 | 46.63 ± 1.31 | 44.60 ± 0.24 | |
Oil in olive paste (%) | 34.89 ± 1.24 | 36.67 ± 1.03 | 35.71 ± 2.89 | |
FFA (% oleic acid) | 0.23 ± 0.01 b | 0.23 ± 0.00 b | 0.25 ± 0.00 a | ≤0.80 |
PV (mmol O2/kg) | 7.55 ± 0.08 b | 7.61 ± 0.03 b | 10.76 ± 0.11 a | ≤20.0 |
K232 | 2.20 ± 0.09 | 2.18 ± 0.04 | 2.27 ± 0.08 | ≤2.50 |
K270 | 0.18 ± 0.00 | 0.17 ± 0.01 | 0.16 ± 0.00 | ≤0.22 |
ΔK | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | ≤0.01 |
Sensory score (1–9) | 7.81 ± 0.48 a | 7.09 ± 0.74 b | 5.78 ± 0.39 c |
3.2. Fatty Acid Composition
3.3. Sensory Characteristics
3.4. Volatile Composition
3.5. Hierarchical Clustering Analysis (HCA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Conte, L.; Bendini, A.; Valli, E.; Lucci, P.; Moret, S.; Maquet, A.; Lacoste, F.; Brereton, P.; García-González, D.L.; Moreda, W.; et al. Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future. Trends Food Sci. Technol. 2020, 105, 483–493. [Google Scholar] [CrossRef]
- IOC (International Olive Council). Sensory Analysis of Olive Oil—Method for the Organoleptic Assessment of Virgin Olive Oil. COI/T.20/Doc. No 15. 2018. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-T20-Doc.-15-REV-10-2018-Eng.pdf (accessed on 10 October 2023).
- Cecchi, L.; Migliorini, M.; Giambanelli, E.; Rossetti, A.; Cane, A.; Mulinacci, N. New volatile molecular markers of rancidity in virgin olive oils under nonaccelerated oxidative storage conditions. J. Agric. Food Chem. 2019, 67, 13150–13163. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, L.; Migliorini, M.; Giambanelli, E.; Rossetti, A.; Cane, A.; Melani, F.; Mulinacci, N. Headspace solid-phase microextraction-gas chromatography–mass spectrometry quantification of the volatile profile of more than 1200 virgin olive oils for supporting the panel test in their classification: Comparison of different chemometric approaches. J. Agric. Food Chem. 2019, 67, 9112–9120. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, L.; Migliorini, M.; Giambanelli, E.; Cane, A.; Mulinacci, N.; Zanoni, B. Volatile profile of two-phase olive pomace (alperujo) by HS-SPME-GC–MS as a key to defining volatile markers of sensory defects caused by biological phenomena in virgin olive oil. J. Agric. Food Chem. 2021, 69, 5155–5166. [Google Scholar] [CrossRef] [PubMed]
- Aparicio-Ruiz, R.; Barbieri, S.; Gallina Toschi, T.; García-González, D.L. Formulations of rancid and winey-vinegary artificial olfactory reference materials (AORMs) for virgin olive oil sensory evaluation. Foods 2020, 9, 1870. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Reina, R.; Aparicio-Ruiz, R.; Morales, M.T.; García-González, D.L. Contribution of specific volatile markers to green and ripe fruity attributes in extra virgin olive oils studied with three analytical methods. Food Chem. 2023, 399, 133942. [Google Scholar] [CrossRef] [PubMed]
- Morales, M.T.; Luna, G.; Aparicio, R. Sensory and chemical evaluation of winey-vinegary defect in virgin olive oils. Eur. Food Res. Technol. 2000, 211, 222–228. [Google Scholar] [CrossRef]
- Morales, M.T.; Luna, G.; Aparicio, R. Comparative study of virgin olive oil sensory defects. Food Chem. 2005, 91, 293–301. [Google Scholar] [CrossRef]
- Procida, G.; Giomo, A.; Cichelli, A.; Conte, L.S. Study of volatile compounds of defective virgin olive oils and sensory evaluation: A chemometric approach. J. Sci. Food Agric. 2005, 85, 2175–2183. [Google Scholar] [CrossRef]
- Neugebauer, A.; Granvogl, M.; Schieberle, P. Characterization of the key odorants in high-quality extra virgin olive oils and certified off-flavor oils to elucidate aroma compounds causing a rancid off-flavor. J. Agric. Food Chem. 2020, 68, 5927–5937. [Google Scholar] [CrossRef]
