The Physicochemical Properties and Melting Behavior of Ice Cream Fortified with Multimineral Preparation from Red Algae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ice Cream Mix Preparation
2.2. Ice Cream Preparation (Freezing Conditions and Storage)
2.3. Analyses
2.3.1. Physicochemical Analysis
2.3.2. Mix Viscosity
2.3.3. Ice Cream Mix Freezing
2.3.4. Glass Transition Measurement
2.3.5. Texture
2.3.6. Overrun
2.3.7. Meltdown Test
2.3.8. Color Evaluation
2.3.9. Temperature Fluctuations
2.3.10. Ice Cream Stability after Storage
2.3.11. Sensory Analysis
2.3.12. Nutrient Density Evaluation
2.3.13. Statistical Analysis
3. Results and Discussion
3.1. Ice Cream Mix Characteristics
3.1.1. Ice Cream Mixes Parameters
3.1.2. Ice Cream Mixes Rheological Behavior
3.2. Ice Cream Characteristics
3.2.1. Ice Cream Color Profile
3.2.2. Ice Cream Overrun
3.2.3. Ice Cream Meltdown
3.2.4. Texture Analysis
3.2.5. Sensory Evaluation
3.2.6. Nutrient Density
Indices | Model | |||
---|---|---|---|---|
S0 | S0.5 | S0.8 | S1.0 | |
Naturally Nutrient-Rich Score (NNR) | ||||
NNR14 | 87.21 | 113.62 | 129.78 | 140.69 |
NNR16 | 83.39 | 106.59 | 120.79 | 130.36 |
Nutrient-Rich Foods (NRF) | ||||
NRF6.3 | 0.51 | 18.45 | 29.42 | 36.83 |
NRF9.3 | 9.44 | 30.08 | 42.70 | 51.23 |
NRF11.3 | 17.99 | 38.79 | 51.51 | 60.09 |
NRF15.3 | 38.25 | 56.75 | 68.06 | 75.69 |
Nutrient Adequacy Score (NAS) | ||||
NAS | 6.63 | 8.59 | 9.77 | 10.56 |
Nutrient Density Score (NDS) | ||||
NDS5 | 4.43 | 8.02 | 10.21 | 11.69 |
NDS6 | 5.58 | 8.26 | 9.90 | 11.01 |
NDS9 | 4.51 | 6.81 | 8.22 | 9.18 |
NDS16 | 4.21 | 5.52 | 6.32 | 6.86 |
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Caillet, A.; Cogné, C.; Andrieu, J.; Laurent, P.; Rivoire, A. Characterization of Ice Cream Structure by Direct Optical Microscopy. Influence of Freezing Parameters. LWT—Food Sci. Technol. 2003, 36, 743–749. [Google Scholar] [CrossRef]
- Choi, M.-J.; Shin, K.-S. Studies on Physical and Sensory Properties of Premium Vanilla Ice Cream Distributed in Korean Market. Korean J. Food Sci. Anim. Resour. 2014, 34, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Güven, M.; Kalender, M.; Taşpinar, T. Effect of Using Different Kinds and Ratios of Vegetable Oils on Ice Cream Quality Characteristics. Foods 2018, 7, 104. [Google Scholar] [CrossRef]
- Leahu, A.; Ropciuc, S.; Ghinea, C. Plant-Based Milks: Alternatives to the Manufacture and Characterization of Ice Cream. Appl. Sci. 2022, 12, 1754. [Google Scholar] [CrossRef]
- Russell, A.B.; Cheney, P.E.; Wantling, S.D. Influence of Freezing Conditions on Ice Crystallisation in Ice Cream. J. Food Eng. 1999, 39, 179–191. [Google Scholar] [CrossRef]
- Buyck, J.R.; Baer, R.J.; Choi, J. Effect of Storage Temperature on Quality of Light and Full-Fat Ice Cream. J. Dairy Sci. 2011, 94, 2213–2219. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, T.; Hartel, R.W. Effect of Sweetener, Stabilizer, and Storage Temperature on Ice Recrystallization in Ice Cream. J. Dairy Sci. 1996, 79, 735–744. [Google Scholar] [CrossRef]
- Regand, A.; Goff, H.D. Structure and Ice Recrystallization in Frozen Stabilized Ice Cream Model Systems. Food Hydrocoll. 2003, 17, 95–102. [Google Scholar] [CrossRef]
- Marshall, R.T.; Goff, H.D.; Hartel, R.W. Ice Cream; Springer: Boston, MA, USA, 2003; ISBN 978-1-4613-4948-8. [Google Scholar]
- Goff, H.D.; Sahagian, M.E. Freezing of Dairy Products. In Freezing Effects on Food Quality; Jeremiah, L.E., Ed.; CRC Press: Boca Raton, FL, USA, 1996; pp. 299–335. ISBN 978-0-203-75549-5. [Google Scholar]
