Exploring for HPLC-MS/MS Profiles and Biological Activities of Different Extracts from Allium lycaonicum Siehe ex Hayek from Turkey Flora
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Standards
2.2. Plant Material
2.3. Extraction Process
2.4. Phytochemical Screening
2.5. HPLC-ESI-MS/MS Triple Quadrupole
2.6. HPLC-ESI-MS/MS Method Validation
2.7. Antioxidant and Enzyme Inhibition Assays
2.8. Statistical Analysis
3. Results and Discussion
3.1. The Total Phenolic Content (TPC) and Flavonoid Content (TFC)
3.2. Phytoconstituents Profile
3.3. Antioxidant Activity
3.4. Enzyme Inhibition Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aware, C.B.; Patil, D.N.; Suryawanshi, S.S.; Mali, P.R.; Rane, M.R.; Gurav, R.G.; Jadhav, J.P. Natural bioactive products as promising therapeutics: A review of natural product-based drug development. S. Afr. J. Bot. 2022, 151, 512–528. [Google Scholar] [CrossRef]
- Loiseleur, O. Natural products in the discovery of agrochemicals. Chimia 2017, 71, 810. [Google Scholar] [CrossRef] [PubMed]
- Azabou, S.; Sebii, H.; Taheur, F.B.; Abid, Y.; Jridi, M.; Nasri, M. Phytochemical profile and antioxidant properties of tomato by-products as affected by extraction solvents and potential application in refined olive oils. Food Biosci. 2020, 36, 100664. [Google Scholar] [CrossRef]
- Abubakar, A.R.; Haque, M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. J. Pharm. Bioallied Sci. 2020, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- WCSP, W. World checklist of selected plant families. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet 2017. Available online: https://www.gbif.org/dataset/d43f62e9-d697-41c5-ba9d-0328d7b4571c (accessed on 10 August 2023).
- Khassanov, F.O. Taxonomical and Ethnobotanical Aspects of Allium Species from Middle Asia with Particular Reference to Subgenus Allium. In The Allium Genomes; Springer: Berlin/Heidelberg, Germany, 2018; pp. 11–21. [Google Scholar]
- Danquah, C.A.; Minkah, P.A.B.; Agana, T.A.; Moyo, P.; Ofori, M.; Doe, P.; Rali, S.; Osei Duah Junior, I.; Amankwah, K.B.; Somuah, S.O. The Phytochemistry and Pharmacology of Tulbaghia, Allium, Crinum and Cyrtanthus:‘Talented’Taxa from the Amaryllidaceae. Molecules 2022, 27, 4475. [Google Scholar] [CrossRef] [PubMed]
- Bastaki, S.M.; Ojha, S.; Kalasz, H.; Adeghate, E. Chemical constituents and medicinal properties of Allium species. Mol. Cell. Biochem. 2021, 476, 4301–4321. [Google Scholar] [CrossRef]
- Lanzotti, V.; Scala, F.; Bonanomi, G. Compounds from Allium species with cytotoxic and antimicrobial activity. Phytochem. Rev. 2014, 13, 769–791. [Google Scholar] [CrossRef]
- Najeebullah, S.; Shinwari, Z.K.; Jan, S.A.; Khan, I.; Ali, M. Ethno medicinal and phytochemical properties of genus Allium: A review of recent advances. Pak. J. Bot 2021, 53, 135–144. [Google Scholar] [CrossRef]
- Tudu, C.K.; Dutta, T.; Ghorai, M.; Biswas, P.; Samanta, D.; Oleksak, P.; Jha, N.K.; Kumar, M.; Proćków, J.; Pérez de la Lastra, J.M. Traditional uses, phytochemistry, pharmacology and toxicology of garlic (Allium sativum), a storehouse of diverse phytochemicals: A review of research from the last decade focusing on health and nutritional implications. Front. Nutr. 2022, 9, 929554. [Google Scholar] [CrossRef]