- Romero, I.; García-González, D.L.; Aparicio-Ruiz, R.; Morales, M.T. Study of volatile compounds of virgin olive oils with ‘frostbitten olives’ sensory defect. J. Agric. Food Chem. 2017, 65, 4314–4320. [Google Scholar] [CrossRef] [PubMed]
- Pino, C.; Sepúlveda, B.; Tapia, F.; Saavedra, J.; García-González, D.L.; Romero, N. The impact of mild frost occurring at different harvesting times on the volatile and phenolic composition of virgin olive oil. Antioxidants 2022, 11, 852. [Google Scholar] [CrossRef] [PubMed]
- Malheiro, R.; Casal, S.; Baptista, P.; Pereira, J.A. A review of Bactrocera oleae (Rossi) impact in olive products: From the tree to the table. Trends Food Sci. Technol. 2015, 44, 226–242. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Cherubini, C.; Trapani, S.; Zanoni, B. The case of the 2014 crop season in Tuscany: A survey of the effect of the olive fruit fly attack. Ital. J. Food Sci. 2016, 28, 352–361. [Google Scholar] [CrossRef]
- Angerosa, F.; Di Giacinto, L.; Solinas, M. Influence of Dacus oleae infestation on flavor of oils, extracted from attacked olive fruits, by HPLC and HRGC analyses of volatile compounds. Grasas Aceites 1992, 43, 134–142. [Google Scholar] [CrossRef]
- Tamendjari, A.; Angerosa, F.; Bellal, M.M. Influence of Bactrocera oleae infestation on olive oil quality during ripening of Chemlal olives. Ital. J. Food Sci. 2004, 16, 343–353. [Google Scholar]
- Brkić Bubola, K.; Krapac, M.; Sladonja, B. Influence of olive fruit fly attack on quality and composition of “Rosignola” virgin olive oil. Acta Hortic. 2018, 1199, 489–495. [Google Scholar] [CrossRef]
- Notario, A.; Sánchez, R.; Luaces, P.; Sanz, C.; Pérez, A.G. The infestation of olive fruits by Bactrocera oleae (Rossi) modifies the expression of key genes in the biosynthesis of volatile and phenolic compounds and alters the composition of virgin olive oil. Molecules 2022, 27, 1650. [Google Scholar] [CrossRef]
- Alagna, F.; Kallenbach, M.; Pompa, A.; De Marchis, F.; Rao, R.; Baldwin, I.T.; Bonaventure, G.; Baldoni, L. Olive fruits infested with olive fly larvae respond with an ethylene burst and the emission of specific volatiles. J. Integr. Plant Biol. 2016, 58, 413–425. [Google Scholar] [CrossRef]
- Koprivnjak, O.; Dminić, I.; Kosić, U.; Majetić, V.; Godena, S.; Valenčić, V. Dynamics of oil quality parameters changes related to olive fruit fly attack. Eur. J. Lipid Sci. Technol. 2010, 112, 1033–1040. [Google Scholar] [CrossRef]
- Mraicha, F.; Ksantini, M.; Zouch, O.; Ayadi, M.; Sayadi, S.; Bouaziz, M. Effect of olive fruit fly infestation on the quality of olive oil from Chemlali cultivar during ripening. Food Chem. Toxicol. 2010, 48, 3235–3241. [Google Scholar] [CrossRef] [PubMed]
- Tamendjari, A.; Angerosa, F.; Mettouchi, S.; Bellal, M.M. The effect of fly attack (Bactrocera oleae) on the quality and phenolic content of Chemlal olive oil. Grasas Aceites 2009, 60, 507–513. [Google Scholar] [CrossRef]
- Garcia, J.M.; Yousfi, K. Non-destructive and objective methods for the evaluation of the maturation level of olive fruit. Eur. Food Res. Technol. 2005, 221, 538–541. [Google Scholar] [CrossRef]
- Brkić, K.; Radulović, M.; Sladonja, B.; Lukić, I.; Šetić, E. Application of Soxtec apparatus for oil content determination in olive fruit. Riv. Ital. Delle Sostanze Grasse 2006, 83, 115–119. [Google Scholar]
- IOC (International Olive Council). Determination of Free Fatty Acids, Cold Method. COI/T.20/Doc. No 34. 2017. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-T.20-Doc.-No-34-Rev.-1-2017.pdf (accessed on 10 October 2023).