- Miller-Livney, T.; Hartel, R.W. Ice Recrystallization in Ice Cream: Interactions Between Sweeteners and Stabilizers. J. Dairy Sci. 1997, 80, 447–456. [Google Scholar] [CrossRef]
- Durmaz, Y.; Kilicli, M.; Toker, O.S.; Konar, N.; Palabiyik, I.; Tamtürk, F. Using Spray-Dried Microalgae in Ice Cream Formulation as a Natural Colorant: Effect on Physicochemical and Functional Properties. Algal Res. 2020, 47, 101811. [Google Scholar] [CrossRef]
- Barkallah, M.; Dammak, M.; Louati, I.; Hentati, F.; Hadrich, B.; Mechichi, T.; Ayadi, M.A.; Fendri, I.; Attia, H.; Abdelkafi, S. Effect of Spirulina Platensis Fortification on Physicochemical, Textural, Antioxidant and Sensory Properties of Yogurt during Fermentation and Storage. LWT 2017, 84, 323–330. [Google Scholar] [CrossRef]
- Brennan, O.; Stenson, B.; Widaa, A.; O’Gorman, D.M.; O’Brien, F.J. Incorporation of the Natural Marine Multi-Mineral Dietary Supplement Aquamin Enhances Osteogenesis and Improves the Mechanical Properties of a Collagen-Based Bone Graft Substitute. J. Mech. Behav. Biomed. Mater. 2015, 47, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Brennan, O.; Sweeney, J.; O’Meara, B.; Widaa, A.; Bonnier, F.; Byrne, H.J.; O’Gorman, D.M.; O’Brien, F.J. A Natural, Calcium-Rich Marine Multi-Mineral Complex Preserves Bone Structure, Composition and Strength in an Ovariectomised Rat Model of Osteoporosis. Calcif. Tissue Int. 2017, 101, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Frestedt, J. Aquamin Research: Minerals from Red Algae. Oceanography 2013, 1, 1000114. [Google Scholar] [CrossRef]
- Mattar, C.; Wannasawat, R. Development of Calcium Enriched Rice Pasta by Extrusion Process. J. Food Sci. Agric. Technol. 2018, 4, 79–85. [Google Scholar]
- Varelis, P. Food Chemistry and Analysis. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; p. B9780081005965033412. ISBN 978-0-08-100596-5. [Google Scholar]
- Rahman, M.S.; Guizani, N.; Al-Khaseibi, M.; Ali Al-Hinai, S.; Al-Maskri, S.S.; Al-Hamhami, K. Analysis of Cooling Curve to Determine the End Point of Freezing. Food Hydrocoll. 2002, 16, 653–659. [Google Scholar] [CrossRef]
- Bainy, E.M.; Corazza, M.L.; Lenzi, M.K. Measurement of Freezing Point of Tilapia Fish Burger Using Differential Scanning Calorimetry (DSC) and Cooling Curve Method. J. Food Eng. 2015, 161, 82–86. [Google Scholar] [CrossRef]
- Tiwari, A.; Sharma, H.K.; Kumar, N.; Kaur, M. The Effect of Inulin as a Fat Replacer on the Quality of Low-Fat Ice Cream. Int. J. Dairy Technol. 2015, 68, 374–380. [Google Scholar] [CrossRef]
- Muse, M.R.; Hartel, R.W. Ice Cream Structural Elements That Affect Melting Rate and Hardness. J. Dairy Sci. 2004, 87, 1–10. [Google Scholar] [CrossRef]
- Karaca, O.B.; Güven, M.; Yasar, K.; Kaya, S.; Kahyaoglu, T. The Functional, Rheological and Sensory Characteristics of Ice Creams with Various Fat Replacers. Int. J. Dairy Technol. 2009, 62, 93–99. [Google Scholar] [CrossRef]
- Yeon, S.-J.; Kim, J.-H.; Hong, G.-E.; Park, W.; Kim, S.-K.; Seo, H.-G.; Lee, C.-H. Physical and Sensory Properties of Ice Cream Containing Fermented Pepper Powder. Korean J. Food Sci. Anim. Resour. 2017, 37, 38–43. [Google Scholar] [CrossRef]