- Alam, A.; Al Arif Jahan, A.; Bari, M.S.; Khandokar, L.; Mahmud, M.H.; Junaid, M.; Chowdhury, M.S.; Khan, M.F.; Seidel, V.; Haque, M.A. Allium vegetables: Traditional uses, phytoconstituents, and beneficial effects in inflammation and cancer. Crit. Rev. Food Sci. Nutr. 2023, 63, 6580–6614. [Google Scholar] [CrossRef]
- Lengbiye, E.M.; Mbadiko, C.M.; Falanga, C.M.; Matondo, A.; Inkoto, C.L.; Ngoyi, E.M.; Kabengele, C.N.; Bongo, G.N.; Gbolo, B.Z.; Kilembe, J.T. Antiviral activity, phytochemistry and toxicology of some medically interesting Allium species: A mini review. Int. J. Pathog. Res. 2020, 5, 64–77. [Google Scholar] [CrossRef]
- Friesen, N.; Smirnov, S.V.; Leweke, M.; Seregin, A.P.; Fritsch, R.M. Taxonomy and phylogenetics of Allium section Decipientia (Amaryllidaceae): Morphological characters do not reflect the evolutionary history revealed by molecular markers. Bot. J. Linn. Soc. 2021, 197, 190–228. [Google Scholar] [CrossRef]
- Genc, İ.; Özhatay, F.N. Allium efeae (Amaryllidaceae), a new species from northwest Anatolia, Turkey. Turk. J. Bot. 2014, 38, 1022–1025. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, P.; Cheng, G.; Zhang, Y. A Brief Review of Phenolic Compounds Identified from Plants: Their Extraction, Analysis, and Biological Activity. Nat. Prod. Commun. 2022, 17, 1934578X211069721. [Google Scholar] [CrossRef]
- Liga, S.; Paul, C.; Péter, F. Flavonoids: Overview of Biosynthesis, Biological Activity, and Current Extraction Techniques. Plants 2023, 12, 2732. [Google Scholar] [CrossRef] [PubMed]
- Uysal, S.; Zengin, G.; Locatelli, M.; Bahadori, M.B.; Mocan, A.; Bellagamba, G.; De Luca, E.; Mollica, A.; Aktumsek, A. Cytotoxic and enzyme inhibitory potential of two Potentilla species (P. speciosa L. and P. reptans Willd.) and their chemical composition. Front. Pharmacol. 2017, 8, 290. [Google Scholar] [CrossRef] [PubMed]
- Nedić, N.; Nešović, M.; Radišić, P.; Gašić, U.; Baošić, R.; Joksimović, K.; Pezo, L.; Tešić, Ž.; Vovk, I. Polyphenolic and Chemical Profiles of Honey From the Tara Mountain in Serbia. Front. Nutr. 2022, 9, 941463. [Google Scholar] [CrossRef]
- Mitić, V.; Stankov-Jovanovic, V.; Ilic, M.; Nikolic, J.; Dimitrijevic, M.; Stojanović, G. In vitro antioxidant activity of methanol extract of allium scorodoprasum. Bulg. J. Agric. Sci. 2014, 20, 1130–1136. [Google Scholar]
- Mollica, A.; Zengin, G.; Locatelli, M.; Picot-Allain, C.M.N.; Mahomoodally, M.F. Multidirectional investigations on different parts of Allium scorodoprasum L. subsp. rotundum (L.) Stearn: Phenolic components, in vitro biological, and in silico propensities. Food Res. Int. 2018, 108, 641–649. [Google Scholar] [CrossRef]
- Emir, C.; Emir, A. Phytochemical analyses with LC-MS/MS and in vitro enzyme inhibitory activities of an endemic species “Allium stylosum O. Schwarz”(Amaryllidaceae). S. Afr. J. Bot. 2021, 136, 70–75. [Google Scholar] [CrossRef]