- IOC (International Olive Council). Determination of Peroxide Value. COI/T.20/Doc. No 35. 2017. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/Method-COI-T.20-Doc.-No-35-Rev.-1-2017.pdf (accessed on 10 October 2023).
- IOC (International Olive Council). Spectrophotometric Investigation in the Ultraviolet. COI/T.20/Doc. No 19. 2019. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/Method-COI-T.20-Doc.-No-19-Rev.-5-2019-2.pdf (accessed on 10 October 2023).
- Commission Implementing Regulation (EU) 2022/2105 of 29 July 2022 laying down rules on conformity checks of marketing standards for olive oil and methods of analysis of the characteristics of olive oil. Off. J. Eur. Union 2022, L284, 23–48.
- IOC. Determination of Fatty Acid Methyl Esters by Gas Chromatography. COI/T.20/Doc. No 33. 2017. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2019/11/COI-T.20-Doc.-No-33-Rev.-1-2017.pdf (accessed on 10 October 2023).
- Brkić Bubola, K.; Krapac, M.; Lukić, I.; Sladonja, B.; Autino, A.; Cantini, C.; Poljuha, D. Morphological and molecular characterization of Bova olive cultivar and aroma fingerprint of its oil. Food Technol. Biotechnol. 2014, 52, 342–350. [Google Scholar]
- MetaboAnalyst, v. 5.0. Available online: http://www.metaboanalyst.ca (accessed on 26 June 2023).
- Gucci, R.; Caruso, G.; Canale, A.; Loni, A.; Raspi, A.; Urbani, S.; Taticchi, A.; Esposto, S.; Servili, M. Qualitative changes of olive oils obtained from fruits damaged by Bactrocera oleae (Rossi). Hort. Sci. 2012, 47, 301. [Google Scholar] [CrossRef]
- Commission Delegated Regulation (EU) 2022/2104 of 29 July 2022 Supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as Regards Marketing Standards for Olive Oil, and Repealing Commission Regulation (EEC) No 2568/91 and Commission Implementing Regulation (EU) No 29/2012. Off. J. Eur. Union 2022, L284, 1–22.