- Darmon, N.; Darmon, M.; Maillot, M.; Drewnowski, A. A Nutrient Density Standard for Vegetables and Fruits: Nutrients per Calorie and Nutrients per Unit Cost. J. Am. Diet. Assoc. 2005, 105, 1881–1887. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A. Concept of a Nutritious Food: Toward a Nutrient Density Score. Am. J. Clin. Nutr. 2005, 82, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Fulgoni, V. Nutrient Profiling of Foods: Creating a Nutrient-Rich Food Index. Nutr. Rev. 2008, 66, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Fulgoni, V.L. Nutrient Density: Principles and Evaluation Tools. Am. J. Clin. Nutr. 2014, 99, 1223S–1228S. [Google Scholar] [CrossRef] [PubMed]
- Fulgoni, V.L.; Keast, D.R.; Drewnowski, A. Development and Validation of the Nutrient-Rich Foods Index: A Tool to Measure Nutritional Quality of Foods. J. Nutr. 2009, 139, 1549–1554. [Google Scholar] [CrossRef] [PubMed]
- Maillot, M.; Darmon, N.; Darmon, M.; Lafay, L.; Drewnowski, A. Nutrient-Dense Food Groups Have High Energy Costs: An Econometric Approach to Nutrient Profiling. J. Nutr. 2007, 137, 1815–1820. [Google Scholar] [CrossRef]
- Markowska, J.; Polak, E.; Drabent, A.; Tyfa, A. Innovative Management of Vegetable Outgrades as a Means of Food Loss and Waste Reduction. Sustainability 2022, 14, 12363. [Google Scholar] [CrossRef]
- Aboulfazli, F.; Baba, A.S.; Misran, M. Effect of Vegetable Milks on the Physical and Rheological Properties of Ice Cream. Food Sci. Technol. Res. 2014, 20, 987–996. [Google Scholar] [CrossRef]
- Yangılar, F. Production and Evaluation of Mineral and Nutrient Contents, Chemical Composition, and Sensory Properties of Ice Creams Fortified with Laboratory-Prepared Peach Fibre. Food Nutr. Res. 2016, 60, 31882. [Google Scholar] [CrossRef]
- El-Hadad, S.S.; Tikhomirova, N.A.; Tvorogova, A.A.; Shobanova, T.V.; El-Aziz, M.A. Physical Properties and Microstructure of Ice Cream Supplemented With Minor Components of Wheat Germ Oil. Int. J. Dairy Sci. 2020, 15, 189–199. [Google Scholar] [CrossRef]
- Alvarez, V.B.; Wolters, C.L.; Vodovotz, Y.; Ji, T. Physical Properties of Ice Cream Containing Milk Protein Concentrates. J. Dairy Sci. 2005, 88, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Atik, I.; Tekin Cakmak, Z.H.; Avcı, E.; Karasu, S. The Effect of Cold Press Chia Seed Oil By-Products on the Rheological, Microstructural, Thermal, and Sensory Properties of Low-Fat Ice Cream. Foods 2021, 10, 2302. [Google Scholar] [CrossRef]
- Pintor-Jardines, A.; Arjona-Román, J.L.; Totosaus-Sánchez, A.; Severiano-Pérez, P.; González-González, L.R.; Escalona-Buendia, H.B. The Influence of Agave Fructans on Thermal Properties of Low-Fat, and Low-Fat and Sugar Ice Cream. LWT 2018, 93, 679–685. [Google Scholar] [CrossRef]
- Cogné, C.; Andrieu, J.; Laurent, P.; Besson, A.; Nocquet, J. Experimental Data and Modelling of Thermal Properties of Ice Creams. J. Food Eng. 2003, 58, 331–341. [Google Scholar] [CrossRef]
- Zambrano-Mayorga, L.F.; Ramírez-Navas, J.S.; Ochoa-Martínez, C.I. Influence of the Formulation on the Thermophysical Properties and the Quality Parameters of Dairy Ice Cream. DYNA 2019, 86, 117–125. [Google Scholar] [CrossRef]
- Soukoulis, C.; Lebesi, D.; Tzia, C. Enrichment of Ice Cream with Dietary Fibre: Effects on Rheological Properties, Ice Crystallisation and Glass Transition Phenomena. Food Chem. 2009, 115, 665–671. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Ding, X.; Cheng, L.; Wang, L.; Qian, H.; Qi, X.; Song, C. Purification and Identification of Antifreeze Protein From Cold-Acclimated Oat (Avena sativa L.) and the Cryoprotective Activities in Ice Cream. Food Bioprocess Technol. 2016, 9, 1746–1755. [Google Scholar] [CrossRef]