- Sut, S.; Maggi, F.; Bruno, S.; Badalamenti, N.; Quassinti, L.; Bramucci, M.; Beghelli, D.; Lupidi, G.; Dall’Acqua, S. Hairy garlic (Allium subhirsutum) from Sicily (Italy): LC-DAD-MSn analysis of secondary metabolites and in vitro biological properties. Molecules 2020, 25, 2837. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Santos, J.S.; Maciel, L.G.; Nunes, D.S. Chemical perspective and criticism on selected analytical methods used to estimate the total content of phenolic compounds in food matrices. TrAC Trends Anal. Chem. 2016, 80, 266–279. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Shraim, A.M.; Ahmed, T.A.; Rahman, M.M.; Hijji, Y.M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 2021, 150, 111932. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Advantages and limitations of common testing methods for antioxidants. Free Radic. Res. 2015, 49, 633–649. [Google Scholar] [CrossRef] [PubMed]
- Papoti, V.; Xystouris, S.; Papagianni, G.; Tsimidou, M. “Total flavonoid” content assessment via aluminum [AL (III)] complexation reactions. What we really measure? Ital. J. Food Sci. 2011, 23, 252. [Google Scholar]
- Huang, R.; Wu, W.; Shen, S.; Fan, J.; Chang, Y.; Chen, S.; Ye, X. Evaluation of colorimetric methods for quantification of citrus flavonoids to avoid misuse. Anal. Methods 2018, 10, 2575–2587. [Google Scholar] [CrossRef]
- Nakane, R.; Iwashina, T. Flavonol glycosides from the leaves of Allium macrostemon. Nat. Prod. Commun. 2015, 10, 1934578X1501000817. [Google Scholar] [CrossRef]
- Brewer, M. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Delfanian, M.; Sahari, M.A.; Barzegar, M.; Ahmadi Gavlighi, H. Structure–antioxidant activity relationships of gallic acid and phloroglucinol. J. Food Meas. Charact. 2021, 15, 5036–5046. [Google Scholar] [CrossRef]
- Enogieru, A.B.; Haylett, W.; Hiss, D.C.; Bardien, S.; Ekpo, O.E. Rutin as a potent antioxidant: Implications for neurodegenerative disorders. Oxidative Med. Cell. Longev. 2018, 2018, 6241017. [Google Scholar] [CrossRef] [PubMed]
- Rababah, T.; Ereifej, K.; Esoh, R.; Al-u’datt, M.H.; Alrababah, M.A.; Yang, W. Antioxidant activities, total phenolics and HPLC analyses of the phenolic compounds of extracts from common Mediterranean plants. Nat. Prod. Res. 2011, 25, 596–605. [Google Scholar] [CrossRef] [PubMed]
- Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef]
- Xu, S.; Chen, S.; Xia, W.; Sui, H.; Fu, X. Hyperoside: A review of its structure, synthesis, pharmacology, pharmacokinetics and toxicity. Molecules 2022, 27, 3009. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, N.; Rizvi, S.I. Amylase inhibitory and metal chelating effects of different layers of onion (Allium cepa L.) at two different stages of maturation in vitro. Ann. Phytomed. Int. J. 2017, 6, 45–50. [Google Scholar] [CrossRef]
- Ma, Y.-L.; Zhu, D.-Y.; Thakur, K.; Wang, C.-H.; Wang, H.; Ren, Y.-F.; Zhang, J.-G.; Wei, Z.-J. Antioxidant and antibacterial evaluation of polysaccharides sequentially extracted from onion (Allium cepa L.). Int. J. Biol. Macromol. 2018, 111, 92–101. [Google Scholar] [CrossRef]