- Medjkouh, L.; Tamendjari, A.; Keciri, S.; Santos, J.; Nunes, M.A.; Oliveira, M.B.P.P. The effect of the olive fruit fly (Bactrocera oleae) on quality parameters, and antioxidant and antibacterial activities of olive oil. Food Funct. 2016, 7, 2780–2788. [Google Scholar] [CrossRef]
- Valenčič, V.; Butinar, B.; Podgornik, M.; Bučar-Miklavčič, M. The effect of olive fruit fly Bactrocera oleae (Rossi) infestation on certain chemical parameters of produced olive oils. Molecules 2021, 26, 95. [Google Scholar] [CrossRef]
- Velasco, J.; Dobarganes, C. Oxidative stability of virgin olive oil. Eur. J. Lipid Sci. Technol. 2002, 104, 661–676. [Google Scholar] [CrossRef]
- Inarejos-García, A.M.; Santacatterina, M.; Salvador, M.D.; Fregapane, G.; Gómez-Alonso, S. PDO virgin olive oil quality– Minor components and organoleptic evaluation. Food Res. Int. 2010, 43, 2138–2146. [Google Scholar] [CrossRef]
- Genovese, A.; Caporaso, N.; Sacchi, R. Flavor chemistry of virgin olive oil: An overview. Appl. Sci. 2021, 11, 1639. [Google Scholar] [CrossRef]
- Novak, K.M. Drug Facts and Comparisons, 56th ed.; Wolters Kluwer Health: St. Louis, MO, USA, 2002; p. 619. [Google Scholar]
- De Mora, S.J.; Eschenbruch, R.; Knowles, S.J.; Spedding, D.J. The formation of dimethyl sulphide during fermentation using a wine yeast. Food Microbiol. 1986, 3, 27–32. [Google Scholar] [CrossRef]
- Anocibar Beloqui, A.; Kotseridis, Y.; Bertrand, A. Détermination de la teneur en sulfure de diméthyle dans quelques vins rouges. J. Int. Sei. Vigne Vin. 1996, 30, 167–170. [Google Scholar]
- Mari, E.; Guerrini, S.; Granchi, L.; Vincenzini, M. Yeast microbiota in the olive oil extractive process: A three-year study at an industrial scale. World J. Microbiol. Biotechnol. 2016, 32, 93–103. [Google Scholar] [CrossRef]
- Guerrini, S.; Mari, E.; Barbato, D.; Granchi, L. Extra virgin olive oil quality as affected by yeast species occurring in the extraction process. Foods 2019, 8, 457. [Google Scholar] [CrossRef]
- Zullo, B.A.; Cioccia, G.; Ciafardini, G. Effects of some oil-born yeasts on the sensory characteristics of Italian virgin olive oil during its storage. Food Microbiol 2013, 36, 70–78. [Google Scholar] [CrossRef]
- PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2-Methylbutyraldehyde (accessed on 10 May 2023).
- Reiners, J.; Grosch, W. Odorants of virgin olive oils with different flavor profiles. J. Agric. Food Chem. 1998, 46, 2754–2763. [Google Scholar] [CrossRef]
- Cserháti, T.; Forgács, E. Flavor (Flavour) Compounds: Structures and Characteristics. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Cambridge, MA, USA, 2003; pp. 2509–2517. [Google Scholar]