- Arellano, M.; Flick, D.; Benkhelifa, H.; Alvarez, G. Rheological Characterisation of Sorbet Using Pipe Rheometry during the Freezing Process. J. Food Eng. 2013, 119, 385–394. [Google Scholar] [CrossRef]
- De La Cruz Martínez, A.; Delgado Portales, R.E.; Pérez Martínez, J.D.; González Ramírez, J.E.; Villalobos Lara, A.D.; Borras Enríquez, A.J.; Moscosa Santillán, M. Estimation of Ice Cream Mixture Viscosity during Batch Crystallization in a Scraped Surface Heat Exchanger. Processes 2020, 8, 167. [Google Scholar] [CrossRef]
- Goff, H.D.; Hartel, R.W. Ice Cream; Springer: Boston, MA, USA, 2013; ISBN 978-1-4614-6095-4. [Google Scholar]
- Karaman, S.; Kayacier, A. Rheology of Ice Cream Mix Flavored with Black Tea or Herbal Teas and Effect of Flavoring on the Sensory Properties of Ice Cream. Food Bioprocess Technol. 2012, 5, 3159–3169. [Google Scholar] [CrossRef]
- Pon, S.Y.; Lee, W.J.; Chong, G.H. Textural and Rheological Properties of Stevia Ice Cream. Int. Food Res. J. 2015, 22, 1544–1549. [Google Scholar]
- Alizadeh, M.; Azizi-Ialabadi, M.; Kheirvari, S. Physicochemical, Sensory, Rheological Properties and Glycemic Index of Fresh Date Ice Cream. J. Sci. Res. Rep. 2014, 3, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, M.; Azizi-Lalabadi, M.; Kheirouri, S. Impact of Using Stevia on Physicochemical, Sensory, Rheology and Glycemic Index of Soft Ice Cream. Food Nutr. Sci. 2014, 05, 390–396. [Google Scholar] [CrossRef]
- Ateteallah, H.; Abd-Alla, A.; Ateteallah, A.; Hassan, N. Physicochemical and Sensory Properties of Low-Fat Ice Cream Made with Inulin and Maltodextrin as Fat Replacers. J. Food Dairy Sci. 2020, 11, 151–156. [Google Scholar] [CrossRef]
- Soukoulis, C.; Rontogianni, E.; Tzia, C. Contribution of Thermal, Rheological and Physical Measurements to the Determination of Sensorially Perceived Quality of Ice Cream Containing Bulk Sweeteners. J. Food Eng. 2010, 100, 634–641. [Google Scholar] [CrossRef]
- Daw, E.; Hartel, R.W. Fat Destabilization and Melt-down of Ice Creams with Increased Protein Content. Int. Dairy J. 2015, 43, 33–41. [Google Scholar] [CrossRef]
- Adapa, S.; Dingeldein, H.; Schmidt, K.A.; Herald, T.J. Rheological Properties of Ice Cream Mixes and Frozen Ice Creams Containing Fat and Fat Replacers. J. Dairy Sci. 2000, 83, 2224–2229. [Google Scholar] [CrossRef]
- Jagdish, K.S.; Arvind, R.S.; Deepak, O.S.; Ashok, B.R. Effect of Guar Gum on Viscosity of Ice Cream. Asian J. Dairy Food Res. 2014, 33, 259. [Google Scholar] [CrossRef]
- Sameen, A.; Manzoor, M.F.; Nuzhat, H.; Sahar, A.; Sattar, U. Quality Evaluation of Ice Cream Prepared with Sagudana (Meteroxylon sagu) and Sweet Potato (Ipomoea batatas) Starch as Stabilizing Agent. Pak. J. Food Sci. 2017, 27, 1–6. [Google Scholar]
- Amador, J.; Hartel, R.; Rankin, S. The Effects of Fat Structures and Ice Cream Mix Viscosity on Physical and Sensory Properties of Ice Cream: Physical and Sensory Properties of Ice Cream. J. Food Sci. 2017, 82, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
- Doğan, M.; Kayacier, A. The Effect of Ageing at a Low Temperature on the Rheological Properties of Kahramanmaras-Type Ice Cream Mix. Int. J. Food Prop. 2007, 10, 19–24. [Google Scholar] [CrossRef]
- Milliatti, M.C.; Lannes, S.C.D.S. Impact of Stabilizers on the Rheological Properties of Ice Creams. Food Sci. Technol. 2018, 38, 733–739. [Google Scholar] [CrossRef]