- Sears, M.E. Chelation: Harnessing and enhancing heavy metal detoxification—A review. Sci. World J. 2013, 2013, 219840. [Google Scholar] [CrossRef]
- Tepe, B.; Sokmen, M.; Akpulat, H.A.; Sokmen, A. In vitro antioxidant activities of the methanol extracts of five Allium species from Turkey. Food Chem. 2005, 92, 89–92. [Google Scholar] [CrossRef]
- Vu, N.K.; Kim, C.S.; Ha, M.T.; Ngo, Q.-M.T.; Park, S.E.; Kwon, H.; Lee, D.; Choi, J.S.; Kim, J.A.; Min, B.S. Antioxidant and Antidiabetic Activities of Flavonoid Derivatives from the Outer Skins of Allium cepa L. J. Agric. Food Chem. 2020, 68, 8797–8811. [Google Scholar] [CrossRef]
- Karakaya, S.; Eksi, G.; Koca, M.; Demirci, B.; Kaymak, H.C.; Kaplan, M.E.; Aksakal, O. In Chemical and morphological characterization of Allium tuncelianum (Amaryllidaceae) and its antioxidant and anticholinesterase potentials. An. Del Jardín Botánico De Madr. 2019, 76, e085. [Google Scholar] [CrossRef]
- Kumar, S. Dual inhibition of acetylcholinesterase and butyrylcholinesterase enzymes by allicin. Indian J. Pharmacol. 2015, 47, 444. [Google Scholar] [CrossRef] [PubMed]
- Ademosun, A.O.; Oboh, G.; Bello, F.; Ayeni, P.O. Antioxidative properties and effect of quercetin and its glycosylated form (Rutin) on acetylcholinesterase and butyrylcholinesterase activities. J. Evid.-Based Complement. Altern. Med. 2016, 21, NP11–NP17. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, D.M.; El Zalabani, S.M.; Koheil, M.A.; El-Hefnawy, H.M.; Farag, M.A. Metabolite profiling driven analysis of Salsola species and their anti-acetylcholinesterase potential. Nat. Prod. Res. 2013, 27, 2320–2327. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-J.; Heo, M.-Y.; Son, K.-H.; Kim, H.-P. Tyrosinase inhibitory activity of 80 plant extracts (II). Biomol. Ther. 2003, 11, 5–7. [Google Scholar]
- Nikkhahi, M.; Souri, E.; Sarkhail, P.; Baeeri, M.; Mohammadhosseini, N. Evaluation of anti-tyrosinase activity of Allium ursinum extracts and their metal complexes. Acta Sci. Polonorum. Technol. Aliment. 2018, 17, 585. [Google Scholar]
- Kim, S.-H.; Jo, S.-H.; Kwon, Y.-I.; Hwang, J.-K. Effects of onion (Allium cepa L.) extract administration on intestinal α-glucosidases activities and spikes in postprandial blood glucose levels in SD rats model. Int. J. Mol. Sci. 2011, 12, 3757–3769. [Google Scholar] [CrossRef]
- Grochowski, D.M.; Uysal, S.; Aktumsek, A.; Granica, S.; Zengin, G.; Ceylan, R.; Locatelli, M.; Tomczyk, M. In vitro enzyme inhibitory properties, antioxidant activities, and phytochemical profile of Potentilla thuringiaca. Phytochem. Lett. 2017, 20, 365–372. [Google Scholar] [CrossRef]
Extraction Methods | Parts | Solvents | Codes | Total Phenolic Content (mg GAE/g) | Total Flavonoid Content (mg RE/g) |
---|---|---|---|---|---|
Maceration | Aerial parts | n-Hexane | MAH | 21.83 ± 0.45 bc | 9.18 ± 0.96 d |
MeOH | MAM | 18.08 ± 0.36 d | 41.95 ± 0.84 a | ||
Water | MAW | 29.00 ± 0.30 a | 7.64 ± 1.07 d | ||
Bulb | n-Hexane | MBH | 18.39 ± 0.22 d | 1.24 ± 0.07 f | |
MeOH | MBM | 7.86 ± 0.09 gh | 1.83 ± 0.43 e | ||
Water | MBW | 10.52 ± 0.27 f | 0.42 ± 0.03 i | ||