- Conte, L. The Chemistry of Olive Oil: An endless story. OCL Oilseeds Fats Crops Lipids 2020, 27, 28. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Cichelli, A.; Lercker, G. Come l’infestazione da Bactrocera oleae puo causare variazioni nel profilo aromatico di oli vergini da olive. Riv. Ital. Sostanze Grasse 2008, 86, e167–e177. [Google Scholar]
- Romero, I.; García-González, D.L.; Aparicio-Ruiz, R.; Morales, M.T. Validation of SPME–GCMS method for the analysis of virgin olive oil volatiles responsible for sensory defects. Talanta 2015, 134, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Cevik, S.; Ozkan, G.; Kiralan, M. Optimization of malaxation process of virgin olive oil using desired and undesired volatile contents. LWT Food Sci. Technol. 2016, 73, 514–523. [Google Scholar] [CrossRef]
- Leite, A.; Vasconcelos, L.; Ferreira, I.; Domínguez, R.; Pateiro, M.; Rodrigues, S.; Pereira, E.; Campagnol, P.C.B.; Pérez-Alvarez, J.A.; Lorenzo, J.M.; et al. Did the Addition of Olive Cakes Obtained by Different Methods of Oil Extraction in the Finishing Diet of Bísaro Pigs Affect the Volatile Compounds and Sensory Characteristics of Dry-Cured Loin and “Cachaço”? Foods 2023, 12, 2499. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, F.J.; Zamora, R. Amino acid degradations produced by lipid oxidation products. Crit. Rev. Food Sci. Nutr. 2015, 56, 1242–1252. [Google Scholar] [CrossRef] [PubMed]
- Giunti, G.; Campolo, O.; Laudani, F.; Algeri, G.M.; Palmeri, V. Olive fruit volatiles route intraspecific interactions and chemotaxis in Bactrocera oleae (Rossi) (Diptera: Tephritidae) females. Sci. Rep. 2020, 10, 1666. [Google Scholar] [CrossRef] [PubMed]
- Farré-Armengol, G.; Filella, I.; Llusià, J.; Peñuelas, J. β-Ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms. Molecules 2017, 22, 1148. [Google Scholar] [CrossRef]
- Jang, E.B.; Light, D.M.; Flath, R.A.; Nagata, J.T.; Mon, T.R. Electroantennogram responses of the Mediterranean fruit fly, Ceratitis capitata, to the volatile constituents of nectarines. Entomol. Exp. Appl. 1989, 50, 7–19. [Google Scholar] [CrossRef]
- Landa, B.B.; Pérez, A.G.; Luaces, P.; Montes-Borrego, M.; Navas-Cortés, J.A.; Sanz, C. Insights into the effect of Verticillium dahliae defoliating-pathotype infection on the content of phenolic and volatile compounds related to the sensory properties of virgin olive oil. Front. Plant Sci. 2019, 10, 232. [Google Scholar] [CrossRef]
- Luna, G.; Morales, M.T.; Aparicio, R. Characterisation of 39 varietal virgin olive oils by their volatile compositions. Food Chem. 2006, 98, 243–252. [Google Scholar] [CrossRef]