- Dertli, E.; Toker, O.S.; Durak, M.Z.; Yilmaz, M.T.; Tatlısu, N.B.; Sagdic, O.; Cankurt, H. Development of a Fermented Ice-Cream as Influenced by in Situ Exopolysaccharide Production: Rheological, Molecular, Microstructural and Sensory Characterization. Carbohydr. Polym. 2016, 136, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Zarzycki, P.; Ciołkowska, A.E.; Jabłońska-Ryś, E.; Gustaw, W. Rheological Properties of Milk-Based Desserts with the Addition of Oat Gum and κ-Carrageenan. J. Food Sci. Technol. 2019, 56, 5107–5115. [Google Scholar] [CrossRef] [PubMed]
- Lozano, E.; Padilla, K.; Salcedo, J.; Arrieta, A.; Andrade-Pizarro, R. Effects of Yam (Dioscorea rotundata) Mucilage on the Physical, Rheological and Stability Characteristics of Ice Cream. Polymers 2022, 14, 3142. [Google Scholar] [CrossRef]
- Kazimierska, M. Obiektywna Ocena Barwy Wyrobów Użytkowych. Technol. Jakość Wyr. 2014, 59, 44–47. [Google Scholar]
- Pathare, P.B.; Opara, U.L.; Al-Said, F.A.-J. Colour Measurement and Analysis in Fresh and Processed Foods: A Review. Food Bioprocess Technol. 2013, 6, 36–60. [Google Scholar] [CrossRef]
- Arbuckle, W.S.; Frandsen, J.H. Ice Cream; Revised and Augmented Edition; Avi Pub. Co.: Westport, CO, USA, 1966; ISBN 0-87055-001-2. [Google Scholar]
- Chang, Y.; Hartel, R.W. Development of Air Cells in a Batch Ice Cream Freezer. J. Food Eng. 2002, 55, 71–78. [Google Scholar] [CrossRef]
- Park, S.H.; Jo, Y.-J.; Chun, J.-Y.; Hong, G.-P.; Davaatseren, M.; Choi, M.-J. Effect of Frozen Storage Temperature on the Quality of Premium Ice Cream. Korean J. Food Sci. Anim. Resour. 2015, 35, 793–799. [Google Scholar] [CrossRef]
- Güzeler, N.; Kaçar, A.; Kaçeli, T.; Say, D. Effect of Different Stabilizers, Emulsifiers and Storage Time on Some Properties of Ice Cream. Akademik Gida 2012, 10, 26–30. [Google Scholar]
- Murtaza, M.A.; Mueen Ud Din, G.; Huma, N.; Shabbir, A.; Mahmood, S. Quality Evaluation of Ice Cream Prepared with Different Stabilizers/Emulsifier Blends. Int. J. Agri. Biol 2004, 6, 65–67. [Google Scholar]
- Singh, A.; Bajwa, U.; Goraya, R.K. Effect of Storage Period on the Physicochemical, Sensory and Microbiological Quality of Bakery Flavoured Ice Cream. Int. J. Eng. Res. Appl. 2014, 4, 80–90. [Google Scholar]
- Sofjan, R.P.; Hartel, R.W. Effects of Overrun on Structural and Physical Characteristics of Ice Cream. Int. Dairy J. 2004, 14, 255–262. [Google Scholar] [CrossRef]
- VanWees, S.R.; Rankin, S.A.; Hartel, R.W. The Microstructural, Melting, Rheological, and Sensorial Properties of High-overrun Frozen Desserts. J. Texture Stud. 2019, 51, 92–100. [Google Scholar] [CrossRef]
- Warren, M.M.; Hartel, R.W. Effects of Emulsifier, Overrun and Dasher Speed on Ice Cream Microstructure and Melting Properties: Ice Cream Microstructure and Melt Rate. J. Food Sci. 2018, 83, 639–647. [Google Scholar] [CrossRef]
- Sitnikova, P.B.; Tvorogova, A.A. Physical Changes in the Structure of Ice Cream and Frozen Fruit Desserts during Storage. Food Syst. 2019, 2, 31–35. [Google Scholar] [CrossRef]
- Lomolino, G.; Zannoni, S.; Zabara, A.; Da Lio, M.; De Iseppi, A. Ice Recrystallisation and Melting in Ice Cream with Different Proteins Levels and Subjected to Thermal Fluctuation. Int. Dairy J. 2020, 100, 104557. [Google Scholar] [CrossRef]
- Leducq, D.; Ndoye, F.T.; Charriau, C.; Alvarez, G. Thermal Protection of Ice Cream during Storage and Transportation. In Proceedings of the ICR 2015, Yokohama, Japan, 16–22 August 2015; p. 6. [Google Scholar]