Soxhlet/Infusion * | Aerial parts | n-Hexane | HAH | 14.80 ± 0.31 e | 6.73 ± 0.72 d |
MeOH | HAM | 17.75 ± 0.70 d | 32.16 ± 1.53 b | ||
Water | HAW | 20.84 ± 0.40 c | 17.90 ± 1.80 c | ||
Bulb | n-Hexane | HBH | 22.29 ± 0.37 b | 0.33 ± 0.01 k | |
MeOH | HBM | 8.39 ± 0.11 g | 0.59 ± 0.05 h | ||
Water | HBW | 7.25 ± 0.05 h | 0.76 ± 0.10 g |
Compounds | Maceration | Soxhlet/Infusion | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Aerial Parts | Bulb | Aerial Parts | Bulb | |||||||||
n-Hexane | MeOH | Water | n-Hexane | MeOH | Water | n-Hexane | MeOH | Water | n-Hexane | MeOH | Water | |
MAH | MAM | MAW | MBH | MBM | MBW | HAH | HAM | HAW | HBH | HBM | HBW | |
Gallic acid (C1) | nd | 16.71 | 101.07 | nd | nd | 22.88 | nd | 17.16 | 17.16 | 17.61 | 10.28 | 10.28 |
Neochlorogenic acid (C2) | nd | nd | nd | 277.40 | nd | nd | nd | nd | nd | nd | nd | nd |
Delphindin-3-galactoside (C3) | 17.47 | 115.28 | nd | nd | 4.84 | nd | nd | 161.92 | 158.67 | 68.82 | 108.75 | 5.39 |
(+)-Catechin (C4) | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Procyanidin B2 (C5) | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Chlorogenic acid (C6) | nd | nd | nd | nd | nd | nd | nd | nd | 3.67 | nd | 20.85 | 20.73 |
p-Hydroxybenzoic acid (C7) | 221.35 | 1274.64 | 9224.09 | nd | 318.66 | 819.68 | nd | 964.95 | 929.66 | 937.04 | 296.62 | 296.92 |
(−)-Epicatechin (C8) | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Cyanidin-3-glucoside (C9) | 53.14 | 503.21 | 8.87 | nd | 26.85 | nd | nd | 239.39 | 524.16 | 351.08 | 130.46 | 24.08 |
Petunidin-3-glucoside (C10) | nd | 15.15 | nd | nd | nd | nd | nd | 16.18 | 17.64 | 9.88 | 10.32 | 0.97 |
3-Hydroxybenzoic acid (C11) | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Caffeic acid (C12) | nd | 134.27 | 34.31 | nd | 204.73 | nd | nd | 126.28 | 127.71 | 76.52 | 274.16 | 275.22 |
Vanillic acid (C13) | nd | 485.33 | 1987.28 | 159.28 | nd | nd | nd | 670.27 | 631.78 | 79.11 | nd | nd |
Resveratrol (C14) | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Pelargonidin-3-glucoside (C15) | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Pelagonidin-3-rutinoside (C16) | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Malvidin-3-galactoside (C17) | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Syringic acid (C18) | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Procyanidin A2 (C19) | nd | nd | nd | nd | nd | nd | nd | nd | 50.10 | nd | nd | nd |
p-Coumaric acid (C20) | 43.13 | 343.62 | 101.88 | nd | 224.54 | nd | nd | 298.37 | 299.59 | 221.19 | 194.59 | 187.05 |
Ferulic acid (C21) | 106.26 | 313.69 | 243.88 | 170.54 | 264.43 | 38.66 | 41.75 | 279.45 | 279.67 | 259.79 | 252.50 | 253.16 |
3,5-Dicaffeoylquinic acid (C22) | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Rutin (C23) | 537.19 | 10,901.61 | 187.26 | 22.34 | 422.55 | nd | nd | 9472.57 | 9448.38 | 6655.01 | 386.01 | 387.80 |
Hyperoside (C24) | 781.99 | 16,802.51 | 718.77 | 84.32 | 398.51 | nd | nd | 19,722.76 | 19,400.64 | 9183.12 | 9188.06 | 449.85 |