- Lukić, I.; Horvat, I.; Godena, S.; Krapac, M.; Lukić, M.; Vrhovšek, U.; Brkić Bubola, K. Towards understanding the varietal typicity of virgin olive oil by correlating sensory and compositional analysis data: A case study. Food Res. Int. 2018, 112, 78–89. [Google Scholar] [CrossRef]
- Da Ros, A.; Masuero, D.; Riccadonna, S.; Brkić Bubola, K.; Mulinacci, N.; Mattivi, F.; Lukić, I.; Vrhovsek, U. Complementary untargeted and targeted metabolomics for differentiation of extra virgin olive oils of different origin of purchase based on volatile and phenolic composition and sensory quality. Molecules 2019, 24, 2896. [Google Scholar] [CrossRef]
Fatty Acid | L-0% | L-50% | L-100% | EVOO * |
---|---|---|---|---|
Myristic (C 14:0) | 0.01 ± 0.00 | 0.01± 0.00 | 0.01 ± 0.00 | ≤0.03 |
Palmitic (C 16:0) | 12.81 ± 0.29 | 12.77 ± 0.26 | 13.92 ± 1.04 | 7.50–20.00 |
Palmitoleic (C 16:1) | 1.31 ± 0.05 | 1.21 ± 0.07 | 1.21 ± 0.07 | 0.30–3.50 |
Heptadecanoic (C 17:0) | 0.03 ± 0.00 | 0.03 ± 0.00 | 0.03 ± 0.00 | ≤0.40 |
Heptadecenoic (C 17:1) | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.07 ± 0.01 | ≤0.60 |
Stearic (C 18:0) | 2.05 ± 0.01 | 2.04 ± 0.02 | 1.99 ± 0.00 | 0.50–5.00 |
Oleic (C 18:1) | 75.66 ± 0.28 | 75.85 ± 0.32 | 74.61 ± 1.00 | 55.0–83.0 |
Linoleic (C 18:2) | 6.54 ± 0.01 | 6.54 ± 0.03 | 6.50 ± 0.15 | 2.50–21.00 |
Linolenic (C18:3) | 0.39 ± 0.01 | 0.38 ± 0.01 | 0.37 ± 0.01 | ≤1.00 |
Arachidic (C 20:0) | 0.63 ± 0.00 | 0.66 ± 0.01 | 0.71 ± 0.04 | ≤0.60 |
Eicosenoic (C 20:1) | 0.32 ± 0.01 | 0.31 ± 0.01 | 0.31 ± 0.04 | ≤0.50 |
Behenic (C 22:0) | 0.13 ± 0.01 | 0.12 ± 0.00 | 0.11 ± 0.01 | ≤0.20 |
Erucic (C 22:1) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.02 ± 0.01 | |
Lignoceric (C 24:0) | 0.07 ± 0.00 | 0.06 ± 0.00 | 0.07 ± 0.00 | ≤0.20 |
Oleic/linoleic ratio (C18:1/C18:2) | 11.57 ± 0.02 | 11.60 ± 0.00 | 11.49 ± 0.11 |
Volatile Compounds | L-0% | L-50% | L-100% | Correlation (r) with Intensity of: | ||
---|---|---|---|---|---|---|
“Rancid” | “Grubby” | Infestation | ||||
4-Methyl-5H-furan-2-one * | 0.022 ± 0.005 c | 0.106 ± 0.003 b | 0.188 ± 0.025 a | 0.8613 | 0.9944 | 1.0000 |
ß-Ocimene | 0.027 ± 0.007 c | 0.112 ± 0.001 b | 0.200 ± 0.008 a | 0.8701 | 0.9924 | 0.9999 |
6-Methyl-5-hepten-2-one | 0.146 ± 0.005 c | 0.281 ± 0.006 b | 0.427 ± 0.053 a | 0.8775 | 0.9904 | 0.9997 |
Octanal | 0.052 ± 0.006 c | 0.075 ± 0.003 b | 0.096 ± 0.012 a | 0.8501 | 0.9965 | 0.9996 |
α-Farnesene * | 0.011 ± 0.003 c | 0.066 ± 0.002 b | 0.114 ± 0.017 a | 0.8444 | 0.9973 | 0.9992 |
Hexanal | 0.028 ± 0.004 | 0.032 ± 0.002 | 0.037 ± 0.007 | 0.8711 | 0.9922 | 0.9979 |
Heptanal * | 0.117 ± 0.011 c | 0.248 ± 0.019 b | 0.431 ± 0.076 a | 0.9099 | 0.9779 | 0.9954 |