- Da Silva Junior, E.; Lannes, S.C.D.S. Effect of Different Sweetener Blends and Fat Types on Ice Cream Properties. Ciênc. Tecnol. Aliment. 2011, 31, 217–220. [Google Scholar] [CrossRef]
- Wu, B.; Freire, D.O.; Hartel, R.W. The Effect of Overrun, Fat Destabilization, and Ice Cream Mix Viscosity on Entire Meltdown Behavior. J. Food Sci. 2019, 84, 2562–2571. [Google Scholar] [CrossRef] [PubMed]
- Ohmes, R.L.; Marshall, R.T.; Heymann, H. Sensory and Physical Properties of Ice Creams Containing Milk Fat or Fat Replacers. J. Dairy Sci. 1998, 81, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Junyusen, T.; Petnom, G.; Chienwiboonsook, B. The Effects of Inulin on the Physicochemical Characteristics of Reduced-Fat Ice Cream. Suranaree J. Sci. Technol. 2017, 24, 13–22. [Google Scholar]
- Hwang, J.-Y.; Shyu, Y.-S.; Hsu, C.-K. Grape Wine Lees Improves the Rheological and Adds Antioxidant Properties to Ice Cream. LWT—Food Sci. Technol. 2009, 42, 312–318. [Google Scholar] [CrossRef]
- Feizi, R.; Goh, K.K.T.; Mutukumira, A.N. Effect of Chia Seed Mucilage as Stabiliser in Ice Cream. Int. Dairy J. 2021, 120, 105087. [Google Scholar] [CrossRef]
- Tsai, S.-Y.; Tsay, G.J.; Li, C.-Y.; Hung, Y.-T.; Lin, C.-P. Assessment of Melting Kinetics of Sugar-Reduced Silver Ear Mushroom Ice Cream under Various Additive Models. Appl. Sci. 2020, 10, 2664. [Google Scholar] [CrossRef]
- Kozłowicz, K.; Nazarewicz, S.; Różyło, R.; Nastaj, M.; Parafiniuk, S.; Szmigielski, M.; Bieńczak, A.; Kozłowicz, N. The Use of Moldavian Dragonhead Bagasse in Shaping the Thermophysical and Physicochemical Properties of Ice Cream. Appl. Sci. 2021, 11, 8598. [Google Scholar] [CrossRef]
- Syed, Q.A.; Anwar, S.; Shukat, R.; Zahoor, T. Effects of Different Ingredients on Texture of Ice Cream. J. Nutr. Health Food Eng. 2018, 8, 422–435. [Google Scholar] [CrossRef]
- Abd El-Rahman, A.M.; Madkor, S.A.; Ibrahim, F.S.; Kilara, A. Physical Characteristics of Frozen Desserts Made with Cream, Anhydrous Milk Fat, or Milk Fat Fractions. J. Dairy Sci. 1997, 80, 1926–1935. [Google Scholar] [CrossRef]
- Prindiville, E.A.; Marshall, R.T.; Heymann, H. Effect of Milk Fat on the Sensory Properties of Chocolate Ice Cream. J. Dairy Sci. 1999, 82, 1425–1432. [Google Scholar] [CrossRef]
- Wibley, R.A.; Cooke, T.; Dimos, G. The Effects of Solute Concentration, Overrun and Storage on the Hardness of Ice Cream. Ice cream. In Proceedings of the International Symposium, Athens, Greece, 18–19 September 1997; Posters. 2. Ingredient Functionality. Buchheim, W., Ed.; International Dairy Federation: Athens, Greece; Brussels, Belgium, 1998; pp. 186–187. [Google Scholar]
- Tsevdou, M.; Aprea, E.; Betta, E.; Khomenko, I.; Molitor, D.; Biasioli, F.; Gaiani, C.; Gasperi, F.; Taoukis, P.; Soukoulis, C. Rheological, Textural, Physicochemical and Sensory Profiling of a Novel Functional Ice Cream Enriched with Muscat de Hamburg (Vitis vinifera L.) Grape Pulp and Skins. Food Bioprocess Technol. 2019, 12, 665–680. [Google Scholar] [CrossRef]
- Kumar, A.; Hanjabam, M.D.; Kishore, P.; Uchoi, D.; Panda, S.K.; Mohan, C.O.; Chatterjee, N.S.; Zynudheen, A.A.; Ravishankar, C.N. Exploitation of Seaweed Functionality for the Development of Food Products. Food Bioprocess Technol. 2023, 1–31. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Dietary Reference Values for the EU. 2023. Available online: https://efsa.gitlab.io/multimedia/drvs/index.htm (accessed on 4 May 2023).