Isoquercitrin (C25) | 684.85 | 16,105.47 | 508.57 | 36.78 | 276.02 | nd | nd | 17,270.70 | 17,055.02 | 7243.23 | 307.02 | 309.15 |
Delphindin-3,5-diglucoside (C26) | 553.91 | 13,301.42 | 410.92 | 27.54 | 258.41 | nd | nd | 14,718.52 | 14,625.21 | 6184.17 | 290.30 | 281.06 |
Phloridzin (C27) | nd | 4.47 | nd | nd | 14.97 | nd | nd | nd | nd | 1.48 | 2.15 | 2.18 |
Quercitrin (C28) | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Myricetin (C29) | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Naringin (C30) | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Kaempferol-3-glucoside (C31) | 1202.95 | 20,441.65 | 501.94 | 29.81 | 726.49 | nd | nd | 20,421.73 | 20,624.27 | 9691.86 | 681.56 | 665.07 |
Hesperidin (C32) | nd | nd | nd | nd | nd | nd | nd | 151.33 | 153.80 | 77.77 | nd | 12.59 |
Ellagic acid (C33) | nd | 703.94 | 90.28 | 89.83 | 57.34 | 132.24 | nd | 703.96 | 701.53 | 132.73 | 54.56 | 52.83 |
trans-cinnamic acid (C34) | nd | 232.66 | 191.13 | nd | 55.85 | 15.83 | 122.24 | 201.76 | 203.72 | 97.75 | 99.18 | 40.17 |
Quercetin (C35) | nd | 872.12 | 141.69 | nd | nd | nd | nd | 780.43 | 770.12 | 138.19 | 12.70 | 11.60 |
Phloretin (C36) | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Kaempferol (C37) | nd | 2243.51 | 675.73 | nd | nd | nd | nd | 1585.54 | 1574.37 | 336.38 | 331.54 | 40.25 |
Isorhamnetin (C38) | nd | 147.32 | 19.66 | 0.58 | 4.62 | 2.31 | nd | 110.34 | 107.30 | 19.84 | 4.02 | 3.99 |
Total | 4202.23 | 84,958.57 | 15,147.33 | 898.42 | 3258.81 | 1031.60 | 164.00 | 87,913.60 | 87,704.17 | 41,782.56 | 12,655.63 | 3330.35 |
Extraction Methods | Plant’s Parts | Solvents | Codes | DPPH (mg TE/g) | ABTS (mg TE/g) | CUPRAC (mg TE/g) | FRAP (mg TE/g) | PBD (mmol TE/g) | MCA (mg EDTAE/g) |
---|---|---|---|---|---|---|---|---|---|
Maceration | Aerial parts | n-Hexane | MAH | 14.58 ± 1.07 d | 15.07 ± 1.90 d | 48.80 ± 1.49 d | 23.65 ± 0.88 f | 1.05 ± 0.19 bc | 20.68 ± 0.46 b |
MeOH | MAM | 28.00 ± 2.98 b | 43.89 ± 1.77 b | 54.11 ± 3.98 c | 36.63 ± 1.22 d | 0.95 ± 0.14 bcd | 25.25 ± 1.21 a | ||
Water | MAW | 26.81 ± 1.60 b | 64.09 ± 0.75 a | 83.03 ± 1.19 a | 63.03 ± 0.24 a | 1.06 ± 0.06 bc | 24.57 ± 1.94 a | ||
Bulb | n-Hexane | MBH | 9.08 ± 0.85 ef | 8.57 ± 0.34 fg | 34.05 ± 1.51 f | 19.13 ± 0.77 g | 0.80 ± 0.08 cd | 7.96 ± 0.70 d | |
MeOH | MBM | 8.30 ± 0.47 f | 12.94 ± 0.55 de | 23.24 ± 0.52 hi | 18.34 ± 0.13 g | 0.88 ± 0.10 bcd | 8.01 ± 1.22 d | ||
Water | MBW | 12.96 ± 0.41 d | 14.69 ± 1.11 de | 29.65 ± 0.15 g | 26.32 ± 0.53 e | 1.46 ± 0.09 a | 2.13 ± 0.36 e | ||
Soxhlet/infusion * | Aerial parts | n-Hexane | HAH | 6.21 ± 0.91 f | 4.75 ± 1.10 h | 29.16 ± 0.88 g | 16.13 ± 0.32 h | 0.41 ± 0.03 e | 8.30 ± 0.54 cd |
MeOH | HAM | 22.50 ± 0.054 c | 27.26 ± 1.71 c | 58.23 ± 0.46 bc | 39.89 ± 0.94 c | 0.75 ± 0.14 d | 20.11 ± 0.69 b | ||
Water | HAW | 31.70 ± 0.86 a | 43.77 ± 0.40 b | 61.90 ± 0.65 b | 51.33 ± 0.78 b | 1.04 ± 0.04 bcd | 27.66 ± 1.28 a | ||
Bulb | n-Hexane | HBH | 12.10 ± 0.47 de | 9.16 ± 1.00 fg | 41.62 ± 0.36 e | 24.63 ± 0.44 ef | 1.11 ± 0.11 b | 11.45 ± 1.75 c | |
MeOH | HBM | 8.75 ± 0.67 ef | 11.50 ± 1.68 ef | 24.83 ± 0.87 h | 20.02 ± 0.13 g | 0.30 ± 0.06 e | 6.77 ± 0.98 d | ||