Ethyl 2-methylbutyrate | 0.000 ± 0.000 c | 0.003 ± 0.000 b | 0.005 ± 0.001 a | 0.7790 | 0.9992 | 0.9934 |
E-2-Nonen-1-ol * | 0.006 ± 0.000 c | 0.010 ± 0.000 b | 0.016 ± 0.002 a | 0.9080 | 0.9788 | 0.9934 |
1-Octanol * | 0.010 ± 0.000 c | 0.015 ± 0.000 a | 0.018 ± 0.002 b | 0.8146 | 0.9998 | 0.9897 |
E-2-Heptenal * | 0.377 ± 0.061 b | 0.462 ± 0.005 a | 0.692 ± 0.086 a | 0.9652 | 0.9309 | 0.9664 |
Propanoic acid * | 0.016 ± 0.001 b | 0.017 ± 0.001 b | 0.020 ± 0.002 a | 0.9498 | 0.9491 | 0.9608 |
Benzeneacetaldehyde | 0.046 ± 0.009 b | 0.101 ± 0.008 b | 0.269 ± 0.050 a | 0.9715 | 0.9214 | 0.9598 |
Dimethyl sulfoxide * | 0.087 ± 0.009 c | 0.166 ± 0.008 b | 0.424 ± 0.051 a | 0.9744 | 0.9163 | 0.9560 |
2-Methylbutanal * | 0.005 ± 0.001 c | 0.010 ± 0.000 b | 0.028 ± 0.001 a | 0.9749 | 0.9156 | 0.9507 |
3-Methylbutanal | 0.005 ± 0.001 c | 0.011 ± 0.001 b | 0.033 ± 0.000 a | 0.9822 | 0.9007 | 0.9496 |
Phenylethyl alcohol | 0.019 ± 0.003 b | 0.020 ± 0.001 a | 0.024 ± 0.002 a | 0.9449 | 0.9538 | 0.9449 |
E,E-2,4-Heptadienal * | 0.465 ± 0.094 b | 0.490 ± 0.022 b | 0.755 ± 0.065 a | 0.9970 | 0.8467 | 0.9023 |
Methyl acetate * | 0.097 ± 0.006 b | 0.098 ± 0.002 b | 0.111 ± 0.001 a | 0.9984 | 0.8358 | 0.8963 |
1,3,5,5-Tetramethyl-1,3-c * | 0.135 ± 0.177 | 0.140 ± 0.007 | 0.248 ± 0.079 | 0.9992 | 0.8256 | 0.8875 |
Butyric acid | 0.006 ± 0.002 | 0.007 ± 0.000 | 0.007 ± 0.000 | 0.9895 | 0.8808 | 0.8660 |
Hexanoic acid * | 0.020 ± 0.005 | 0.026 ± 0.009 | 0.024 ± 0.003 | 0.1666 | 0.7215 | 0.6547 |
3,7-Decadiene III * | 0.049 ± 0.010 | 0.063 ± 0.003 | 0.055 ± 0.006 | −0.0947 | 0.5173 | 0.6423 |
1-Hexanol | 0.108 ± 0.048 | 0.146 ± 0.002 | 0.130 ± 0.011 | 0.0935 | 0.6685 | 0.5765 |
Ethyl acetate * | 0.046 ± 0.046 | 0.029 ± 0.001 | 0.068 ± 0.009 | 0.9071 | 0.4775 | 0.5626 |
3,7-Decadiene II * | 0.094 ± 0.020 | 0.119 ± 0.012 | 0.104 ± 0.002 | −0.1058 | 0.5078 | 0.3974 |
1-Pentanol | 0.018 ± 0.003 c | 0.070 ± 0.001 a | 0.038 ± 0.003 b | −0.1319 | 0.4850 | 0.3812 |
E-2-Hexen-1-ol | 0.426 ± 0.451 b | 3.069 ± 0.118 a | 0.926 ± 0.031 b | −0.3379 | 0.2897 | 0.1780 |
E-2-Penten-1-ol | 0.047 ± 0.003 c | 0.101 ± 0.003 a | 0.057 ± 0.004 b | −0.3380 | 0.2896 | 0.1741 |
Z-2-Penten-1-ol | 0.159 ± 0.010 b | 0.203 ± 0.008 a | 0.167 ± 0.015 b | −0.3475 | 0.2798 | 0.1706 |
Benzyl alcohol | 0.001 ± 0.000 | 0.001 ± 0.000 | 0.001 ± 0.000 | −0.9943 | −0.8618 | 0.0000 |
E-2-Pentenal | 0.018 ± 0.002 a | 0.007 ± 0.001 b | 0.017 ± 0.001 a | 0.4047 | −0.2201 | −0.0825 |
Z-2-Hexenal * | 0.058 ± 0.010 a | 0.026 ± 0.001 b | 0.054 ± 0.010 a | 0.3832 | −0.2429 | −0.1149 |
Acetic acid * | 0.859 ± 0.027 a | 0.337 ± 0.009 b | 0.786 ± 0.051 a | 0.3829 | −0.2431 | −0.1292 |