- Hess, J.; Rao, G.; Slavin, J. The Nutrient Density of Snacks: A Comparison of Nutrient Profiles of Popular Snack Foods Using the Nutrient-Rich Foods Index. Glob. Pediatr. Health 2017, 4, 2333794X17698525. [Google Scholar] [CrossRef] [PubMed]
- Ferrar, L.; Van Der Hee, R.M.; Berry, M.; Watson, C.; Miret, S.; Wilkinson, J.; Bradburn, M.; Eastell, R. Effects of Calcium-Fortified Ice Cream on Markers of Bone Health. Osteoporos. Int. 2011, 22, 2721–2731. [Google Scholar] [CrossRef] [PubMed]
Ingredients [%] | Ice Cream Mix Model | |||
---|---|---|---|---|
S0 | S0.5 | S0.8 | S1.0 | |
Sucrose | 10.00 | 9.50 | 9.20 | 9.00 |
Skim milk powder | 12.00 | 12.00 | 12.00 | 12.00 |
Milk fat | 8.00 | 8.00 | 8.00 | 8.00 |
Palsgaard 260 | 0.50 | 0.50 | 0.50 | 0.50 |
Multi-mineral preparation | 0 | 0.50 | 0.80 | 1.00 |
Water | 69.50 | 69.50 | 69.50 | 69.50 |
Parameter | Model | ||||
---|---|---|---|---|---|
S0 | S0.5 | S0.8 | S1.0 | ||
Dry mass | (g) | 32.56 ± 0.17 a | 32.54 ± 0.08 a | 32.51 ± 0.05 a | 32.52 ± 0.07 a |
aw | (-) | 0.9851 ± 0.0004 a | 0.9853 ± 0.0003 a | 0.9853 ± 0.0003 a | 0.9852 ± 0.0004 a |
pH | (-) | 6.58 ± 0.04 a | 6.99 ± 0.04 b | 7.05 ± 0.06 b | 7.10 ± 0.04 b |
ED | kcal | 157.61 a | 155.72 ab | 154.58 b | 153.82 b |
kJ | 659.30 a | 651.25 a | 646.42 b | 643.20 b |
Model | S0 | S0.5 | S0.8 | S1.0 | ||
---|---|---|---|---|---|---|
Melting reaction | Temperature (°C) | Tf | −1.74 ± 0.14 a | −1.64 ± 0.08 b | −1.61 ± 0.05 b | −1.63 ± 0.07 b |
onset | −8.1 ± 0.20 a | −5.6 ± 0.30 b | −5.4 ± 0.20 b | −5.3 ± 0.20 b | ||
offset | 3.4 ± 0.30 a | 8.5 ± 0.20 b | 9.0 ± 0.20 b,c | 9.3 ± 0.20 c | ||
ΔT (°C) | 11.5 a | 14.1 b | 14.4 b | 14.6 b | ||
Parameter | ΔH (J/g) | 221.80 ± 6.41 a | 217.03 ± 3.22 a | 216.36 ± 2.14 a,b | 209.96 ± 3.31 b | |
FW (%) | 66.41 ± 0.14 a | 64.97 ± 0.07 b | 64.78 ± 0.04 b | 62.88 ± 0.10 c | ||
MC (%) | 68.53 ± 0.14 a | 68.16 ± 0.14 a | 68.21 ± 0.08 a | 67.65 ± 0.14 b | ||
UFW (%) | 2.12 ± 0.14 a | 3.19 ± 0.14 b | 3.43 ± 0.14 c | 4.79 ± 0.14 d | ||
Glass transition (°C) | Tg | −47.28 ± 0.10 a | −46.54 ± 0.20 a | −46.40 ± 0.20 a | −46.26 ± 0.30 a | |
onset | −49.36 ± 0.10 a | −48.66 ± 0.20 a | −48.26 ± 0.20 a | −49.25 ± 0.40 a |
Ice Cream Mix | Apparent Viscosity * | Model | ||||||
---|---|---|---|---|---|---|---|---|
Ostwald de Waele | Herschel–Bulkley | |||||||
k (Pa·sn) | n (-) | R2 | σ0 (Pa) | k (Pa·sn) | n (-) | R2 | ||
S0 | 0.0677 ± 0.0005 c | 1.0000 a | 0.5414 c | 0.9971 a | 1.7842 c | 0.2619 a | 0.7549 a | 0.9997 a |
S0.5 | 0.0652 ± 0.0004 b | 1.0000 a | 0.5353 b | 0.9962 a | 1.0241 a | 0.2831 a | 0.7459 a | 0.9997 a |
S0.8 | 0.0621 ± 0.0005 a | 1.0000 a | 0.5286 a | 0.9961 a | 1.2332 b | 0.2544 a | 0.7504 a | 0.9997 a |
S1.0 | 0.0637 ± 0.0007 a | 1.0000 a | 0.5312 a,b | 0.9963 a | 1.7661 c | 0.2293 a | 0.7667 a | 0.9997 a |
Ice Cream Model | Time [days] | Color Parameter | |||||
---|---|---|---|---|---|---|---|
L* | a* | b* | C* | h | ΔE | ||
S0 | 7 | 89.64 ± 0.21 c | −0.33 ± 0.03 d | 13.20 ± 0.13 c | 13.21 ± 0.13 c | 91.43 ± 0.13 b | 0 c |