Water | HBW | 7.11 ± 0.66 f | 6.36 ± 0.42 gh | 19.67 ± 0.54 i | 18.18 ± 0.15 g | 0.38 ± 0.02 e | 11.44 ± 1.06 c |
Extraction Methods | Parts | Solvents | Codes | AChE (mg GALAE/g) | BChE (mg GALAE/g) | Tyrosinase (mg KAE/g) | Amylase (mmol ACAE/g) | Glucosidase (mmol ACAE/g) |
---|---|---|---|---|---|---|---|---|
Maceration | Aerial parts | n-Hexane | MAH | 4.36 ± 0.28 a | 20.99 ± 1.55 a | 127.35 ± 1.00 cd | 0.71 ± 0.02 ab | 3.01 ± 0.01 cd |
MeOH | MAM | 3.27 ± 0.09 b | 12.28 ± 0.61 f | 139.40 ± 0.32 a | 0.54 ± 0.02 cd | 2.53 ± 0.11 e | ||
Water | MAW | 1.47 ± 0.19 c | 5.83 ± 0.27 g | 30.15 ± 1.22 fg | 0.34 ± 0.01 e | na | ||
Bulb | n-Hexane | MBH | 4.22 ± 0.06 a | 17.53 ± 0.61 cd | 118.67 ± 1.52 e | 0.73 ± 0.03 a | 2.94 ± 0.02 cd | |
MeOH | MBM | 4.29 ± 0.12 a | 15.25 ± 0.68 de | 132.39 ± 1.66 b | 0.51 ± 0.02 d | 3.25 ± 0.01 a | ||
Water | MBW | 1.12 ± 0.17 cd | 6.80 ± 0.67 g | 22.35 ± 1.49 h | 0.09 ± 0.01 f | 0.05 ± 0.02 g | ||
Soxhlet/infusion * | Aerial parts | n-Hexane | HAH | 4.20 ± 0.27 a | 18.13 ± 0.62 bc | 129.86 ± 2.11 bc | 0.62 ± 0.09 bc | 3.03 ± 0.01 bcd |
MeOH | HAM | 3.08 ± 0.18 b | 13.01 ± 0.41 ef | 138.95 ± 1.07 a | 0.53 ± 0.01 cd | 3.07 ± 0.17 abc | ||
Water | HAW | 0.81 ± 0.03 d | 5.19 ± 0.67 g | 33.57 ± 1.14 f | 0.14 ± 0.01 f | na | ||
Bulb | n-Hexane | HBH | 4.75 ± 0.27 a | 20.36 ± 0.84 ab | 125.30 ± 1.53 d | 0.65 ± 0.03 ab | 2.86 ± 0.01 d | |
MeOH | HBM | 4.59 ± 0.04 a | 18.48 ± 0.86 abc | 139.95 ± 0.22 a | 0.46 ± 0.03 d | 3.19 ± 0.05 ab | ||
Water | HBW | 1.14 ± 0.29 cd | 19.46 ± 1.99 abc | 27.40 ± 1.68 g | 0.12 ± 0.01 f | 0.48 ± 0.04 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yagi, S.; Nilofar; Zengin, G.; Yildiztugay, E.; Caprioli, G.; Piatti, D.; Menghini, L.; Ferrante, C.; Di Simone, S.C.; Chiavaroli, A.; et al. Exploring for HPLC-MS/MS Profiles and Biological Activities of Different Extracts from Allium lycaonicum Siehe ex Hayek from Turkey Flora. Foods 2023, 12, 4507. https://doi.org/10.3390/foods12244507
Yagi S, Nilofar, Zengin G, Yildiztugay E, Caprioli G, Piatti D, Menghini L, Ferrante C, Di Simone SC, Chiavaroli A, et al. Exploring for HPLC-MS/MS Profiles and Biological Activities of Different Extracts from Allium lycaonicum Siehe ex Hayek from Turkey Flora. Foods. 2023; 12(24):4507. https://doi.org/10.3390/foods12244507
Chicago/Turabian StyleYagi, Sakina, Nilofar, Gokhan Zengin, Evren Yildiztugay, Giovanni Caprioli, Diletta Piatti, Luigi Menghini, Claudio Ferrante, Simonetta Cristina Di Simone, Annalisa Chiavaroli, and et al. 2023. "Exploring for HPLC-MS/MS Profiles and Biological Activities of Different Extracts from Allium lycaonicum Siehe ex Hayek from Turkey Flora" Foods 12, no. 24: 4507. https://doi.org/10.3390/foods12244507
APA StyleYagi, S., Nilofar, Zengin, G., Yildiztugay, E., Caprioli, G., Piatti, D., Menghini, L., Ferrante, C., Di Simone, S. C., Chiavaroli, A., & Maggi, F. (2023). Exploring for HPLC-MS/MS Profiles and Biological Activities of Different Extracts from Allium lycaonicum Siehe ex Hayek from Turkey Flora. Foods, 12(24), 4507. https://doi.org/10.3390/foods12244507