E-2-Hexenal | 4.421 ± 0.610 a | 1.866 ± 0.052 b | 3.692 ± 0.338 a | 0.2406 | −0.3853 | −0.2769 |
E-3-Hexenal * | 0.037 ± 0.008 a | 0.011 ± 0.001 b | 0.028 ± 0.007 a | 0.1896 | −0.4330 | −0.3409 |
E,Z-2,4-Hexadienal * | 0.235 ± 0.023 a | 0.103 ± 0.001 c | 0.183 ± 0.022 b | 0.1196 | −0.4957 | −0.3910 |
Z-3-Hexenal * | 0.055 ± 0.010 a | 0.021 ± 0.001 b | 0.041 ± 0.003 a | 0.1006 | −0.5122 | −0.4096 |
E-3-Hexen-1-ol | 0.013 ± 0.012 | 0.018 ± 0.001 | 0.007 ± 0.000 | −0.9146 | −0.4933 | −0.5447 |
E,E-2,4-Hexadienal * | 0.070 ± 0.008 a | 0.023 ± 0.002 c | 0.042 ± 0.004 b | −0.1159 | −0.6851 | −0.5921 |
1-Penten-3-ol | 0.367 ± 0.034 ab | 0.394 ± 0.008 a | 0.327 ± 0.023 b | −0.9131 | −0.4901 | −0.5933 |
1-Penten-3-one | 0.470 ± 0.032 a | 0.035 ± 0.001 c | 0.196 ± 0.012 b | −0.1479 | −0.7083 | −0.6229 |
E-2-Hexenoic acid * | 0.019 ± 0.000 a | 0.009 ± 0.003 b | 0.010 ± 0.001 b | −0.4527 | −0.8949 | −0.8171 |
Z-3-Hexen-1-ol | 0.116 ± 0.080 | 0.107 ± 0.005 | 0.066 ± 0.004 | −0.9852 | −0.8932 | −0.9380 |
Phenol * | 0.387 ± 0.042 | 0.327 ± 0.044 | 0.310 ± 0.020 | −0.6707 | −0.9806 | −0.9517 |
Branched-chain alkene I * | 0.052 ± 0.008 a | 0.047 ± 0.000 ab | 0.037 ± 0.003 b | −0.9387 | −0.9592 | −0.9820 |
Branched-chain alkene II * | 0.045 ± 0.007 a | 0.036 ± 0.002 ab | 0.031 ± 0.003 b | −0.7572 | −0.9973 | −0.9867 |
Pentanoic acid * | 0.020 ± 0.001 a | 0.018 ± 0.001 b | 0.015 ± 0.001 c | −0.8806 | −0.9895 | −0.9934 |
3-Ethyl-1,5-octadiene II * | 0.188 ± 0.035 | 0.166 ± 0.002 | 0.138 ± 0.015 | −0.8981 | −0.9833 | −0.9976 |
3-Ethyl-1,5-octadiene I * | 0.239 ± 0.039 a | 0.203 ± 0.011 ab | 0.163 ± 0.014 b | −0.8793 | −0.9899 | −0.9995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brkić Bubola, K.; Lukić, I.; Krapac, M.; Koprivnjak, O. Exploring the Connection between the Occurrence and Intensity of “Grubby” Defect and Volatile Composition of Olive Oil. Foods 2023, 12, 4473. https://doi.org/10.3390/foods12244473
Brkić Bubola K, Lukić I, Krapac M, Koprivnjak O. Exploring the Connection between the Occurrence and Intensity of “Grubby” Defect and Volatile Composition of Olive Oil. Foods. 2023; 12(24):4473. https://doi.org/10.3390/foods12244473
Chicago/Turabian StyleBrkić Bubola, Karolina, Igor Lukić, Marin Krapac, and Olivera Koprivnjak. 2023. "Exploring the Connection between the Occurrence and Intensity of “Grubby” Defect and Volatile Composition of Olive Oil" Foods 12, no. 24: 4473. https://doi.org/10.3390/foods12244473
APA StyleBrkić Bubola, K., Lukić, I., Krapac, M., & Koprivnjak, O. (2023). Exploring the Connection between the Occurrence and Intensity of “Grubby” Defect and Volatile Composition of Olive Oil. Foods, 12(24), 4473. https://doi.org/10.3390/foods12244473