S0.5 | 88.29 ± 0.41 a | −0.56 ± 0.02 a,b,c | 12.00 ± 0.59 a | 12.01 ± 0.60 a | 92.66 ± 0.10 a | 1.92 ± 0.27 a,b | |
S0.8 | 88.19 ± 0.48 a,b | −0.51 ± 0.01 a,b | 11.37 ± 0.35 a,b | 11.38 ± 0.35 a,b | 92.59 ± 0.16 a | 2.35 ± 0.57 b | |
S1.0 | 87.38 ± 0.12 a | −0.51 ± 0.02 a,b | 10.63 ± 0.24 b | 10.64 ± 0.24 b | 92.75 ± 0.08 a | 3.43 ± 0.19 d | |
S0 | 90 | 87.95 ± 0.82 a | −0.51 ± 0.09 b | 12.96 ± 0.17 c | 12.97 ± 0.17 c | 92.24 ± 0.40 c | 1.71 ± 0.29 a |
S0.5 | 87.83 ± 0.21 a | −0.60 ± 0.03 c | 12.04 ± 0.13 a | 12.06 ± 0.12 a | 92.87 ± 0.12 a | 2.17 ± 0.17 a,b | |
S0.8 | 88.48 ± 0.17 a,b | −0.57 ± 0.03 a,c | 11.75 ± 0.11 a,b | 11.76 ± 0.11 a,b | 92.76 ± 0.17 a | 1.87 ± 0.08 a,b | |
S1.0 | 89.55 ± 0.16 b,c | −0.54 ± 0.01 a,b | 8.78 ± 0.08 d | 8.80 ± 0.08 d | 93.51 ± 0.08 d | 4.43 ± 0.08 e |
Hardness, T [N] | Adhesiveness, A [mJ] | ||||
---|---|---|---|---|---|
Ice Cream Model * | Days | Before Heat Shock | After Heat Shock | Before Heat Shock | After Heat Shock |
S0 | 7 | 1.68 ± 0.18 a,A | 1.88 ± 0.43 a,A | 2.47 ± 0.37 x,X | 2.17 ± 0.58 x,X |
S0.5 | 1.69 ± 0.17 a,A | 1.91 ± 0.22 a,A | 2.17 ± 0.58 x,X | 1.81 ± 0.19 x,X | |
S0.8 | 2.09 ± 0.09 a,A | 2.20 ± 0.17 a,A | 2.17 ± 0.42 x,X | 2.70 ± 0.22 y,X | |
S1.0 | 3.86 ± 0.43 b,B | 2.42 ± 0.25 a,A | 3.90 ± 0.40 y,Y | 3.00 ± 0.49 x,X | |
S0 | 90 | 2.36 ± 0.54 a,B | 2.00 ± 0.18 a,A | 3.20 ± 0.33 y,Y | 2.52 ± 0.32 x,X |
S0.5 | 2.28 ± 0.20 a,B | 2.12 ± 0.32 a,A | 2.25 ± 0.36 x,X | 2.33 ± 0.36 x,Y | |
S0.8 | 2.52 ± 0.20 a,B | 2.27 ± 0.27 a,A | 2.67 ± 0.47 x,X | 2.45 ± 0.28 x,X | |
S1.0 | 2.72 ± 0.12 b,A | 2.37 ± 0.18 a,A | 3.22 ± 0.62 x,X | 2.75 ± 0.24 x,X |
Ice Cream Model * | Color and Appearance | Texture/Mouthfeel | Odor and Flavor | Overall Acceptability |
---|---|---|---|---|
S0 | 3.27 ± 0.25 b | 3.95 ± 0.15 a | 4.29 ± 0.25 a | 6.67 ± 0.47 b |
S0.5 | 3.37 ± 0.28 b | 3.85 ± 0.24 a | 4.23 ± 0.23 a | 6.33 ± 0.47 b |
S0.8 | 3.53 ± 0.25 b | 3.98 ± 0.20 a | 4.06± 0.30 a | 7.50 ± 0.50 a |
S1.0 | 4.00 ± 0.22 a | 3.88 ± 0.18 a | 3.73± 0.29 b | 6.67 ± 0.75 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markowska, J.; Tyfa, A.; Drabent, A.; Stępniak, A. The Physicochemical Properties and Melting Behavior of Ice Cream Fortified with Multimineral Preparation from Red Algae. Foods 2023, 12, 4481. https://doi.org/10.3390/foods12244481
Markowska J, Tyfa A, Drabent A, Stępniak A. The Physicochemical Properties and Melting Behavior of Ice Cream Fortified with Multimineral Preparation from Red Algae. Foods. 2023; 12(24):4481. https://doi.org/10.3390/foods12244481
Chicago/Turabian StyleMarkowska, Joanna, Agnieszka Tyfa, Anna Drabent, and Artur Stępniak. 2023. "The Physicochemical Properties and Melting Behavior of Ice Cream Fortified with Multimineral Preparation from Red Algae" Foods 12, no. 24: 4481. https://doi.org/10.3390/foods12244481
APA StyleMarkowska, J., Tyfa, A., Drabent, A., & Stępniak, A. (2023). The Physicochemical Properties and Melting Behavior of Ice Cream Fortified with Multimineral Preparation from Red Algae. Foods, 12(24), 4481. https://doi.org/10.3390/foods12244481